# CASA **Repository Path**: zzulc/CASA ## Basic Information - **Project Name**: CASA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-19 - **Last Updated**: 2025-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CASA The repo is the official implementation for the paper: ["CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting"](https://arxiv.org/abs/2505.02011) (IJCAI 2025) ## Overall Architecture CASA regards **CNN Autoencoder-based Score Attenton** improving channel-wise tokenization and shows **Model Agnostic Feature** including **Computational Efficiency**.

The main result of CASA is as the following:

## Usage 1. Install Pytorch and necessary dependencies. ``` pip install -r requirements.txt ``` 2. Train and evaluate the model. We provide all the above tasks under the folder ./scripts/. You can reproduce the results as the following examples: ``` # ECL dataset : Multivariate forecasting with CASA bash ./scripts/long_term_forecast/ECL_script/CASA.sh ``` ## Citation If you find this repo helpful, please cite our paper. ``` @misc{lee2025casacnnautoencoderbasedscore, title={CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting}, author={Minhyuk Lee and HyeKyung Yoon and MyungJoo Kang}, year={2025}, eprint={2505.02011}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2505.02011}, } ```