# flink-sql-cookbook **Repository Path**: zengxiaochi/flink-sql-cookbook ## Basic Information - **Project Name**: flink-sql-cookbook - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-01-15 - **Last Updated**: 2024-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Apache Flink SQL Cookbook The [Apache Flink SQL](https://docs.ververica.com/user_guide/sql_development/index.html) Cookbook is a curated collection of examples, patterns, and use cases of Apache Flink SQL. Many of the recipes are completely self-contained and can be run in [Ververica Platform](https://docs.ververica.com/index.html) as is. The cookbook is a living document. :seedling: ## Table of Contents ### Foundations 1. [Creating Tables](foundations/01_create_table/01_create_table.md) 2. [Inserting Into Tables](foundations/02_insert_into/02_insert_into.md) 3. [Working with Temporary Tables](foundations/03_temporary_table/03_temporary_table.md) 4. [Filtering Data](foundations/04_where/04_where.md) 5. [Aggregating Data](foundations/05_group_by/05_group_by.md) 6. [Sorting Tables](foundations/06_order_by/06_order_by.md) 7. [Encapsulating Logic with (Temporary) Views](foundations/07_views/07_views.md) 8. [Writing Results into Multiple Tables](foundations/08_statement_sets/08_statement_sets.md) 9. [Convert timestamps with timezones](foundations/09_convert_timezones/09_convert_timezones.md) ### Aggregations and Analytics 1. [Aggregating Time Series Data](aggregations-and-analytics/01_group_by_window/01_group_by_window_tvf.md) 2. [Watermarks](aggregations-and-analytics/02_watermarks/02_watermarks.md) 3. [Analyzing Sessions in Time Series Data](aggregations-and-analytics/03_group_by_session_window/03_group_by_session_window.md) 4. [Rolling Aggregations on Time Series Data](aggregations-and-analytics/04_over/04_over.md) 5. [Continuous Top-N](aggregations-and-analytics/05_top_n/05_top_n.md) 6. [Deduplication](aggregations-and-analytics/06_dedup/06_dedup.md) 7. [Chained (Event) Time Windows](aggregations-and-analytics/07_chained_windows/07_chained_windows.md) 8. [Detecting Patterns with MATCH_RECOGNIZE](aggregations-and-analytics/08_match_recognize/08_match_recognize.md) 9. [Maintaining Materialized Views with Change Data Capture (CDC) and Debezium](aggregations-and-analytics/09_cdc_materialized_view/09_cdc_materialized_view.md) 10. [Hopping Time Windows](aggregations-and-analytics/10_hopping_time_windows/10_hopping_time_windows.md) 11. [Window Top-N](aggregations-and-analytics/11_window_top_n/11_window_top_n.md) 12. [Retrieve previous row value without self-join](aggregations-and-analytics/12_lag/12_lag.md) ### Other Built-in Functions & Operators 1. [Working with Dates and Timestamps](other-builtin-functions/01_date_time/01_date_time.md) 2. [Building the Union of Multiple Streams](other-builtin-functions/02_union-all/02_union-all.md) 3. [Filtering out Late Data](other-builtin-functions/03_current_watermark/03_current_watermark.md) 4. [Overriding table options](other-builtin-functions/04_override_table_options/04_override_table_options.md) 5. [Expanding arrays into new rows](other-builtin-functions/05_expanding_arrays/05_expanding_arrays.md) 6. [Split strings into maps](other-builtin-functions/06_split_strings_into_maps/06_split_strings_into_maps.md) ### User-Defined Functions (UDFs) 1. [Extending SQL with Python UDFs](udfs/01_python_udfs/01_python_udfs.md) ### Joins 1. [Regular Joins](joins/01_regular_joins/01_regular_joins.md) 2. [Interval Joins](joins/02_interval_joins/02_interval_joins.md) 3. [Temporal Table Join between a non-compacted and compacted Kafka Topic](joins/03_kafka_join/03_kafka_join.md) 4. [Lookup Joins](joins/04_lookup_joins/04_lookup_joins.md) 5. [Star Schema Denormalization (N-Way Join)](joins/05_star_schema/05_star_schema.md) 6. [Lateral Table Join](joins/06_lateral_join/06_lateral_join.md) ### Former Recipes 1. [Aggregating Time Series Data (Before Flink 1.13)](aggregations-and-analytics/01_group_by_window/01_group_by_window.md) ## About Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flink at https://flink.apache.org/. ## License Copyright © 2020-2022 Ververica GmbH Distributed under Apache License, Version 2.0.