From c00757a05dbe1341d4043da35f28a7f317d88cdc Mon Sep 17 00:00:00 2001 From: Shi Pujin Date: Wed, 22 Jun 2022 11:03:05 +0800 Subject: [PATCH] add LoongArch support --- 0005-add-LoongArch-support.patch | 51099 +++++++++++++++++++++++++++++ nodejs.spec | 35 +- 2 files changed, 51120 insertions(+), 14 deletions(-) create mode 100644 0005-add-LoongArch-support.patch diff --git a/0005-add-LoongArch-support.patch b/0005-add-LoongArch-support.patch new file mode 100644 index 0000000..4dbd879 --- /dev/null +++ b/0005-add-LoongArch-support.patch @@ -0,0 +1,51099 @@ +From fb5a6239527e553add5cf430b5327d18a27b852d Mon Sep 17 00:00:00 2001 +From: Shi Pujin +Date: Wed, 22 Jun 2022 10:59:17 +0800 +Subject: [PATCH] add LoongArch support + + +diff --git a/configure.py b/configure.py +index 380e8bb..0dbfd8f 100755 +--- a/configure.py ++++ b/configure.py +@@ -47,7 +47,8 @@ parser = optparse.OptionParser() + valid_os = ('win', 'mac', 'solaris', 'freebsd', 'openbsd', 'linux', + 'android', 'aix', 'cloudabi') + valid_arch = ('arm', 'arm64', 'ia32', 'mips', 'mipsel', 'mips64el', 'ppc', +- 'ppc64', 'x32','x64', 'x86', 'x86_64', 's390', 's390x') ++ 'ppc64', 'x32','x64', 'x86', 'x86_64', 's390', 's390x', ++ 'loong64') + valid_arm_float_abi = ('soft', 'softfp', 'hard') + valid_arm_fpu = ('vfp', 'vfpv3', 'vfpv3-d16', 'neon') + valid_mips_arch = ('loongson', 'r1', 'r2', 'r6', 'rx') +@@ -859,6 +860,7 @@ def host_arch_cc(): + '__x86_64__' : 'x64', + '__s390__' : 's390', + '__s390x__' : 's390x', ++ '__loongarch64': 'loong64', + } + + rtn = 'ia32' # default +diff --git a/deps/icu-small/source/i18n/double-conversion-utils.h b/deps/icu-small/source/i18n/double-conversion-utils.h +index 1e44fca..9282139 100644 +--- a/deps/icu-small/source/i18n/double-conversion-utils.h ++++ b/deps/icu-small/source/i18n/double-conversion-utils.h +@@ -94,7 +94,7 @@ int main(int argc, char** argv) { + #if defined(_M_X64) || defined(__x86_64__) || \ + defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ + defined(__hppa__) || defined(__ia64__) || \ +- defined(__mips__) || \ ++ defined(__mips__) || defined(__loongarch__) || \ + defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ + defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ + defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ +diff --git a/deps/uv/include/uv/unix.h b/deps/uv/include/uv/unix.h +index 3a13163..96d80f3 100644 +--- a/deps/uv/include/uv/unix.h ++++ b/deps/uv/include/uv/unix.h +@@ -412,6 +412,8 @@ typedef struct { + # define UV_FS_O_DIRECT 0x10000 + #elif defined(__linux__) && defined(__mips__) + # define UV_FS_O_DIRECT 0x08000 ++#elif defined(__linux__) && defined(__loongarch__) ++# define UV_FS_O_DIRECT 0x08000 + #elif defined(__linux__) && defined(__powerpc__) + # define UV_FS_O_DIRECT 0x20000 + #elif defined(__linux__) && defined(__s390x__) +diff --git a/deps/uv/src/unix/linux-core.c b/deps/uv/src/unix/linux-core.c +index f8d9ff5..3f50655 100644 +--- a/deps/uv/src/unix/linux-core.c ++++ b/deps/uv/src/unix/linux-core.c +@@ -695,6 +695,7 @@ static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) { + #if defined(__arm__) || \ + defined(__i386__) || \ + defined(__mips__) || \ ++ defined(__loongarch__) || \ + defined(__x86_64__) + fp = uv__open_file("/proc/cpuinfo"); + if (fp == NULL) +@@ -713,12 +714,12 @@ static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) { + continue; + } + } +-#if defined(__arm__) || defined(__mips__) ++#if defined(__arm__) || defined(__mips__) || defined(__loongarch__) + if (model_idx < numcpus) { + #if defined(__arm__) + /* Fallback for pre-3.8 kernels. */ + static const char model_marker[] = "Processor\t: "; +-#else /* defined(__mips__) */ ++#else /* defined(__mips__) || defined(__loongarch__) */ + static const char model_marker[] = "cpu model\t\t: "; + #endif + if (strncmp(buf, model_marker, sizeof(model_marker) - 1) == 0) { +@@ -732,18 +733,18 @@ static int read_models(unsigned int numcpus, uv_cpu_info_t* ci) { + continue; + } + } +-#else /* !__arm__ && !__mips__ */ ++#else /* !__arm__ && !__mips__ && !__loongarch__ */ + if (speed_idx < numcpus) { + if (strncmp(buf, speed_marker, sizeof(speed_marker) - 1) == 0) { + ci[speed_idx++].speed = atoi(buf + sizeof(speed_marker) - 1); + continue; + } + } +-#endif /* __arm__ || __mips__ */ ++#endif /* __arm__ || __mips__ || __loongarch__ */ + } + + fclose(fp); +-#endif /* __arm__ || __i386__ || __mips__ || __x86_64__ */ ++#endif /* __arm__ || __i386__ || __mips__ || __loongarch__ || __x86_64__ */ + + /* Now we want to make sure that all the models contain *something* because + * it's not safe to leave them as null. Copy the last entry unless there +diff --git a/deps/v8/BUILD.gn b/deps/v8/BUILD.gn +index 6b5edbf..5fe06dd 100644 +--- a/deps/v8/BUILD.gn ++++ b/deps/v8/BUILD.gn +@@ -391,6 +391,15 @@ config("toolchain") { + defines += [ "V8_TARGET_ARCH_ARM64" ] + } + ++ # loong64 simulators. ++ if (is_target_simulator && v8_current_cpu == "loong64") { ++ defines += [ "_LOONG64_TARGET_SIMULATOR" ] ++ } ++ ++ if (v8_current_cpu == "loong64") { ++ defines += [ "V8_TARGET_ARCH_LOONG64" ] ++ } ++ + # Mips64el/mipsel simulators. + if (is_target_simulator && + (v8_current_cpu == "mipsel" || v8_current_cpu == "mips64el")) { +@@ -1356,6 +1365,11 @@ v8_source_set("v8_initializers") { + ### gcmole(arch:arm64) ### + "src/builtins/arm64/builtins-arm64.cc", + ] ++ } else if (v8_current_cpu == "loong64") { ++ sources += [ ++ ### gcmole(arch:loong64) ### ++ "src/builtins/loong64/builtins-loong64.cc", ++ ] + } else if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel") { + sources += [ + ### gcmole(arch:mipsel) ### +@@ -2658,6 +2672,35 @@ v8_source_set("v8_base") { + "src/regexp/mips/regexp-macro-assembler-mips.h", + "src/wasm/baseline/mips/liftoff-assembler-mips.h", + ] ++ } else if (v8_current_cpu == "loong64") { ++ sources += [ ### gcmole(arch:loong64) ### ++ "src/compiler/loong64/code-generator-loong64.cc", ++ "src/compiler/loong64/instruction-codes-loong64.h", ++ "src/compiler/loong64/instruction-scheduler-loong64.cc", ++ "src/compiler/loong64/instruction-selector-loong64.cc", ++ "src/debug/loong64/debug-loong64.cc", ++ "src/loong64/assembler-loong64-inl.h", ++ "src/loong64/assembler-loong64.cc", ++ "src/loong64/assembler-loong64.h", ++ "src/loong64/code-stubs-loong64.cc", ++ "src/loong64/code-stubs-loong64.h", ++ "src/loong64/codegen-loong64.cc", ++ "src/loong64/constants-loong64.cc", ++ "src/loong64/constants-loong64.h", ++ "src/loong64/cpu-loong64.cc", ++ "src/loong64/deoptimizer-loong64.cc", ++ "src/loong64/disasm-loong64.cc", ++ "src/loong64/frame-constants-loong64.cc", ++ "src/loong64/frame-constants-loong64.h", ++ "src/loong64/interface-descriptors-loong64.cc", ++ "src/loong64/macro-assembler-loong64.cc", ++ "src/loong64/macro-assembler-loong64.h", ++ "src/loong64/simulator-loong64.cc", ++ "src/loong64/simulator-loong64.h", ++ "src/regexp/loong64/regexp-macro-assembler-loong64.cc", ++ "src/regexp/loong64/regexp-macro-assembler-loong64.h", ++ "src/wasm/baseline/loong64/liftoff-assembler-loong64.h", ++ ] + } else if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") { + sources += [ ### gcmole(arch:mips64el) ### + "src/compiler/mips64/code-generator-mips64.cc", +diff --git a/deps/v8/gypfiles/toolchain.gypi b/deps/v8/gypfiles/toolchain.gypi +index fbf6832..839d818 100644 +--- a/deps/v8/gypfiles/toolchain.gypi ++++ b/deps/v8/gypfiles/toolchain.gypi +@@ -290,6 +290,11 @@ + 'V8_TARGET_ARCH_ARM64', + ], + }], ++ ['v8_target_arch=="loong64"', { ++ 'defines': [ ++ 'V8_TARGET_ARCH_LOONG64', ++ ], ++ }], + ['v8_target_arch=="s390" or v8_target_arch=="s390x"', { + 'defines': [ + 'V8_TARGET_ARCH_S390', +diff --git a/deps/v8/gypfiles/v8.gyp b/deps/v8/gypfiles/v8.gyp +index f339bbf..cf2c6d3 100644 +--- a/deps/v8/gypfiles/v8.gyp ++++ b/deps/v8/gypfiles/v8.gyp +@@ -296,6 +296,11 @@ + '../src/builtins/mips64/builtins-mips64.cc', + ], + }], ++ ['v8_target_arch=="loong64"', { ++ 'sources': [ ++ '../src/builtins/loong64/builtins-loong64.cc', ++ ], ++ }], + ['v8_target_arch=="ppc" or v8_target_arch=="ppc64"', { + 'sources': [ + '../src/builtins/ppc/builtins-ppc.cc', +@@ -1698,6 +1703,36 @@ + '../src/wasm/baseline/mips64/liftoff-assembler-mips64.h', + ], + }], ++ ['v8_target_arch=="loong64"', { ++ 'sources': [ ++ '../src/compiler/loong64/code-generator-loong64.cc', ++ '../src/compiler/loong64/instruction-codes-loong64.h', ++ '../src/compiler/loong64/instruction-scheduler-loong64.cc', ++ '../src/compiler/loong64/instruction-selector-loong64.cc', ++ '../src/debug/loong64/debug-loong64.cc', ++ '../src/loong64/assembler-loong64-inl.h', ++ '../src/loong64/assembler-loong64.cc', ++ '../src/loong64/assembler-loong64.h', ++ '../src/loong64/code-stubs-loong64.cc', ++ '../src/loong64/code-stubs-loong64.h', ++ '../src/loong64/codegen-loong64.cc', ++ '../src/loong64/constants-loong64.cc', ++ '../src/loong64/constants-loong64.h', ++ '../src/loong64/cpu-loong64.cc', ++ '../src/loong64/deoptimizer-loong64.cc', ++ '../src/loong64/disasm-loong64.cc', ++ '../src/loong64/frame-constants-loong64.cc', ++ '../src/loong64/frame-constants-loong64.h', ++ '../src/loong64/interface-descriptors-loong64.cc', ++ '../src/loong64/macro-assembler-loong64.cc', ++ '../src/loong64/macro-assembler-loong64.h', ++ '../src/loong64/simulator-loong64.cc', ++ '../src/loong64/simulator-loong64.h', ++ '../src/regexp/loong64/regexp-macro-assembler-loong64.cc', ++ '../src/regexp/loong64/regexp-macro-assembler-loong64.h', ++ '../src/wasm/baseline/loong64/liftoff-assembler-loong64.h', ++ ], ++ }], + ['v8_target_arch=="ppc" or v8_target_arch=="ppc64"', { + 'sources': [ + '../src/compiler/ppc/code-generator-ppc.cc', +diff --git a/deps/v8/snapshot_toolchain.gni b/deps/v8/snapshot_toolchain.gni +index 756413e..7795d61 100644 +--- a/deps/v8/snapshot_toolchain.gni ++++ b/deps/v8/snapshot_toolchain.gni +@@ -82,7 +82,8 @@ if (v8_snapshot_toolchain == "") { + + if (v8_current_cpu == "x64" || v8_current_cpu == "x86") { + _cpus = v8_current_cpu +- } else if (v8_current_cpu == "arm64" || v8_current_cpu == "mips64el") { ++ } else if (v8_current_cpu == "arm64" || v8_current_cpu == "mips64el" || ++ v8_current_cpu == "loong64") { + _cpus = "x64_v8_${v8_current_cpu}" + } else if (v8_current_cpu == "arm" || v8_current_cpu == "mipsel") { + _cpus = "x86_v8_${v8_current_cpu}" +diff --git a/deps/v8/src/assembler-arch.h b/deps/v8/src/assembler-arch.h +index 5858907..e644a54 100644 +--- a/deps/v8/src/assembler-arch.h ++++ b/deps/v8/src/assembler-arch.h +@@ -23,6 +23,8 @@ + #include "src/mips64/assembler-mips64.h" + #elif V8_TARGET_ARCH_S390 + #include "src/s390/assembler-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/assembler-loong64.h" + #else + #error Unknown architecture. + #endif +diff --git a/deps/v8/src/assembler-inl.h b/deps/v8/src/assembler-inl.h +index 5cf4fae..8ad40a0 100644 +--- a/deps/v8/src/assembler-inl.h ++++ b/deps/v8/src/assembler-inl.h +@@ -23,6 +23,8 @@ + #include "src/mips64/assembler-mips64-inl.h" + #elif V8_TARGET_ARCH_S390 + #include "src/s390/assembler-s390-inl.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/assembler-loong64-inl.h" + #else + #error Unknown architecture. + #endif +diff --git a/deps/v8/src/assembler.cc b/deps/v8/src/assembler.cc +index 799f08a..9f66c02 100644 +--- a/deps/v8/src/assembler.cc ++++ b/deps/v8/src/assembler.cc +@@ -208,7 +208,8 @@ bool RelocInfo::OffHeapTargetIsCodedSpecially() { + defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_IA32) + return false; + #elif defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ +- defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) ++ defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || \ ++ defined(V8_TARGET_ARCH_LOONG64) + return true; + #endif + } +diff --git a/deps/v8/src/base/build_config.h b/deps/v8/src/base/build_config.h +index df0d111..c8745c4 100644 +--- a/deps/v8/src/base/build_config.h ++++ b/deps/v8/src/base/build_config.h +@@ -27,6 +27,9 @@ + #elif defined(__ARMEL__) + #define V8_HOST_ARCH_ARM 1 + #define V8_HOST_ARCH_32_BIT 1 ++#elif defined(__loongarch64) ++#define V8_HOST_ARCH_LOONG64 1 ++#define V8_HOST_ARCH_64_BIT 1 + #elif defined(__mips64) + #define V8_HOST_ARCH_MIPS64 1 + #define V8_HOST_ARCH_64_BIT 1 +@@ -78,7 +81,7 @@ + // environment as presented by the compiler. + #if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && \ + !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 && \ +- !V8_TARGET_ARCH_PPC && !V8_TARGET_ARCH_S390 ++ !V8_TARGET_ARCH_PPC && !V8_TARGET_ARCH_S390 && !V8_TARGET_ARCH_LOONG64 + #if defined(_M_X64) || defined(__x86_64__) + #define V8_TARGET_ARCH_X64 1 + #elif defined(_M_IX86) || defined(__i386__) +@@ -87,6 +90,8 @@ + #define V8_TARGET_ARCH_ARM64 1 + #elif defined(__ARMEL__) + #define V8_TARGET_ARCH_ARM 1 ++#elif defined(__loongarch__) ++#define V8_TARGET_ARCH_LOONG64 1 + #elif defined(__mips64) + #define V8_TARGET_ARCH_MIPS64 1 + #elif defined(__MIPSEB__) || defined(__MIPSEL__) +@@ -113,6 +118,8 @@ + #define V8_TARGET_ARCH_32_BIT 1 + #elif V8_TARGET_ARCH_ARM64 + #define V8_TARGET_ARCH_64_BIT 1 ++#elif V8_TARGET_ARCH_LOONG64 ++#define V8_TARGET_ARCH_64_BIT 1 + #elif V8_TARGET_ARCH_MIPS + #define V8_TARGET_ARCH_32_BIT 1 + #elif V8_TARGET_ARCH_MIPS64 +@@ -157,6 +164,9 @@ + #if (V8_TARGET_ARCH_MIPS64 && !(V8_HOST_ARCH_X64 || V8_HOST_ARCH_MIPS64)) + #error Target architecture mips64 is only supported on mips64 and x64 host + #endif ++#if (V8_TARGET_ARCH_LOONG64 && !(V8_HOST_ARCH_X64 || V8_HOST_ARCH_LOONG64)) ++#error Target architecture loong64 is only supported on loong64 and x64 host ++#endif + + // Determine architecture endianness. + #if V8_TARGET_ARCH_IA32 +@@ -167,6 +177,8 @@ + #define V8_TARGET_LITTLE_ENDIAN 1 + #elif V8_TARGET_ARCH_ARM64 + #define V8_TARGET_LITTLE_ENDIAN 1 ++#elif V8_TARGET_ARCH_LOONG64 ++#define V8_TARGET_LITTLE_ENDIAN 1 + #elif V8_TARGET_ARCH_MIPS + #if defined(__MIPSEB__) + #define V8_TARGET_BIG_ENDIAN 1 +diff --git a/deps/v8/src/base/platform/platform-posix.cc b/deps/v8/src/base/platform/platform-posix.cc +index 8b9e85c..7730282 100644 +--- a/deps/v8/src/base/platform/platform-posix.cc ++++ b/deps/v8/src/base/platform/platform-posix.cc +@@ -265,6 +265,10 @@ void* OS::GetRandomMmapAddr() { + // 31 bits of virtual addressing. Truncate to 29 bits to allow kernel chance + // to fulfill request. + raw_addr &= 0x1FFFF000; ++#elif V8_TARGET_ARCH_LOONG64 ++ // 42 bits of virtual addressing. Truncate to 40 bits to allow kernel chance ++ // to fulfill request. ++ raw_addr &= uint64_t{0xFFFFFF0000}; + #else + raw_addr &= 0x3FFFF000; + +@@ -414,6 +418,8 @@ void OS::DebugBreak() { + asm("int $3"); + #elif V8_HOST_ARCH_X64 + asm("int $3"); ++#elif V8_HOST_ARCH_LOONG64 ++ asm("break 0"); + #elif V8_HOST_ARCH_S390 + // Software breakpoint instruction is 0x0001 + asm volatile(".word 0x0001"); +diff --git a/deps/v8/src/builtins/builtins-sharedarraybuffer-gen.cc b/deps/v8/src/builtins/builtins-sharedarraybuffer-gen.cc +index 2c9f079..7cb0e0e 100644 +--- a/deps/v8/src/builtins/builtins-sharedarraybuffer-gen.cc ++++ b/deps/v8/src/builtins/builtins-sharedarraybuffer-gen.cc +@@ -267,7 +267,7 @@ TF_BUILTIN(AtomicsExchange, SharedArrayBufferBuiltinsAssembler) { + DebugSanityCheckAtomicIndex(array, index_word32, context); + #endif + +-#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ++#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64 + Return(CallRuntime(Runtime::kAtomicsExchange, context, array, index_integer, + value_integer)); + #else +@@ -316,7 +316,7 @@ TF_BUILTIN(AtomicsExchange, SharedArrayBufferBuiltinsAssembler) { + // This shouldn't happen, we've already validated the type. + BIND(&other); + Unreachable(); +-#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ++#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64 + } + + TF_BUILTIN(AtomicsCompareExchange, SharedArrayBufferBuiltinsAssembler) { +@@ -343,7 +343,8 @@ TF_BUILTIN(AtomicsCompareExchange, SharedArrayBufferBuiltinsAssembler) { + #endif + + #if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 || \ +- V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X ++ V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X || \ ++ V8_TARGET_ARCH_LOONG64 + Return(CallRuntime(Runtime::kAtomicsCompareExchange, context, array, + index_integer, old_value_integer, new_value_integer)); + #else +@@ -400,6 +401,7 @@ TF_BUILTIN(AtomicsCompareExchange, SharedArrayBufferBuiltinsAssembler) { + Unreachable(); + #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 + // || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X ++ // || V8_TARGET_ARCH_LOONG64 + } + + #define BINOP_BUILTIN(op) \ +@@ -442,7 +444,8 @@ void SharedArrayBufferBuiltinsAssembler::AtomicBinopBuiltinCommon( + #endif + + #if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 || \ +- V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X ++ V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X || \ ++ V8_TARGET_ARCH_LOONG64 + Return(CallRuntime(runtime_function, context, array, index_integer, + value_integer)); + #else +@@ -493,6 +496,7 @@ void SharedArrayBufferBuiltinsAssembler::AtomicBinopBuiltinCommon( + Unreachable(); + #endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 + // || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X ++ // || V8_TARGET_ARCH_LOONG64 + } + + } // namespace internal +diff --git a/deps/v8/src/builtins/loong64/builtins-loong64.cc b/deps/v8/src/builtins/loong64/builtins-loong64.cc +new file mode 100644 +index 0000000..af51195 +--- /dev/null ++++ b/deps/v8/src/builtins/loong64/builtins-loong64.cc +@@ -0,0 +1,3043 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/code-factory.h" ++#include "src/code-stubs.h" ++#include "src/counters.h" ++#include "src/debug/debug.h" ++#include "src/deoptimizer.h" ++#include "src/frame-constants.h" ++#include "src/frames.h" ++#include "src/loong64/constants-loong64.h" ++#include "src/objects-inl.h" ++#include "src/runtime/runtime.h" ++ ++namespace v8 { ++namespace internal { ++ ++#define __ ACCESS_MASM(masm) ++ ++void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ++ ExitFrameType exit_frame_type) { ++ __ li(s2, ExternalReference::Create(address)); ++ if (exit_frame_type == BUILTIN_EXIT) { ++ __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), ++ RelocInfo::CODE_TARGET); ++ } else { ++ DCHECK(exit_frame_type == EXIT); ++ __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), ++ RelocInfo::CODE_TARGET); ++ } ++} ++ ++namespace { ++ ++void AdaptorWithExitFrameType(MacroAssembler* masm, ++ Builtins::ExitFrameType exit_frame_type) { ++ // ----------- S t a t e ------------- ++ // -- a0 : number of arguments excluding receiver ++ // -- a1 : target ++ // -- a3 : new.target ++ // -- s2 : entry point ++ // -- sp[0] : last argument ++ // -- ... ++ // -- sp[8 * (argc - 1)] : first argument ++ // -- sp[8 * agrc] : receiver ++ // ----------------------------------- ++ __ AssertFunction(a1); ++ ++ // Make sure we operate in the context of the called function (for example ++ // ConstructStubs implemented in C++ will be run in the context of the caller ++ // instead of the callee, due to the way that [[Construct]] is defined for ++ // ordinary functions). ++ __ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ++ ++ // CEntry expects a0 to contain the number of arguments including the ++ // receiver and the extra arguments. ++ __ Add_d(a0, a0, BuiltinExitFrameConstants::kNumExtraArgsWithReceiver); ++ ++ // Insert extra arguments. ++ __ PushRoot(Heap::kTheHoleValueRootIndex); // Padding. ++ __ SmiTag(a0); ++ __ Push(a0, a1, a3); ++ __ SmiUntag(a0); ++ ++ // Jump to the C entry runtime stub directly here instead of using ++ // JumpToExternalReference. We have already loaded entry point to s2 ++ // in Generate_adaptor. ++ __ mov(a1, s2); ++ Handle code = ++ CodeFactory::CEntry(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack, ++ exit_frame_type == Builtins::BUILTIN_EXIT); ++ __ Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg)); ++} ++} // namespace ++ ++void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) { ++ AdaptorWithExitFrameType(masm, EXIT); ++} ++ ++void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) { ++ AdaptorWithExitFrameType(masm, BUILTIN_EXIT); ++} ++ ++void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : number of arguments ++ // -- ra : return address ++ // -- sp[...]: constructor arguments ++ // ----------------------------------- ++ Label generic_array_code, one_or_more_arguments, two_or_more_arguments; ++ ++ if (FLAG_debug_code) { ++ // Initial map for the builtin InternalArray functions should be maps. ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); ++ __ SmiTst(a2, a4); ++ __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, ++ a4, Operand(zero_reg)); ++ __ GetObjectType(a2, a3, a4); ++ __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, ++ a4, Operand(MAP_TYPE)); ++ } ++ ++ // Run the native code for the InternalArray function called as a normal ++ // function. ++ // Tail call a stub. ++ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ++ InternalArrayConstructorStub stub(masm->isolate()); ++ __ TailCallStub(&stub); ++} ++ ++void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : number of arguments ++ // -- a1 : array function ++ // -- ra : return address ++ // -- sp[...]: constructor arguments ++ // ----------------------------------- ++ Label generic_array_code; ++ ++ if (FLAG_debug_code) { ++ // Initial map for the builtin Array functions should be maps. ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); ++ __ SmiTst(a2, a4); ++ __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction1, a4, ++ Operand(zero_reg)); ++ __ GetObjectType(a2, t0, a4); ++ __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction2, a4, ++ Operand(MAP_TYPE)); ++ } ++ ++ // a2 is the AllocationSite - here undefined. ++ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ++ // If a3 (new target) is undefined, then this is the 'Call' case, so move ++ // a1 (the constructor) to a3. ++ Label call; ++ __ Branch(&call, ne, a3, Operand(a2)); ++ __ mov(a3, a1); ++ ++ // Run the native code for the Array function called as a normal function. ++ __ bind(&call); ++ ArrayConstructorStub stub(masm->isolate()); ++ __ TailCallStub(&stub); ++} ++ ++static void GenerateTailCallToReturnedCode(MacroAssembler* masm, ++ Runtime::FunctionId function_id) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (preserved for callee) ++ // -- a1 : target function (preserved for callee) ++ // -- a3 : new target (preserved for callee) ++ // ----------------------------------- ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ // Push a copy of the function onto the stack. ++ // Push a copy of the target function and the new target. ++ __ SmiTag(a0); ++ __ Push(a0, a1, a3, a1); ++ ++ __ CallRuntime(function_id, 1); ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Add_d(a2, a0, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ // Restore target function and new target. ++ __ Pop(a0, a1, a3); ++ __ SmiUntag(a0); ++ } ++ ++ __ Jump(a2); ++} ++ ++namespace { ++ ++void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : number of arguments ++ // -- a1 : constructor function ++ // -- a3 : new target ++ // -- cp : context ++ // -- ra : return address ++ // -- sp[...]: constructor arguments ++ // ----------------------------------- ++ ++ // Enter a construct frame. ++ { ++ FrameScope scope(masm, StackFrame::CONSTRUCT); ++ ++ // Preserve the incoming parameters on the stack. ++ __ SmiTag(a0); ++ __ Push(cp, a0); ++ __ SmiUntag(a0); ++ ++ // The receiver for the builtin/api call. ++ __ PushRoot(Heap::kTheHoleValueRootIndex); ++ ++ // Set up pointer to last argument. ++ __ Add_d(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); ++ ++ // Copy arguments and receiver to the expression stack. ++ Label loop, entry; ++ __ mov(t3, a0); ++ // ----------- S t a t e ------------- ++ // -- a0: number of arguments (untagged) ++ // -- a3: new target ++ // -- t2: pointer to last argument ++ // -- t3: counter ++ // -- sp[0*kPointerSize]: the hole (receiver) ++ // -- sp[1*kPointerSize]: number of arguments (tagged) ++ // -- sp[2*kPointerSize]: context ++ // ----------------------------------- ++ __ jmp(&entry); ++ __ bind(&loop); ++ __ Alsl_d(t0, t3, t2, kPointerSizeLog2, t7); ++ __ Ld_d(t1, MemOperand(t0)); ++ __ push(t1); ++ __ bind(&entry); ++ __ Add_d(t3, t3, Operand(-1)); ++ __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); ++ ++ // Call the function. ++ // a0: number of arguments (untagged) ++ // a1: constructor function ++ // a3: new target ++ ParameterCount actual(a0); ++ __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); ++ ++ // Restore context from the frame. ++ __ Ld_d(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); ++ // Restore smi-tagged arguments count from the frame. ++ __ Ld_d(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); ++ // Leave construct frame. ++ } ++ ++ // Remove caller arguments from the stack and return. ++ __ SmiScale(a4, a1, kPointerSizeLog2); ++ __ Add_d(sp, sp, a4); ++ __ Add_d(sp, sp, kPointerSize); ++ __ Ret(); ++} ++ ++} // namespace ++ ++// The construct stub for ES5 constructor functions and ES6 class constructors. ++void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0: number of arguments (untagged) ++ // -- a1: constructor function ++ // -- a3: new target ++ // -- cp: context ++ // -- ra: return address ++ // -- sp[...]: constructor arguments ++ // ----------------------------------- ++ ++ // Enter a construct frame. ++ { ++ FrameScope scope(masm, StackFrame::CONSTRUCT); ++ Label post_instantiation_deopt_entry, not_create_implicit_receiver; ++ ++ // Preserve the incoming parameters on the stack. ++ __ SmiTag(a0); ++ __ Push(cp, a0, a1); ++ __ PushRoot(Heap::kTheHoleValueRootIndex); ++ __ Push(a3); ++ ++ // ----------- S t a t e ------------- ++ // -- sp[0*kPointerSize]: new target ++ // -- sp[1*kPointerSize]: padding ++ // -- a1 and sp[2*kPointerSize]: constructor function ++ // -- sp[3*kPointerSize]: number of arguments (tagged) ++ // -- sp[4*kPointerSize]: context ++ // ----------------------------------- ++ ++ __ Ld_d(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_wu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); ++ __ And(t2, t2, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); ++ __ Branch(¬_create_implicit_receiver, ne, t2, Operand(zero_reg)); ++ ++ // If not derived class constructor: Allocate the new receiver object. ++ __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, ++ t2, t3); ++ __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), ++ RelocInfo::CODE_TARGET); ++ __ Branch(&post_instantiation_deopt_entry); ++ ++ // Else: use TheHoleValue as receiver for constructor call ++ __ bind(¬_create_implicit_receiver); ++ __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); ++ ++ // ----------- S t a t e ------------- ++ // -- v0: receiver ++ // -- Slot 4 / sp[0*kPointerSize]: new target ++ // -- Slot 3 / sp[1*kPointerSize]: padding ++ // -- Slot 2 / sp[2*kPointerSize]: constructor function ++ // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) ++ // -- Slot 0 / sp[4*kPointerSize]: context ++ // ----------------------------------- ++ // Deoptimizer enters here. ++ masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( ++ masm->pc_offset()); ++ __ bind(&post_instantiation_deopt_entry); ++ ++ // Restore new target. ++ __ Pop(a3); ++ // Push the allocated receiver to the stack. We need two copies ++ // because we may have to return the original one and the calling ++ // conventions dictate that the called function pops the receiver. ++ __ Push(a0, a0); ++ ++ // ----------- S t a t e ------------- ++ // -- r3: new target ++ // -- sp[0*kPointerSize]: implicit receiver ++ // -- sp[1*kPointerSize]: implicit receiver ++ // -- sp[2*kPointerSize]: padding ++ // -- sp[3*kPointerSize]: constructor function ++ // -- sp[4*kPointerSize]: number of arguments (tagged) ++ // -- sp[5*kPointerSize]: context ++ // ----------------------------------- ++ ++ // Restore constructor function and argument count. ++ __ Ld_d(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); ++ __ Ld_d(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); ++ __ SmiUntag(a0); ++ ++ // Set up pointer to last argument. ++ __ Add_d(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); ++ ++ // Copy arguments and receiver to the expression stack. ++ Label loop, entry; ++ __ mov(t3, a0); ++ // ----------- S t a t e ------------- ++ // -- a0: number of arguments (untagged) ++ // -- a3: new target ++ // -- t2: pointer to last argument ++ // -- t3: counter ++ // -- sp[0*kPointerSize]: implicit receiver ++ // -- sp[1*kPointerSize]: implicit receiver ++ // -- sp[2*kPointerSize]: padding ++ // -- a1 and sp[3*kPointerSize]: constructor function ++ // -- sp[4*kPointerSize]: number of arguments (tagged) ++ // -- sp[5*kPointerSize]: context ++ // ----------------------------------- ++ __ jmp(&entry); ++ __ bind(&loop); ++ __ Alsl_d(t0, t3, t2, kPointerSizeLog2, t7); ++ __ Ld_d(t1, MemOperand(t0)); ++ __ push(t1); ++ __ bind(&entry); ++ __ Add_d(t3, t3, Operand(-1)); ++ __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); ++ ++ // Call the function. ++ ParameterCount actual(a0); ++ __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); ++ ++ // ----------- S t a t e ------------- ++ // -- v0: constructor result ++ // -- sp[0*kPointerSize]: implicit receiver ++ // -- sp[1*kPointerSize]: padding ++ // -- sp[2*kPointerSize]: constructor function ++ // -- sp[3*kPointerSize]: number of arguments ++ // -- sp[4*kPointerSize]: context ++ // ----------------------------------- ++ ++ // Store offset of return address for deoptimizer. ++ masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( ++ masm->pc_offset()); ++ ++ // Restore the context from the frame. ++ __ Ld_d(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); ++ ++ // If the result is an object (in the ECMA sense), we should get rid ++ // of the receiver and use the result; see ECMA-262 section 13.2.2-7 ++ // on page 74. ++ Label use_receiver, do_throw, leave_frame; ++ ++ // If the result is undefined, we jump out to using the implicit receiver. ++ __ JumpIfRoot(a0, Heap::kUndefinedValueRootIndex, &use_receiver); ++ ++ // Otherwise we do a smi check and fall through to check if the return value ++ // is a valid receiver. ++ ++ // If the result is a smi, it is *not* an object in the ECMA sense. ++ __ JumpIfSmi(a0, &use_receiver); ++ ++ // If the type of the result (stored in its map) is less than ++ // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. ++ __ GetObjectType(a0, t2, t2); ++ STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); ++ __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); ++ __ Branch(&use_receiver); ++ ++ __ bind(&do_throw); ++ __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); ++ ++ // Throw away the result of the constructor invocation and use the ++ // on-stack receiver as the result. ++ __ bind(&use_receiver); ++ __ Ld_d(a0, MemOperand(sp, 0 * kPointerSize)); ++ __ JumpIfRoot(a0, Heap::kTheHoleValueRootIndex, &do_throw); ++ ++ __ bind(&leave_frame); ++ // Restore smi-tagged arguments count from the frame. ++ __ Ld_d(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); ++ // Leave construct frame. ++ } ++ // Remove caller arguments from the stack and return. ++ __ SmiScale(a4, a1, kPointerSizeLog2); ++ __ Add_d(sp, sp, a4); ++ __ Add_d(sp, sp, kPointerSize); ++ __ Ret(); ++} ++ ++void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { ++ Generate_JSBuiltinsConstructStubHelper(masm); ++} ++ ++static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, ++ Register sfi_data, ++ Register scratch1) { ++ Label done; ++ ++ __ GetObjectType(sfi_data, scratch1, scratch1); ++ __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); ++ __ Ld_d(sfi_data, ++ FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); ++ ++ __ bind(&done); ++} ++ ++// static ++void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- v0 : the value to pass to the generator ++ // -- a1 : the JSGeneratorObject to resume ++ // -- ra : return address ++ // ----------------------------------- ++ __ AssertGeneratorObject(a1); ++ ++ // Store input value into generator object. ++ __ St_d(a0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); ++ __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, a0, a3, ++ kRAHasNotBeenSaved, kDontSaveFPRegs); ++ ++ // Load suspended function and context. ++ __ Ld_d(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); ++ __ Ld_d(cp, FieldMemOperand(a4, JSFunction::kContextOffset)); ++ ++ // Flood function if we are stepping. ++ Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; ++ Label stepping_prepared; ++ ExternalReference debug_hook = ++ ExternalReference::debug_hook_on_function_call_address(masm->isolate()); ++ __ li(a5, debug_hook); ++ __ Ld_b(a5, MemOperand(a5)); ++ __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg)); ++ ++ // Flood function if we need to continue stepping in the suspended generator. ++ ExternalReference debug_suspended_generator = ++ ExternalReference::debug_suspended_generator_address(masm->isolate()); ++ __ li(a5, debug_suspended_generator); ++ __ Ld_d(a5, MemOperand(a5)); ++ __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5)); ++ __ bind(&stepping_prepared); ++ ++ // Check the stack for overflow. We are not trying to catch interruptions ++ // (i.e. debug break and preemption) here, so check the "real stack limit". ++ Label stack_overflow; ++ __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); ++ __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg)); ++ ++ // Push receiver. ++ __ Ld_d(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); ++ __ Push(a5); ++ ++ // ----------- S t a t e ------------- ++ // -- a1 : the JSGeneratorObject to resume ++ // -- a4 : generator function ++ // -- cp : generator context ++ // -- ra : return address ++ // -- sp[0] : generator receiver ++ // ----------------------------------- ++ ++ // Push holes for arguments to generator function. Since the parser forced ++ // context allocation for any variables in generators, the actual argument ++ // values have already been copied into the context and these dummy values ++ // will never be used. ++ __ Ld_d(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_w(a3, ++ FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); ++ { ++ Label done_loop, loop; ++ __ bind(&loop); ++ __ Sub_d(a3, a3, Operand(1)); ++ __ Branch(&done_loop, lt, a3, Operand(zero_reg)); ++ __ PushRoot(Heap::kTheHoleValueRootIndex); ++ __ Branch(&loop); ++ __ bind(&done_loop); ++ } ++ ++ // Underlying function needs to have bytecode available. ++ if (FLAG_debug_code) { ++ __ Ld_d(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_d(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); ++ GetSharedFunctionInfoBytecode(masm, a3, t5); ++ __ GetObjectType(a3, a3, a3); ++ __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, ++ Operand(BYTECODE_ARRAY_TYPE)); ++ } ++ ++ // Resume (Ignition/TurboFan) generator object. ++ { ++ __ Ld_d(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_w(a0, ++ FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset)); ++ // We abuse new.target both to indicate that this is a resume call and to ++ // pass in the generator object. In ordinary calls, new.target is always ++ // undefined because generator functions are non-constructable. ++ __ Move(a3, a1); ++ __ Move(a1, a4); ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); ++ __ Add_d(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(a2); ++ } ++ ++ __ bind(&prepare_step_in_if_stepping); ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ Push(a1, a4); ++ // Push hole as receiver since we do not use it for stepping. ++ __ PushRoot(Heap::kTheHoleValueRootIndex); ++ __ CallRuntime(Runtime::kDebugOnFunctionCall); ++ __ Pop(a1); ++ } ++ __ Ld_d(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); ++ __ Branch(&stepping_prepared); ++ ++ __ bind(&prepare_step_in_suspended_generator); ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ Push(a1); ++ __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); ++ __ Pop(a1); ++ } ++ __ Ld_d(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); ++ __ Branch(&stepping_prepared); ++ ++ __ bind(&stack_overflow); ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ __ break_(0xCC); // This should be unreachable. ++ } ++} ++ ++void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ Push(a1); ++ __ CallRuntime(Runtime::kThrowConstructedNonConstructable); ++} ++ ++// Clobbers a2; preserves all other registers. ++static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) { ++ // Check the stack for overflow. We are not trying to catch ++ // interruptions (e.g. debug break and preemption) here, so the "real stack ++ // limit" is checked. ++ Label okay; ++ __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); ++ // Make a2 the space we have left. The stack might already be overflowed ++ // here which will cause r2 to become negative. ++ __ sub_d(a2, sp, a2); ++ // Check if the arguments will overflow the stack. ++ __ slli_d(a7, argc, kPointerSizeLog2); ++ __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison. ++ ++ // Out of stack space. ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ ++ __ bind(&okay); ++} ++ ++static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, ++ bool is_construct) { ++ // ----------- S t a t e ------------- ++ // -- a0: new.target ++ // -- a1: function ++ // -- a2: receiver_pointer ++ // -- a3: argc ++ // -- s0: argv ++ // ----------------------------------- ++ ProfileEntryHookStub::MaybeCallEntryHook(masm); ++ ++ // Enter an internal frame. ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ ++ // Setup the context (we need to use the caller context from the isolate). ++ ExternalReference context_address = ExternalReference::Create( ++ IsolateAddressId::kContextAddress, masm->isolate()); ++ __ li(cp, context_address); ++ __ Ld_d(cp, MemOperand(cp)); ++ ++ // Push the function and the receiver onto the stack. ++ __ Push(a1, a2); ++ ++ // Check if we have enough stack space to push all arguments. ++ // Clobbers a2. ++ Generate_CheckStackOverflow(masm, a3); ++ ++ // Remember new.target. ++ __ mov(a5, a0); ++ ++ // Copy arguments to the stack in a loop. ++ // a3: argc ++ // s0: argv, i.e. points to first arg ++ Label loop, entry; ++ __ Alsl_d(a6, a3, s0, kPointerSizeLog2, t7); ++ __ Branch(&entry); ++ // a6 points past last arg. ++ __ bind(&loop); ++ __ Ld_d(a4, MemOperand(s0)); // Read next parameter. ++ __ addi_d(s0, s0, kPointerSize); ++ __ Ld_d(a4, MemOperand(a4)); // Dereference handle. ++ __ push(a4); // Push parameter. ++ __ bind(&entry); ++ __ Branch(&loop, ne, s0, Operand(a6)); ++ ++ // Setup new.target and argc. ++ __ mov(a0, a3); ++ __ mov(a3, a5); ++ ++ // Initialize all JavaScript callee-saved registers, since they will be seen ++ // by the garbage collector as part of handlers. ++ __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); ++ __ mov(s1, a4); ++ __ mov(s2, a4); ++ __ mov(s3, a4); ++ __ mov(s4, a4); ++ __ mov(s5, a4); ++ // s6 holds the root address. Do not clobber. ++ // s7 is cp. Do not init. ++ ++ // Invoke the code. ++ Handle builtin = is_construct ++ ? BUILTIN_CODE(masm->isolate(), Construct) ++ : masm->isolate()->builtins()->Call(); ++ __ Call(builtin, RelocInfo::CODE_TARGET); ++ ++ // Leave internal frame. ++ } ++ __ Jump(ra); ++} ++ ++void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { ++ Generate_JSEntryTrampolineHelper(masm, false); ++} ++ ++void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { ++ Generate_JSEntryTrampolineHelper(masm, true); ++} ++ ++static void ReplaceClosureCodeWithOptimizedCode( ++ MacroAssembler* masm, Register optimized_code, Register closure, ++ Register scratch1, Register scratch2, Register scratch3) { ++ // Store code entry in the closure. ++ __ St_d(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); ++ __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. ++ __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, ++ kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, ++ OMIT_SMI_CHECK); ++} ++ ++static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { ++ Register args_count = scratch; ++ ++ // Get the arguments + receiver count. ++ __ Ld_d(args_count, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); ++ __ Ld_w(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); ++ ++ // Leave the frame (also dropping the register file). ++ __ LeaveFrame(StackFrame::INTERPRETED); ++ ++ // Drop receiver + arguments. ++ __ Add_d(sp, sp, args_count); ++} ++ ++// Tail-call |function_id| if |smi_entry| == |marker| ++static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, ++ Register smi_entry, ++ OptimizationMarker marker, ++ Runtime::FunctionId function_id) { ++ Label no_match; ++ __ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker))); ++ GenerateTailCallToReturnedCode(masm, function_id); ++ __ bind(&no_match); ++} ++ ++static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, ++ Register feedback_vector, ++ Register scratch1, Register scratch2, ++ Register scratch3) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (preserved for callee if needed, and caller) ++ // -- a3 : new target (preserved for callee if needed, and caller) ++ // -- a1 : target function (preserved for callee if needed, and caller) ++ // -- feedback vector (preserved for caller if needed) ++ // ----------------------------------- ++ DCHECK( ++ !AreAliased(feedback_vector, a0, a1, a3, scratch1, scratch2, scratch3)); ++ ++ Label optimized_code_slot_is_weak_ref, fallthrough; ++ ++ Register closure = a1; ++ Register optimized_code_entry = scratch1; ++ ++ __ Ld_d(optimized_code_entry, ++ FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); ++ ++ // Check if the code entry is a Smi. If yes, we interpret it as an ++ // optimisation marker. Otherwise, interpret it as a weak reference to a code ++ // object. ++ __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref, t7); ++ ++ { ++ // Optimized code slot is a Smi optimization marker. ++ ++ // Fall through if no optimization trigger. ++ __ Branch(&fallthrough, eq, optimized_code_entry, ++ Operand(Smi::FromEnum(OptimizationMarker::kNone))); ++ ++ TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, ++ OptimizationMarker::kLogFirstExecution, ++ Runtime::kFunctionFirstExecution); ++ TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, ++ OptimizationMarker::kCompileOptimized, ++ Runtime::kCompileOptimized_NotConcurrent); ++ TailCallRuntimeIfMarkerEquals( ++ masm, optimized_code_entry, ++ OptimizationMarker::kCompileOptimizedConcurrent, ++ Runtime::kCompileOptimized_Concurrent); ++ ++ { ++ // Otherwise, the marker is InOptimizationQueue, so fall through hoping ++ // that an interrupt will eventually update the slot with optimized code. ++ if (FLAG_debug_code) { ++ __ Assert( ++ eq, AbortReason::kExpectedOptimizationSentinel, ++ optimized_code_entry, ++ Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); ++ } ++ __ jmp(&fallthrough); ++ } ++ } ++ ++ { ++ // Optimized code slot is a weak reference. ++ __ bind(&optimized_code_slot_is_weak_ref); ++ ++ __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); ++ ++ // Check if the optimized code is marked for deopt. If it is, call the ++ // runtime to clear it. ++ Label found_deoptimized_code; ++ __ Ld_d(a5, FieldMemOperand(optimized_code_entry, ++ Code::kCodeDataContainerOffset)); ++ __ Ld_w(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset)); ++ __ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit)); ++ __ Branch(&found_deoptimized_code, ne, a5, Operand(zero_reg)); ++ ++ // Optimized code is good, get it into the closure and link the closure into ++ // the optimized functions list, then tail call the optimized code. ++ // The feedback vector is no longer used, so re-use it as a scratch ++ // register. ++ ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, ++ scratch2, scratch3, feedback_vector); ++ ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Add_d(a2, optimized_code_entry, ++ Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(a2); ++ ++ // Optimized code slot contains deoptimized code, evict it and re-enter the ++ // losure's code. ++ __ bind(&found_deoptimized_code); ++ GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); ++ } ++ ++ // Fall-through if the optimized code cell is clear and there is no ++ // optimization marker. ++ __ bind(&fallthrough); ++} ++ ++// Advance the current bytecode offset. This simulates what all bytecode ++// handlers do upon completion of the underlying operation. Will bail out to a ++// label if the bytecode (without prefix) is a return bytecode. ++static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, ++ Register bytecode_array, ++ Register bytecode_offset, ++ Register bytecode, Register scratch1, ++ Register scratch2, Label* if_return) { ++ Register bytecode_size_table = scratch1; ++ DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, ++ bytecode)); ++ __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address()); ++ ++ // Check if the bytecode is a Wide or ExtraWide prefix bytecode. ++ Label process_bytecode, extra_wide; ++ STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); ++ STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); ++ STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); ++ STATIC_ASSERT(3 == ++ static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); ++ __ Branch(&process_bytecode, hi, bytecode, Operand(3)); ++ __ And(scratch2, bytecode, Operand(1)); ++ __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); ++ ++ // Load the next bytecode and update table to the wide scaled table. ++ __ Add_d(bytecode_offset, bytecode_offset, Operand(1)); ++ __ Add_d(scratch2, bytecode_array, bytecode_offset); ++ __ Ld_bu(bytecode, MemOperand(scratch2)); ++ __ Add_d(bytecode_size_table, bytecode_size_table, ++ Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); ++ __ jmp(&process_bytecode); ++ ++ __ bind(&extra_wide); ++ // Load the next bytecode and update table to the extra wide scaled table. ++ __ Add_d(bytecode_offset, bytecode_offset, Operand(1)); ++ __ Add_d(scratch2, bytecode_array, bytecode_offset); ++ __ Ld_bu(bytecode, MemOperand(scratch2)); ++ __ Add_d(bytecode_size_table, bytecode_size_table, ++ Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); ++ ++ __ bind(&process_bytecode); ++ ++// Bailout to the return label if this is a return bytecode. ++#define JUMP_IF_EQUAL(NAME) \ ++ __ Branch(if_return, eq, bytecode, \ ++ Operand(static_cast(interpreter::Bytecode::k##NAME))); ++ RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) ++#undef JUMP_IF_EQUAL ++ ++ // Otherwise, load the size of the current bytecode and advance the offset. ++ __ Alsl_d(scratch2, bytecode, bytecode_size_table, 2, t7); ++ __ Ld_w(scratch2, MemOperand(scratch2)); ++ __ Add_d(bytecode_offset, bytecode_offset, scratch2); ++} ++ ++// Generate code for entering a JS function with the interpreter. ++// On entry to the function the receiver and arguments have been pushed on the ++// stack left to right. The actual argument count matches the formal parameter ++// count expected by the function. ++// ++// The live registers are: ++// o a1: the JS function object being called. ++// o a3: the incoming new target or generator object ++// o cp: our context ++// o fp: the caller's frame pointer ++// o sp: stack pointer ++// o ra: return address ++// ++// The function builds an interpreter frame. See InterpreterFrameConstants in ++// frames.h for its layout. ++void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ++ ProfileEntryHookStub::MaybeCallEntryHook(masm); ++ ++ Register closure = a1; ++ Register feedback_vector = a2; ++ ++ // Load the feedback vector from the closure. ++ __ Ld_d(feedback_vector, ++ FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); ++ __ Ld_d(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); ++ // Read off the optimized code slot in the feedback vector, and if there ++ // is optimized code or an optimization marker, call that instead. ++ MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5); ++ ++ // Open a frame scope to indicate that there is a frame on the stack. The ++ // MANUAL indicates that the scope shouldn't actually generate code to set up ++ // the frame (that is done below). ++ FrameScope frame_scope(masm, StackFrame::MANUAL); ++ __ PushStandardFrame(closure); ++ ++ // Get the bytecode array from the function object (or from the DebugInfo if ++ // it is present) and load it into kInterpreterBytecodeArrayRegister. ++ Label maybe_load_debug_bytecode_array, bytecode_array_loaded; ++ __ Ld_d(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_d(kInterpreterBytecodeArrayRegister, ++ FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); ++ GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, a4); ++ __ Ld_d(a4, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset)); ++ __ JumpIfNotSmi(a4, &maybe_load_debug_bytecode_array, t7); ++ __ bind(&bytecode_array_loaded); ++ ++ // Increment invocation count for the function. ++ __ Ld_w(a4, FieldMemOperand(feedback_vector, ++ FeedbackVector::kInvocationCountOffset)); ++ __ Add_w(a4, a4, Operand(1)); ++ __ St_w(a4, FieldMemOperand(feedback_vector, ++ FeedbackVector::kInvocationCountOffset)); ++ ++ // Check function data field is actually a BytecodeArray object. ++ if (FLAG_debug_code) { ++ __ SmiTst(kInterpreterBytecodeArrayRegister, a4); ++ __ Assert(ne, ++ AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, ++ a4, Operand(zero_reg)); ++ __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4); ++ __ Assert(eq, ++ AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, ++ a4, Operand(BYTECODE_ARRAY_TYPE)); ++ } ++ ++ // Reset code age. ++ DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge); ++ __ St_b(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, ++ BytecodeArray::kBytecodeAgeOffset)); ++ ++ // Load initial bytecode offset. ++ __ li(kInterpreterBytecodeOffsetRegister, ++ Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); ++ ++ // Push bytecode array and Smi tagged bytecode array offset. ++ __ SmiTag(a4, kInterpreterBytecodeOffsetRegister); ++ __ Push(kInterpreterBytecodeArrayRegister, a4); ++ ++ // Allocate the local and temporary register file on the stack. ++ { ++ // Load frame size (word) from the BytecodeArray object. ++ __ Ld_w(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister, ++ BytecodeArray::kFrameSizeOffset)); ++ ++ // Do a stack check to ensure we don't go over the limit. ++ Label ok; ++ __ Sub_d(a5, sp, Operand(a4)); ++ __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); ++ __ Branch(&ok, hs, a5, Operand(a2)); ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ __ bind(&ok); ++ ++ // If ok, push undefined as the initial value for all register file entries. ++ Label loop_header; ++ Label loop_check; ++ __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); ++ __ Branch(&loop_check); ++ __ bind(&loop_header); ++ // TODO(rmcilroy): Consider doing more than one push per loop iteration. ++ __ push(a5); ++ // Continue loop if not done. ++ __ bind(&loop_check); ++ __ Sub_d(a4, a4, Operand(kPointerSize)); ++ __ Branch(&loop_header, ge, a4, Operand(zero_reg)); ++ } ++ ++ // If the bytecode array has a valid incoming new target or generator object ++ // register, initialize it with incoming value which was passed in r3. ++ Label no_incoming_new_target_or_generator_register; ++ __ Ld_w(a5, FieldMemOperand( ++ kInterpreterBytecodeArrayRegister, ++ BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); ++ __ Branch(&no_incoming_new_target_or_generator_register, eq, a5, ++ Operand(zero_reg)); ++ __ Alsl_d(a5, a5, fp, kPointerSizeLog2, t7); ++ __ St_d(a3, MemOperand(a5)); ++ __ bind(&no_incoming_new_target_or_generator_register); ++ ++ // Load accumulator as undefined. ++ __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); ++ ++ // Load the dispatch table into a register and dispatch to the bytecode ++ // handler at the current bytecode offset. ++ Label do_dispatch; ++ __ bind(&do_dispatch); ++ __ li(kInterpreterDispatchTableRegister, ++ ExternalReference::interpreter_dispatch_table_address(masm->isolate())); ++ __ Add_d(t5, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister); ++ __ Ld_bu(a7, MemOperand(t5)); ++ __ Alsl_d(kScratchReg, a7, kInterpreterDispatchTableRegister, kPointerSizeLog2, t7); ++ __ Ld_d(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg)); ++ __ Call(kJavaScriptCallCodeStartRegister); ++ masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); ++ ++ // Any returns to the entry trampoline are either due to the return bytecode ++ // or the interpreter tail calling a builtin and then a dispatch. ++ ++ // Get bytecode array and bytecode offset from the stack frame. ++ __ Ld_d(kInterpreterBytecodeArrayRegister, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); ++ __ Ld_d(kInterpreterBytecodeOffsetRegister, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); ++ __ SmiUntag(kInterpreterBytecodeOffsetRegister); ++ ++ // Either return, or advance to the next bytecode and dispatch. ++ Label do_return; ++ __ Add_d(a1, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister); ++ __ Ld_bu(a1, MemOperand(a1)); ++ AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister, a1, a2, a3, ++ &do_return); ++ __ jmp(&do_dispatch); ++ ++ __ bind(&do_return); ++ // The return value is in v0. ++ LeaveInterpreterFrame(masm, t0); ++ __ Jump(ra); ++ ++ // Load debug copy of the bytecode array if it exists. ++ // kInterpreterBytecodeArrayRegister is already loaded with ++ // SharedFunctionInfo::kFunctionDataOffset. ++ __ bind(&maybe_load_debug_bytecode_array); ++ __ Ld_d(a5, FieldMemOperand(a4, DebugInfo::kDebugBytecodeArrayOffset)); ++ __ JumpIfRoot(a5, Heap::kUndefinedValueRootIndex, &bytecode_array_loaded); ++ ++ __ mov(kInterpreterBytecodeArrayRegister, a5); ++ __ Ld_d(a5, FieldMemOperand(a4, DebugInfo::kFlagsOffset)); ++ __ SmiUntag(a5); ++ __ And(a5, a5, Operand(DebugInfo::kDebugExecutionMode)); ++ ++ ExternalReference debug_execution_mode = ++ ExternalReference::debug_execution_mode_address(masm->isolate()); ++ __ li(a4, Operand(debug_execution_mode)); ++ __ Ld_b(a4, MemOperand(a4, kLeastSignificantByteInInt32Offset)); ++ STATIC_ASSERT(static_cast(DebugInfo::kDebugExecutionMode) == ++ static_cast(DebugInfo::kSideEffects)); ++ __ Branch(&bytecode_array_loaded, eq, a4, Operand(a5)); ++ ++ __ push(closure); ++ __ push(feedback_vector); ++ __ push(kInterpreterBytecodeArrayRegister); ++ __ push(closure); ++ __ CallRuntime(Runtime::kDebugApplyInstrumentation); ++ __ pop(kInterpreterBytecodeArrayRegister); ++ __ pop(feedback_vector); ++ __ pop(closure); ++ __ Branch(&bytecode_array_loaded); ++} ++ ++static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, ++ Register scratch1, Register scratch2, ++ Label* stack_overflow) { ++ // Check the stack for overflow. We are not trying to catch ++ // interruptions (e.g. debug break and preemption) here, so the "real stack ++ // limit" is checked. ++ __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex); ++ // Make scratch1 the space we have left. The stack might already be overflowed ++ // here which will cause scratch1 to become negative. ++ __ sub_d(scratch1, sp, scratch1); ++ // Check if the arguments will overflow the stack. ++ __ slli_d(scratch2, num_args, kPointerSizeLog2); ++ // Signed comparison. ++ __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); ++} ++ ++static void Generate_InterpreterPushArgs(MacroAssembler* masm, ++ Register num_args, Register index, ++ Register scratch, Register scratch2) { ++ // Find the address of the last argument. ++ __ mov(scratch2, num_args); ++ __ slli_d(scratch2, scratch2, kPointerSizeLog2); ++ __ Sub_d(scratch2, index, Operand(scratch2)); ++ ++ // Push the arguments. ++ Label loop_header, loop_check; ++ __ Branch(&loop_check); ++ __ bind(&loop_header); ++ __ Ld_d(scratch, MemOperand(index)); ++ __ Add_d(index, index, Operand(-kPointerSize)); ++ __ push(scratch); ++ __ bind(&loop_check); ++ __ Branch(&loop_header, gt, index, Operand(scratch2)); ++} ++ ++// static ++void Builtins::Generate_InterpreterPushArgsThenCallImpl( ++ MacroAssembler* masm, ConvertReceiverMode receiver_mode, ++ InterpreterPushArgsMode mode) { ++ DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a2 : the address of the first argument to be pushed. Subsequent ++ // arguments should be consecutive above this, in the same order as ++ // they are to be pushed onto the stack. ++ // -- a1 : the target to call (can be any Object). ++ // ----------------------------------- ++ Label stack_overflow; ++ ++ __ Add_d(a3, a0, Operand(1)); // Add one for receiver. ++ // Push "undefined" as the receiver arg if we need to. ++ if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { ++ __ PushRoot(Heap::kUndefinedValueRootIndex); ++ __ Sub_d(a3, a3, Operand(1)); // Subtract one for receiver. ++ } ++ ++ Generate_StackOverflowCheck(masm, a3, a4, t0, &stack_overflow); ++ ++ // This function modifies a2, t0 and a4. ++ Generate_InterpreterPushArgs(masm, a3, a2, a4, t0); ++ ++ if (mode == InterpreterPushArgsMode::kWithFinalSpread) { ++ __ Pop(a2); // Pass the spread in a register ++ __ Sub_d(a0, a0, Operand(1)); // Subtract one for spread ++ } ++ ++ // Call the target. ++ if (mode == InterpreterPushArgsMode::kWithFinalSpread) { ++ __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), ++ RelocInfo::CODE_TARGET); ++ } else { ++ __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), ++ RelocInfo::CODE_TARGET); ++ } ++ ++ __ bind(&stack_overflow); ++ { ++ __ TailCallRuntime(Runtime::kThrowStackOverflow); ++ // Unreachable code. ++ __ break_(0xCC); ++ } ++} ++ ++// static ++void Builtins::Generate_InterpreterPushArgsThenConstructImpl( ++ MacroAssembler* masm, InterpreterPushArgsMode mode) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (not including receiver) ++ // -- a3 : new target ++ // -- a1 : constructor to call ++ // -- a2 : allocation site feedback if available, undefined otherwise. ++ // -- a4 : address of the first argument ++ // ----------------------------------- ++ Label stack_overflow; ++ ++ // Push a slot for the receiver. ++ __ push(zero_reg); ++ ++ Generate_StackOverflowCheck(masm, a0, a5, t0, &stack_overflow); ++ ++ // This function modifies t0, a4 and a5. ++ Generate_InterpreterPushArgs(masm, a0, a4, a5, t0); ++ ++ if (mode == InterpreterPushArgsMode::kWithFinalSpread) { ++ __ Pop(a2); // Pass the spread in a register ++ __ Sub_d(a0, a0, Operand(1)); // Subtract one for spread ++ } else { ++ __ AssertUndefinedOrAllocationSite(a2, t0); ++ } ++ ++ if (mode == InterpreterPushArgsMode::kArrayFunction) { ++ __ AssertFunction(a1); ++ ++ // Tail call to the function-specific construct stub (still in the caller ++ // context at this point). ++ ArrayConstructorStub array_constructor_stub(masm->isolate()); ++ __ Jump(array_constructor_stub.GetCode(), RelocInfo::CODE_TARGET); ++ } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { ++ // Call the constructor with a0, a1, and a3 unmodified. ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), ++ RelocInfo::CODE_TARGET); ++ } else { ++ DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); ++ // Call the constructor with a0, a1, and a3 unmodified. ++ __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); ++ } ++ ++ __ bind(&stack_overflow); ++ { ++ __ TailCallRuntime(Runtime::kThrowStackOverflow); ++ // Unreachable code. ++ __ break_(0xCC); ++ } ++} ++ ++static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { ++ // Set the return address to the correct point in the interpreter entry ++ // trampoline. ++ Label builtin_trampoline, trampoline_loaded; ++ Smi* interpreter_entry_return_pc_offset( ++ masm->isolate()->heap()->interpreter_entry_return_pc_offset()); ++ DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); ++ ++ // If the SFI function_data is an InterpreterData, get the trampoline stored ++ // in it, otherwise get the trampoline from the builtins list. ++ __ Ld_d(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); ++ __ Ld_d(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_d(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); ++ __ GetObjectType(t0, kInterpreterDispatchTableRegister, ++ kInterpreterDispatchTableRegister); ++ __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, ++ Operand(INTERPRETER_DATA_TYPE)); ++ ++ __ Ld_d(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); ++ __ Branch(&trampoline_loaded); ++ ++ __ bind(&builtin_trampoline); ++ __ li(t0, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); ++ ++ __ bind(&trampoline_loaded); ++ __ Add_d(ra, t0, Operand(interpreter_entry_return_pc_offset->value() + ++ Code::kHeaderSize - kHeapObjectTag)); ++ ++ // Initialize the dispatch table register. ++ __ li(kInterpreterDispatchTableRegister, ++ ExternalReference::interpreter_dispatch_table_address(masm->isolate())); ++ ++ // Get the bytecode array pointer from the frame. ++ __ Ld_d(kInterpreterBytecodeArrayRegister, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); ++ ++ if (FLAG_debug_code) { ++ // Check function data field is actually a BytecodeArray object. ++ __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg); ++ __ Assert(ne, ++ AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, ++ kScratchReg, Operand(zero_reg)); ++ __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); ++ __ Assert(eq, ++ AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, ++ a1, Operand(BYTECODE_ARRAY_TYPE)); ++ } ++ ++ // Get the target bytecode offset from the frame. ++ __ Ld_w( ++ kInterpreterBytecodeOffsetRegister, ++ UntagSmiMemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); ++ ++ // Dispatch to the target bytecode. ++ __ Add_d(a1, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister); ++ __ Ld_bu(a7, MemOperand(a1)); ++ __ Alsl_d(a1, a7, kInterpreterDispatchTableRegister, kPointerSizeLog2, t7); ++ __ Ld_d(kJavaScriptCallCodeStartRegister, MemOperand(a1)); ++ __ Jump(kJavaScriptCallCodeStartRegister); ++} ++ ++void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { ++ // Advance the current bytecode offset stored within the given interpreter ++ // stack frame. This simulates what all bytecode handlers do upon completion ++ // of the underlying operation. ++ __ Ld_d(kInterpreterBytecodeArrayRegister, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); ++ __ Ld_d(kInterpreterBytecodeOffsetRegister, ++ MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); ++ __ SmiUntag(kInterpreterBytecodeOffsetRegister); ++ ++ // Load the current bytecode. ++ __ Add_d(a1, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister); ++ __ Ld_bu(a1, MemOperand(a1)); ++ ++ // Advance to the next bytecode. ++ Label if_return; ++ AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, ++ kInterpreterBytecodeOffsetRegister, a1, a2, a3, ++ &if_return); ++ ++ // Convert new bytecode offset to a Smi and save in the stackframe. ++ __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); ++ __ St_d(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); ++ ++ Generate_InterpreterEnterBytecode(masm); ++ ++ // We should never take the if_return path. ++ __ bind(&if_return); ++ __ Abort(AbortReason::kInvalidBytecodeAdvance); ++} ++ ++void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { ++ Generate_InterpreterEnterBytecode(masm); ++} ++ ++void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) { ++ // Set the code slot inside the JSFunction to CompileLazy. ++ __ Move(a2, BUILTIN_CODE(masm->isolate(), CompileLazy)); ++ __ St_d(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); ++ __ RecordWriteField(a1, JSFunction::kCodeOffset, a2, a4, kRAHasNotBeenSaved, ++ kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); ++ // Jump to compile lazy. ++ Generate_CompileLazy(masm); ++} ++ ++static void GetSharedFunctionInfoCode(MacroAssembler* masm, Register sfi_data, ++ Register scratch1) { ++ // Figure out the SFI's code object. ++ Label done; ++ Label check_is_bytecode_array; ++ Label check_is_exported_function_data; ++ Label check_is_fixed_array; ++ Label check_is_pre_parsed_scope_data; ++ Label check_is_function_template_info; ++ Label check_is_interpreter_data; ++ ++ Register data_type = scratch1; ++ ++ // IsSmi: Is builtin ++ __ JumpIfNotSmi(sfi_data, &check_is_bytecode_array, t7); ++ __ li(scratch1, ExternalReference::builtins_address(masm->isolate())); ++ // Avoid untagging the Smi by merging the shift ++ STATIC_ASSERT(kPointerSizeLog2 < kSmiShift); ++ __ srli_d(sfi_data, sfi_data, kSmiShift - kPointerSizeLog2); ++ __ Add_d(scratch1, scratch1, sfi_data); ++ __ Ld_d(sfi_data, MemOperand(scratch1)); ++ __ Branch(&done); ++ ++ // Get map for subsequent checks. ++ __ bind(&check_is_bytecode_array); ++ __ Ld_d(data_type, FieldMemOperand(sfi_data, HeapObject::kMapOffset)); ++ __ Ld_hu(data_type, FieldMemOperand(data_type, Map::kInstanceTypeOffset)); ++ ++ // IsBytecodeArray: Interpret bytecode ++ __ Branch(&check_is_exported_function_data, ne, data_type, ++ Operand(BYTECODE_ARRAY_TYPE)); ++ __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); ++ __ Branch(&done); ++ ++ // IsWasmExportedFunctionData: Use the wrapper code ++ __ bind(&check_is_exported_function_data); ++ __ Branch(&check_is_fixed_array, ne, data_type, ++ Operand(WASM_EXPORTED_FUNCTION_DATA_TYPE)); ++ __ Ld_d(sfi_data, FieldMemOperand( ++ sfi_data, WasmExportedFunctionData::kWrapperCodeOffset)); ++ __ Branch(&done); ++ ++ // IsFixedArray: Instantiate using AsmWasmData ++ __ bind(&check_is_fixed_array); ++ __ Branch(&check_is_pre_parsed_scope_data, ne, data_type, ++ Operand(FIXED_ARRAY_TYPE)); ++ __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InstantiateAsmJs)); ++ __ Branch(&done); ++ ++ // IsPreParsedScopeData: Compile lazy ++ __ bind(&check_is_pre_parsed_scope_data); ++ __ Branch(&check_is_function_template_info, ne, data_type, ++ Operand(TUPLE2_TYPE)); ++ __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), CompileLazy)); ++ __ Branch(&done); ++ ++ // IsFunctionTemplateInfo: API call ++ __ bind(&check_is_function_template_info); ++ __ Branch(&check_is_interpreter_data, ne, data_type, ++ Operand(FUNCTION_TEMPLATE_INFO_TYPE)); ++ __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), HandleApiCall)); ++ ++ // IsInterpreterData: Interpret bytecode ++ __ bind(&check_is_interpreter_data); ++ if (FLAG_debug_code) { ++ __ Assert(eq, AbortReason::kInvalidSharedFunctionInfoData, data_type, ++ Operand(INTERPRETER_DATA_TYPE)); ++ } ++ __ Ld_d(sfi_data, FieldMemOperand( ++ sfi_data, InterpreterData::kInterpreterTrampolineOffset)); ++ ++ __ bind(&done); ++} ++ ++void Builtins::Generate_CompileLazy(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (preserved for callee) ++ // -- a3 : new target (preserved for callee) ++ // -- a1 : target function (preserved for callee) ++ // ----------------------------------- ++ // First lookup code, maybe we don't need to compile! ++ Label gotta_call_runtime; ++ ++ Register closure = a1; ++ Register feedback_vector = a2; ++ ++ // Do we have a valid feedback vector? ++ __ Ld_d(feedback_vector, ++ FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); ++ __ Ld_d(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); ++ __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, ++ &gotta_call_runtime); ++ ++ // Is there an optimization marker or optimized code in the feedback vector? ++ MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5); ++ ++ // We found no optimized code. Infer the code object needed for the SFI. ++ Register entry = a4; ++ __ Ld_d(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_d(entry, FieldMemOperand(entry, SharedFunctionInfo::kFunctionDataOffset)); ++ GetSharedFunctionInfoCode(masm, entry, t1); ++ ++ __ Move(t1, masm->CodeObject()); ++ __ Branch(&gotta_call_runtime, eq, entry, Operand(t1)); ++ ++ // Install the SFI's code entry. ++ __ St_d(entry, FieldMemOperand(closure, JSFunction::kCodeOffset)); ++ __ mov(t3, entry); // Write barrier clobbers t3 below. ++ __ RecordWriteField(closure, JSFunction::kCodeOffset, t3, a5, ++ kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, ++ OMIT_SMI_CHECK); ++ __ Add_d(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(entry); ++ ++ __ bind(&gotta_call_runtime); ++ GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); ++} ++ ++// Lazy deserialization design doc: http://goo.gl/dxkYDZ. ++void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (preserved for callee) ++ // -- a3 : new target (preserved for callee) ++ // -- a1 : target function (preserved for callee) ++ // ----------------------------------- ++ ++ Label deserialize_in_runtime; ++ ++ Register target = a1; // Must be preserved ++ Register scratch0 = a2; ++ Register scratch1 = t0; ++ ++ CHECK(scratch0 != a0 && scratch0 != a3 && scratch0 != a1); ++ CHECK(scratch1 != a0 && scratch1 != a3 && scratch1 != a1); ++ CHECK(scratch0 != scratch1); ++ ++ // Load the builtin id for lazy deserialization from SharedFunctionInfo. ++ ++ __ AssertFunction(target); ++ __ Ld_d(scratch0, ++ FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset)); ++ ++ __ Ld_d(scratch1, ++ FieldMemOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset)); ++ __ AssertSmi(scratch1); ++ ++ // The builtin may already have been deserialized. If that is the case, it is ++ // stored in the builtins table, and we can copy to correct code object to ++ // both the shared function info and function without calling into runtime. ++ // ++ // Otherwise, we need to call into runtime to deserialize. ++ ++ { ++ // Load the code object at builtins_table[builtin_id] into scratch1. ++ ++ __ SmiUntag(scratch1); ++ __ li(scratch0, ExternalReference::builtins_address(masm->isolate())); ++ __ Alsl_d(scratch1, scratch1, scratch0, kPointerSizeLog2, t7); ++ __ Ld_d(scratch1, MemOperand(scratch1)); ++ ++ // Check if the loaded code object has already been deserialized. This is ++ // the case iff it does not equal DeserializeLazy. ++ ++ __ Move(scratch0, masm->CodeObject()); ++ __ Branch(&deserialize_in_runtime, eq, scratch1, Operand(scratch0)); ++ } ++ ++ { ++ // If we've reached this spot, the target builtin has been deserialized and ++ // we simply need to copy it over to the target function. ++ ++ Register target_builtin = scratch1; ++ ++ __ St_d(target_builtin, FieldMemOperand(target, JSFunction::kCodeOffset)); ++ __ mov(t3, target_builtin); // Write barrier clobbers t3 below. ++ __ RecordWriteField(target, JSFunction::kCodeOffset, t3, t1, ++ kRAHasNotBeenSaved, kDontSaveFPRegs, ++ OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); ++ ++ // All copying is done. Jump to the deserialized code object. ++ ++ __ Add_d(target_builtin, target_builtin, ++ Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(target_builtin); ++ } ++ ++ __ bind(&deserialize_in_runtime); ++ GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy); ++} ++ ++void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argument count (preserved for callee) ++ // -- a1 : new target (preserved for callee) ++ // -- a3 : target function (preserved for callee) ++ // ----------------------------------- ++ Label failed; ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ // Push a copy of the target function and the new target. ++ // Push function as parameter to the runtime call. ++ __ Move(t2, a0); ++ __ SmiTag(a0); ++ __ Push(a0, a1, a3, a1); ++ ++ // Copy arguments from caller (stdlib, foreign, heap). ++ Label args_done; ++ for (int j = 0; j < 4; ++j) { ++ Label over; ++ if (j < 3) { ++ __ Branch(&over, ne, t2, Operand(j)); ++ } ++ for (int i = j - 1; i >= 0; --i) { ++ __ Ld_d(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + ++ i * kPointerSize)); ++ __ push(t2); ++ } ++ for (int i = 0; i < 3 - j; ++i) { ++ __ PushRoot(Heap::kUndefinedValueRootIndex); ++ } ++ if (j < 3) { ++ __ jmp(&args_done); ++ __ bind(&over); ++ } ++ } ++ __ bind(&args_done); ++ ++ // Call runtime, on success unwind frame, and parent frame. ++ __ CallRuntime(Runtime::kInstantiateAsmJs, 4); ++ // A smi 0 is returned on failure, an object on success. ++ __ JumpIfSmi(a0, &failed); ++ ++ __ Drop(2); ++ __ pop(t2); ++ __ SmiUntag(t2); ++ scope.GenerateLeaveFrame(); ++ ++ __ Add_d(t2, t2, Operand(1)); ++ __ Alsl_d(sp, t2, sp, kPointerSizeLog2, t7); ++ __ Ret(); ++ ++ __ bind(&failed); ++ // Restore target function and new target. ++ __ Pop(a0, a1, a3); ++ __ SmiUntag(a0); ++ } ++ // On failure, tail call back to regular js by re-calling the function ++ // which has be reset to the compile lazy builtin. ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); ++ __ Add_d(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(a2); ++} ++ ++namespace { ++void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, ++ bool java_script_builtin, ++ bool with_result) { ++ const RegisterConfiguration* config(RegisterConfiguration::Default()); ++ int allocatable_register_count = config->num_allocatable_general_registers(); ++ if (with_result) { ++ // Overwrite the hole inserted by the deoptimizer with the return value from ++ // the LAZY deopt point. ++ __ St_d(a0, ++ MemOperand( ++ sp, config->num_allocatable_general_registers() * kPointerSize + ++ BuiltinContinuationFrameConstants::kFixedFrameSize)); ++ } ++ for (int i = allocatable_register_count - 1; i >= 0; --i) { ++ int code = config->GetAllocatableGeneralCode(i); ++ __ Pop(Register::from_code(code)); ++ if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { ++ __ SmiUntag(Register::from_code(code)); ++ } ++ } ++ __ Ld_d(fp, MemOperand( ++ sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); ++ __ Pop(t0); ++ __ Add_d(sp, sp, ++ Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); ++ __ Pop(ra); ++ __ Add_d(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(t0); ++} ++} // namespace ++ ++void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { ++ Generate_ContinueToBuiltinHelper(masm, false, false); ++} ++ ++void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( ++ MacroAssembler* masm) { ++ Generate_ContinueToBuiltinHelper(masm, false, true); ++} ++ ++void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { ++ Generate_ContinueToBuiltinHelper(masm, true, false); ++} ++ ++void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( ++ MacroAssembler* masm) { ++ Generate_ContinueToBuiltinHelper(masm, true, true); ++} ++ ++void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ CallRuntime(Runtime::kNotifyDeoptimized); ++ } ++ ++ DCHECK_EQ(kInterpreterAccumulatorRegister.code(), a0.code()); ++ __ Ld_d(a0, MemOperand(sp, 0 * kPointerSize)); ++ // Safe to fill delay slot Addu will emit one instruction. ++ __ Add_d(sp, sp, Operand(1 * kPointerSize)); // Remove state. ++ __ Ret(); ++} ++ ++static void Generate_OnStackReplacementHelper(MacroAssembler* masm, ++ bool has_handler_frame) { ++ // Lookup the function in the JavaScript frame. ++ if (has_handler_frame) { ++ __ Ld_d(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); ++ __ Ld_d(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); ++ } else { ++ __ Ld_d(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); ++ } ++ ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ // Pass function as argument. ++ __ push(a0); ++ __ CallRuntime(Runtime::kCompileForOnStackReplacement); ++ } ++ ++ // If the code object is null, just return to the caller. ++ __ Ret(eq, a0, Operand(Smi::kZero)); ++ ++ // Drop any potential handler frame that is be sitting on top of the actual ++ // JavaScript frame. This is the case then OSR is triggered from bytecode. ++ if (has_handler_frame) { ++ __ LeaveFrame(StackFrame::STUB); ++ } ++ ++ // Load deoptimization data from the code object. ++ // = [#deoptimization_data_offset] ++ __ Ld_d(a1, MemOperand(a0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); ++ ++ // Load the OSR entrypoint offset from the deoptimization data. ++ // = [#header_size + #osr_pc_offset] ++ __ Ld_w(a1, UntagSmiMemOperand(a1, FixedArray::OffsetOfElementAt( ++ DeoptimizationData::kOsrPcOffsetIndex) - ++ kHeapObjectTag)); ++ ++ // Compute the target address = code_obj + header_size + osr_offset ++ // = + #header_size + ++ __ Add_d(a0, a0, a1); ++ __ Add_d(ra, a0, Code::kHeaderSize - kHeapObjectTag); ++ ++ // And "return" to the OSR entry point of the function. ++ __ Ret(); ++} ++ ++void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { ++ Generate_OnStackReplacementHelper(masm, false); ++} ++ ++void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { ++ Generate_OnStackReplacementHelper(masm, true); ++} ++ ++// static ++void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argc ++ // -- sp[0] : argArray ++ // -- sp[4] : thisArg ++ // -- sp[8] : receiver ++ // ----------------------------------- ++ ++ Register argc = a0; ++ Register arg_array = a2; ++ Register receiver = a1; ++ Register this_arg = a5; ++ Register undefined_value = a3; ++ Register scratch = a4; ++ ++ __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); ++ ++ // 1. Load receiver into a1, argArray into a2 (if present), remove all ++ // arguments from the stack (including the receiver), and push thisArg (if ++ // present) instead. ++ { ++ // Claim (2 - argc) dummy arguments form the stack, to put the stack in a ++ // consistent state for a simple pop operation. ++ ++ __ Sub_d(sp, sp, Operand(2 * kPointerSize)); ++ __ Alsl_d(sp, argc, sp, kPointerSizeLog2, t7); ++ __ mov(scratch, argc); ++ __ Pop(this_arg, arg_array); // Overwrite argc ++ __ Movz(arg_array, undefined_value, scratch); // if argc == 0 ++ __ Movz(this_arg, undefined_value, scratch); // if argc == 0 ++ __ Sub_d(scratch, scratch, Operand(1)); ++ __ Movz(arg_array, undefined_value, scratch); // if argc == 1 ++ __ Ld_d(receiver, MemOperand(sp)); ++ __ St_d(this_arg, MemOperand(sp)); ++ } ++ ++ // ----------- S t a t e ------------- ++ // -- a2 : argArray ++ // -- a1 : receiver ++ // -- a3 : undefined root value ++ // -- sp[0] : thisArg ++ // ----------------------------------- ++ ++ // 2. We don't need to check explicitly for callable receiver here, ++ // since that's the first thing the Call/CallWithArrayLike builtins ++ // will do. ++ ++ // 3. Tail call with no arguments if argArray is null or undefined. ++ Label no_arguments; ++ __ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments); ++ __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value)); ++ ++ // 4a. Apply the receiver to the given argArray. ++ __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), ++ RelocInfo::CODE_TARGET); ++ ++ // 4b. The argArray is either null or undefined, so we tail call without any ++ // arguments to the receiver. ++ __ bind(&no_arguments); ++ { ++ __ mov(a0, zero_reg); ++ DCHECK(receiver == a1); ++ __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); ++ } ++} ++ ++// static ++void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { ++ // 1. Make sure we have at least one argument. ++ // a0: actual number of arguments ++ { ++ Label done; ++ __ Branch(&done, ne, a0, Operand(zero_reg)); ++ __ PushRoot(Heap::kUndefinedValueRootIndex); ++ __ Add_d(a0, a0, Operand(1)); ++ __ bind(&done); ++ } ++ ++ // 2. Get the function to call (passed as receiver) from the stack. ++ // a0: actual number of arguments ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2, t7); ++ __ Ld_d(a1, MemOperand(kScratchReg)); ++ ++ // 3. Shift arguments and return address one slot down on the stack ++ // (overwriting the original receiver). Adjust argument count to make ++ // the original first argument the new receiver. ++ // a0: actual number of arguments ++ // a1: function ++ { ++ Label loop; ++ // Calculate the copy start address (destination). Copy end address is sp. ++ __ Alsl_d(a2, a0, sp, kPointerSizeLog2, t7); ++ ++ __ bind(&loop); ++ __ Ld_d(kScratchReg, MemOperand(a2, -kPointerSize)); ++ __ St_d(kScratchReg, MemOperand(a2)); ++ __ Sub_d(a2, a2, Operand(kPointerSize)); ++ __ Branch(&loop, ne, a2, Operand(sp)); ++ // Adjust the actual number of arguments and remove the top element ++ // (which is a copy of the last argument). ++ __ Sub_d(a0, a0, Operand(1)); ++ __ Pop(); ++ } ++ ++ // 4. Call the callable. ++ __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); ++} ++ ++void Builtins::Generate_ReflectApply(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argc ++ // -- sp[0] : argumentsList (if argc ==3) ++ // -- sp[4] : thisArgument (if argc >=2) ++ // -- sp[8] : target (if argc >=1) ++ // -- sp[12] : receiver ++ // ----------------------------------- ++ ++ Register argc = a0; ++ Register arguments_list = a2; ++ Register target = a1; ++ Register this_argument = a5; ++ Register undefined_value = a3; ++ Register scratch = a4; ++ ++ __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); ++ ++ // 1. Load target into a1 (if present), argumentsList into a2 (if present), ++ // remove all arguments from the stack (including the receiver), and push ++ // thisArgument (if present) instead. ++ { ++ // Claim (3 - argc) dummy arguments form the stack, to put the stack in a ++ // consistent state for a simple pop operation. ++ ++ __ Sub_d(sp, sp, Operand(3 * kPointerSize)); ++ __ Alsl_d(sp, argc, sp, kPointerSizeLog2, t7); ++ __ mov(scratch, argc); ++ __ Pop(target, this_argument, arguments_list); ++ __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 ++ __ Movz(this_argument, undefined_value, scratch); // if argc == 0 ++ __ Movz(target, undefined_value, scratch); // if argc == 0 ++ __ Sub_d(scratch, scratch, Operand(1)); ++ __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 ++ __ Movz(this_argument, undefined_value, scratch); // if argc == 1 ++ __ Sub_d(scratch, scratch, Operand(1)); ++ __ Movz(arguments_list, undefined_value, scratch); // if argc == 2 ++ ++ __ St_d(this_argument, MemOperand(sp, 0)); // Overwrite receiver ++ } ++ ++ // ----------- S t a t e ------------- ++ // -- a2 : argumentsList ++ // -- a1 : target ++ // -- a3 : undefined root value ++ // -- sp[0] : thisArgument ++ // ----------------------------------- ++ ++ // 2. We don't need to check explicitly for callable target here, ++ // since that's the first thing the Call/CallWithArrayLike builtins ++ // will do. ++ ++ // 3. Apply the target to the given argumentsList. ++ __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), ++ RelocInfo::CODE_TARGET); ++} ++ ++void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argc ++ // -- sp[0] : new.target (optional) (dummy value if argc <= 2) ++ // -- sp[4] : argumentsList (dummy value if argc <= 1) ++ // -- sp[8] : target (dummy value if argc == 0) ++ // -- sp[12] : receiver ++ // ----------------------------------- ++ Register argc = a0; ++ Register arguments_list = a2; ++ Register target = a1; ++ Register new_target = a3; ++ Register undefined_value = a4; ++ Register scratch = a5; ++ ++ __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); ++ ++ // 1. Load target into a1 (if present), argumentsList into a2 (if present), ++ // new.target into a3 (if present, otherwise use target), remove all ++ // arguments from the stack (including the receiver), and push thisArgument ++ // (if present) instead. ++ { ++ // Claim (3 - argc) dummy arguments form the stack, to put the stack in a ++ // consistent state for a simple pop operation. ++ ++ __ Sub_d(sp, sp, Operand(3 * kPointerSize)); ++ __ Alsl_d(sp, argc, sp, kPointerSizeLog2, t7); ++ __ mov(scratch, argc); ++ __ Pop(target, arguments_list, new_target); ++ __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 ++ __ Movz(new_target, undefined_value, scratch); // if argc == 0 ++ __ Movz(target, undefined_value, scratch); // if argc == 0 ++ __ Sub_d(scratch, scratch, Operand(1)); ++ __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 ++ __ Movz(new_target, target, scratch); // if argc == 1 ++ __ Sub_d(scratch, scratch, Operand(1)); ++ __ Movz(new_target, target, scratch); // if argc == 2 ++ ++ __ St_d(undefined_value, MemOperand(sp, 0)); // Overwrite receiver ++ } ++ ++ // ----------- S t a t e ------------- ++ // -- a2 : argumentsList ++ // -- a1 : target ++ // -- a3 : new.target ++ // -- sp[0] : receiver (undefined) ++ // ----------------------------------- ++ ++ // 2. We don't need to check explicitly for constructor target here, ++ // since that's the first thing the Construct/ConstructWithArrayLike ++ // builtins will do. ++ ++ // 3. We don't need to check explicitly for constructor new.target here, ++ // since that's the second thing the Construct/ConstructWithArrayLike ++ // builtins will do. ++ ++ // 4. Construct the target with the given new.target and argumentsList. ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), ++ RelocInfo::CODE_TARGET); ++} ++ ++static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { ++ __ slli_d(a0, a0, 32); ++ __ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); ++ __ Push(ra, fp, a4, a1, a0); ++ __ Push(Smi::kZero); // Padding. ++ __ Add_d(fp, sp, ++ Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); ++} ++ ++static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- v0 : result being passed through ++ // ----------------------------------- ++ // Get the number of arguments passed (as a smi), tear down the frame and ++ // then tear down the parameters. ++ __ Ld_d(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); ++ __ mov(sp, fp); ++ __ Pop(ra, fp); ++ __ SmiScale(a4, a1, kPointerSizeLog2); ++ __ Add_d(sp, sp, a4); ++ // Adjust for the receiver. ++ __ Add_d(sp, sp, Operand(kPointerSize)); ++} ++ ++// static ++void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, ++ Handle code) { ++ // ----------- S t a t e ------------- ++ // -- a1 : target ++ // -- a0 : number of parameters on the stack (not including the receiver) ++ // -- a2 : arguments list (a FixedArray) ++ // -- a4 : len (number of elements to push from args) ++ // -- a3 : new.target (for [[Construct]]) ++ // ----------------------------------- ++ __ AssertFixedArray(a2); ++ ++ Register args = a2; ++ Register len = a4; ++ ++ // Check for stack overflow. ++ { ++ // Check the stack for overflow. We are not trying to catch interruptions ++ // (i.e. debug break and preemption) here, so check the "real stack limit". ++ Label done; ++ __ LoadRoot(a5, Heap::kRealStackLimitRootIndex); ++ // Make ip the space we have left. The stack might already be overflowed ++ // here which will cause ip to become negative. ++ __ Sub_d(a5, sp, a5); ++ // Check if the arguments will overflow the stack. ++ __ slli_d(kScratchReg, len, kPointerSizeLog2); ++ __ Branch(&done, gt, a5, Operand(kScratchReg)); // Signed comparison. ++ __ TailCallRuntime(Runtime::kThrowStackOverflow); ++ __ bind(&done); ++ } ++ ++ // Push arguments onto the stack (thisArgument is already on the stack). ++ { ++ Label done, push, loop; ++ Register src = a6; ++ Register scratch = len; ++ ++ __ addi_d(src, args, FixedArray::kHeaderSize - kHeapObjectTag); ++ __ Add_d(a0, a0, len); // The 'len' argument for Call() or Construct(). ++ __ Branch(&done, eq, len, Operand(zero_reg)); ++ __ slli_d(scratch, len, kPointerSizeLog2); ++ __ Sub_d(scratch, sp, Operand(scratch)); ++ __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); ++ __ bind(&loop); ++ __ Ld_d(a5, MemOperand(src)); ++ __ Branch(&push, ne, a5, Operand(t1)); ++ __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); ++ __ bind(&push); ++ __ addi_d(src, src, kPointerSize); ++ __ Push(a5); ++ __ Branch(&loop, ne, scratch, Operand(sp)); ++ __ bind(&done); ++ } ++ ++ // Tail-call to the actual Call or Construct builtin. ++ __ Jump(code, RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, ++ CallOrConstructMode mode, ++ Handle code) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a3 : the new.target (for [[Construct]] calls) ++ // -- a1 : the target to call (can be any Object) ++ // -- a2 : start index (to support rest parameters) ++ // ----------------------------------- ++ ++ // Check if new.target has a [[Construct]] internal method. ++ if (mode == CallOrConstructMode::kConstruct) { ++ Label new_target_constructor, new_target_not_constructor; ++ __ JumpIfSmi(a3, &new_target_not_constructor); ++ __ Ld_d(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); ++ __ Ld_bu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); ++ __ And(t1, t1, Operand(Map::IsConstructorBit::kMask)); ++ __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); ++ __ bind(&new_target_not_constructor); ++ { ++ FrameScope scope(masm, StackFrame::MANUAL); ++ __ EnterFrame(StackFrame::INTERNAL); ++ __ Push(a3); ++ __ CallRuntime(Runtime::kThrowNotConstructor); ++ } ++ __ bind(&new_target_constructor); ++ } ++ ++ // Check if we have an arguments adaptor frame below the function frame. ++ Label arguments_adaptor, arguments_done; ++ __ Ld_d(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); ++ __ Ld_d(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset)); ++ __ Branch(&arguments_adaptor, eq, a7, ++ Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); ++ { ++ __ Ld_d(a7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); ++ __ Ld_d(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_w(a7, ++ FieldMemOperand(a7, SharedFunctionInfo::kFormalParameterCountOffset)); ++ __ mov(a6, fp); ++ } ++ __ Branch(&arguments_done); ++ __ bind(&arguments_adaptor); ++ { ++ // Just get the length from the ArgumentsAdaptorFrame. ++ __ Ld_w(a7, UntagSmiMemOperand( ++ a6, ArgumentsAdaptorFrameConstants::kLengthOffset)); ++ } ++ __ bind(&arguments_done); ++ ++ Label stack_done, stack_overflow; ++ __ Sub_w(a7, a7, a2); ++ __ Branch(&stack_done, le, a7, Operand(zero_reg)); ++ { ++ // Check for stack overflow. ++ Generate_StackOverflowCheck(masm, a7, a4, a5, &stack_overflow); ++ ++ // Forward the arguments from the caller frame. ++ { ++ Label loop; ++ __ Add_d(a0, a0, a7); ++ __ bind(&loop); ++ { ++ __ Alsl_d(kScratchReg, a7, a6, kPointerSizeLog2, t7); ++ __ Ld_d(kScratchReg, MemOperand(kScratchReg, 1 * kPointerSize)); ++ __ push(kScratchReg); ++ __ Sub_w(a7, a7, Operand(1)); ++ __ Branch(&loop, ne, a7, Operand(zero_reg)); ++ } ++ } ++ } ++ __ Branch(&stack_done); ++ __ bind(&stack_overflow); ++ __ TailCallRuntime(Runtime::kThrowStackOverflow); ++ __ bind(&stack_done); ++ ++ // Tail-call to the {code} handler. ++ __ Jump(code, RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_CallFunction(MacroAssembler* masm, ++ ConvertReceiverMode mode) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSFunction) ++ // ----------------------------------- ++ __ AssertFunction(a1); ++ ++ // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) ++ // Check that function is not a "classConstructor". ++ Label class_constructor; ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_wu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); ++ __ And(kScratchReg, a3, ++ Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); ++ __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg)); ++ ++ // Enter the context of the function; ToObject has to run in the function ++ // context, and we also need to take the global proxy from the function ++ // context in case of conversion. ++ __ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ++ // We need to convert the receiver for non-native sloppy mode functions. ++ Label done_convert; ++ __ Ld_wu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); ++ __ And(kScratchReg, a3, ++ Operand(SharedFunctionInfo::IsNativeBit::kMask | ++ SharedFunctionInfo::IsStrictBit::kMask)); ++ __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg)); ++ { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSFunction) ++ // -- a2 : the shared function info. ++ // -- cp : the function context. ++ // ----------------------------------- ++ ++ if (mode == ConvertReceiverMode::kNullOrUndefined) { ++ // Patch receiver to global proxy. ++ __ LoadGlobalProxy(a3); ++ } else { ++ Label convert_to_object, convert_receiver; ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2, t7); ++ __ Ld_d(a3, MemOperand(kScratchReg)); ++ __ JumpIfSmi(a3, &convert_to_object); ++ STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); ++ __ GetObjectType(a3, a4, a4); ++ __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE)); ++ if (mode != ConvertReceiverMode::kNotNullOrUndefined) { ++ Label convert_global_proxy; ++ __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, ++ &convert_global_proxy); ++ __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object); ++ __ bind(&convert_global_proxy); ++ { ++ // Patch receiver to global proxy. ++ __ LoadGlobalProxy(a3); ++ } ++ __ Branch(&convert_receiver); ++ } ++ __ bind(&convert_to_object); ++ { ++ // Convert receiver using ToObject. ++ // TODO(bmeurer): Inline the allocation here to avoid building the frame ++ // in the fast case? (fall back to AllocateInNewSpace?) ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ SmiTag(a0); ++ __ Push(a0, a1); ++ __ mov(a0, a3); ++ __ Push(cp); ++ __ Call(BUILTIN_CODE(masm->isolate(), ToObject), ++ RelocInfo::CODE_TARGET); ++ __ Pop(cp); ++ __ mov(a3, a0); ++ __ Pop(a0, a1); ++ __ SmiUntag(a0); ++ } ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ __ bind(&convert_receiver); ++ } ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2); ++ __ St_d(a3, MemOperand(kScratchReg)); ++ } ++ __ bind(&done_convert); ++ ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSFunction) ++ // -- a2 : the shared function info. ++ // -- cp : the function context. ++ // ----------------------------------- ++ ++ __ Ld_w(a2, ++ FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); ++ ParameterCount actual(a0); ++ ParameterCount expected(a2); ++ __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION); ++ ++ // The function is a "classConstructor", need to raise an exception. ++ __ bind(&class_constructor); ++ { ++ FrameScope frame(masm, StackFrame::INTERNAL); ++ __ Push(a1); ++ __ CallRuntime(Runtime::kThrowConstructorNonCallableError); ++ } ++} ++ ++// static ++void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSBoundFunction) ++ // ----------------------------------- ++ __ AssertBoundFunction(a1); ++ ++ // Patch the receiver to [[BoundThis]]. ++ { ++ __ Ld_d(kScratchReg, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); ++ __ Alsl_d(a4, a0, sp, kPointerSizeLog2, t7); ++ __ St_d(kScratchReg, MemOperand(a4)); ++ } ++ ++ // Load [[BoundArguments]] into a2 and length of that into a4. ++ __ Ld_d(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); ++ __ Ld_w(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); ++ ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSBoundFunction) ++ // -- a2 : the [[BoundArguments]] (implemented as FixedArray) ++ // -- a4 : the number of [[BoundArguments]] ++ // ----------------------------------- ++ ++ // Reserve stack space for the [[BoundArguments]]. ++ { ++ Label done; ++ __ slli_d(a5, a4, kPointerSizeLog2); ++ __ Sub_d(sp, sp, Operand(a5)); ++ // Check the stack for overflow. We are not trying to catch interruptions ++ // (i.e. debug break and preemption) here, so check the "real stack limit". ++ __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); ++ __ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison. ++ // Restore the stack pointer. ++ __ Add_d(sp, sp, Operand(a5)); ++ { ++ FrameScope scope(masm, StackFrame::MANUAL); ++ __ EnterFrame(StackFrame::INTERNAL); ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ } ++ __ bind(&done); ++ } ++ ++ // Relocate arguments down the stack. ++ { ++ Label loop, done_loop; ++ __ mov(a5, zero_reg); ++ __ bind(&loop); ++ __ Branch(&done_loop, gt, a5, Operand(a0)); ++ __ Alsl_d(a6, a4, sp, kPointerSizeLog2, t7); ++ __ Ld_d(kScratchReg, MemOperand(a6)); ++ __ Alsl_d(a6, a5, sp, kPointerSizeLog2, t7); ++ __ St_d(kScratchReg, MemOperand(a6)); ++ __ Add_d(a4, a4, Operand(1)); ++ __ Add_d(a5, a5, Operand(1)); ++ __ Branch(&loop); ++ __ bind(&done_loop); ++ } ++ ++ // Copy [[BoundArguments]] to the stack (below the arguments). ++ { ++ Label loop, done_loop; ++ __ Ld_w(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); ++ __ Add_d(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); ++ __ bind(&loop); ++ __ Sub_d(a4, a4, Operand(1)); ++ __ Branch(&done_loop, lt, a4, Operand(zero_reg)); ++ __ Alsl_d(a5, a4, a2, kPointerSizeLog2, t7); ++ __ Ld_d(kScratchReg, MemOperand(a5)); ++ __ Alsl_d(a5, a0, sp, kPointerSizeLog2, t7); ++ __ St_d(kScratchReg, MemOperand(a5)); ++ __ Add_d(a0, a0, Operand(1)); ++ __ Branch(&loop); ++ __ bind(&done_loop); ++ } ++ ++ // Call the [[BoundTargetFunction]] via the Call builtin. ++ __ Ld_d(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), ++ RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the target to call (can be any Object). ++ // ----------------------------------- ++ ++ Label non_callable, non_function, non_smi; ++ __ JumpIfSmi(a1, &non_callable); ++ __ bind(&non_smi); ++ __ GetObjectType(a1, t1, t2); ++ __ Jump(masm->isolate()->builtins()->CallFunction(mode), ++ RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), ++ RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); ++ ++ // Check if target has a [[Call]] internal method. ++ __ Ld_bu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); ++ __ And(t1, t1, Operand(Map::IsCallableBit::kMask)); ++ __ Branch(&non_callable, eq, t1, Operand(zero_reg)); ++ ++ __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); ++ ++ // 2. Call to something else, which might have a [[Call]] internal method (if ++ // not we raise an exception). ++ __ bind(&non_function); ++ // Overwrite the original receiver with the (original) target. ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2, t7); ++ __ St_d(a1, MemOperand(kScratchReg)); ++ // Let the "call_as_function_delegate" take care of the rest. ++ __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); ++ __ Jump(masm->isolate()->builtins()->CallFunction( ++ ConvertReceiverMode::kNotNullOrUndefined), ++ RelocInfo::CODE_TARGET); ++ ++ // 3. Call to something that is not callable. ++ __ bind(&non_callable); ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ Push(a1); ++ __ CallRuntime(Runtime::kThrowCalledNonCallable); ++ } ++} ++ ++void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the constructor to call (checked to be a JSFunction) ++ // -- a3 : the new target (checked to be a constructor) ++ // ----------------------------------- ++ __ AssertConstructor(a1); ++ __ AssertFunction(a1); ++ ++ // Calling convention for function specific ConstructStubs require ++ // a2 to contain either an AllocationSite or undefined. ++ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ++ ++ Label call_generic_stub; ++ ++ // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. ++ __ Ld_d(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_wu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset)); ++ __ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); ++ __ Branch(&call_generic_stub, eq, a4, Operand(zero_reg)); ++ ++ __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), ++ RelocInfo::CODE_TARGET); ++ ++ __ bind(&call_generic_stub); ++ __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), ++ RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSBoundFunction) ++ // -- a3 : the new target (checked to be a constructor) ++ // ----------------------------------- ++ __ AssertConstructor(a1); ++ __ AssertBoundFunction(a1); ++ ++ // Load [[BoundArguments]] into a2 and length of that into a4. ++ __ Ld_d(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); ++ __ Ld_w(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); ++ ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the function to call (checked to be a JSBoundFunction) ++ // -- a2 : the [[BoundArguments]] (implemented as FixedArray) ++ // -- a3 : the new target (checked to be a constructor) ++ // -- a4 : the number of [[BoundArguments]] ++ // ----------------------------------- ++ ++ // Reserve stack space for the [[BoundArguments]]. ++ { ++ Label done; ++ __ slli_d(a5, a4, kPointerSizeLog2); ++ __ Sub_d(sp, sp, Operand(a5)); ++ // Check the stack for overflow. We are not trying to catch interruptions ++ // (i.e. debug break and preemption) here, so check the "real stack limit". ++ __ LoadRoot(kScratchReg, Heap::kRealStackLimitRootIndex); ++ __ Branch(&done, gt, sp, Operand(kScratchReg)); // Signed comparison. ++ // Restore the stack pointer. ++ __ Add_d(sp, sp, Operand(a5)); ++ { ++ FrameScope scope(masm, StackFrame::MANUAL); ++ __ EnterFrame(StackFrame::INTERNAL); ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ } ++ __ bind(&done); ++ } ++ ++ // Relocate arguments down the stack. ++ { ++ Label loop, done_loop; ++ __ mov(a5, zero_reg); ++ __ bind(&loop); ++ __ Branch(&done_loop, ge, a5, Operand(a0)); ++ __ Alsl_d(a6, a4, sp, kPointerSizeLog2, t7); ++ __ Ld_d(kScratchReg, MemOperand(a6)); ++ __ Alsl_d(a6, a5, sp, kPointerSizeLog2, t7); ++ __ St_d(kScratchReg, MemOperand(a6)); ++ __ Add_d(a4, a4, Operand(1)); ++ __ Add_d(a5, a5, Operand(1)); ++ __ Branch(&loop); ++ __ bind(&done_loop); ++ } ++ ++ // Copy [[BoundArguments]] to the stack (below the arguments). ++ { ++ Label loop, done_loop; ++ __ Ld_w(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); ++ __ Add_d(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); ++ __ bind(&loop); ++ __ Sub_d(a4, a4, Operand(1)); ++ __ Branch(&done_loop, lt, a4, Operand(zero_reg)); ++ __ Alsl_d(a5, a4, a2, kPointerSizeLog2, t7); ++ __ Ld_d(kScratchReg, MemOperand(a5)); ++ __ Alsl_d(a5, a0, sp, kPointerSizeLog2, t7); ++ __ St_d(kScratchReg, MemOperand(a5)); ++ __ Add_d(a0, a0, Operand(1)); ++ __ Branch(&loop); ++ __ bind(&done_loop); ++ } ++ ++ // Patch new.target to [[BoundTargetFunction]] if new.target equals target. ++ { ++ Label skip_load; ++ __ Branch(&skip_load, ne, a1, Operand(a3)); ++ __ Ld_d(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); ++ __ bind(&skip_load); ++ } ++ ++ // Construct the [[BoundTargetFunction]] via the Construct builtin. ++ __ Ld_d(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_Construct(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : the number of arguments (not including the receiver) ++ // -- a1 : the constructor to call (can be any Object) ++ // -- a3 : the new target (either the same as the constructor or ++ // the JSFunction on which new was invoked initially) ++ // ----------------------------------- ++ ++ // Check if target is a Smi. ++ Label non_constructor, non_proxy; ++ __ JumpIfSmi(a1, &non_constructor); ++ ++ // Check if target has a [[Construct]] internal method. ++ __ Ld_d(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); ++ __ Ld_bu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); ++ __ And(t3, t3, Operand(Map::IsConstructorBit::kMask)); ++ __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); ++ ++ // Dispatch based on instance type. ++ __ Ld_hu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), ++ RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); ++ ++ // Only dispatch to bound functions after checking whether they are ++ // constructors. ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), ++ RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); ++ ++ // Only dispatch to proxies after checking whether they are constructors. ++ __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), ++ RelocInfo::CODE_TARGET); ++ ++ // Called Construct on an exotic Object with a [[Construct]] internal method. ++ __ bind(&non_proxy); ++ { ++ // Overwrite the original receiver with the (original) target. ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2, t7); ++ __ St_d(a1, MemOperand(kScratchReg)); ++ // Let the "call_as_constructor_delegate" take care of the rest. ++ __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); ++ __ Jump(masm->isolate()->builtins()->CallFunction(), ++ RelocInfo::CODE_TARGET); ++ } ++ ++ // Called Construct on an Object that doesn't have a [[Construct]] internal ++ // method. ++ __ bind(&non_constructor); ++ __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), ++ RelocInfo::CODE_TARGET); ++} ++ ++// static ++void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : requested object size (untagged) ++ // -- ra : return address ++ // ----------------------------------- ++ __ SmiTag(a0); ++ __ Push(a0); ++ __ Move(cp, Smi::kZero); ++ __ TailCallRuntime(Runtime::kAllocateInNewSpace); ++} ++ ++// static ++void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : requested object size (untagged) ++ // -- ra : return address ++ // ----------------------------------- ++ __ SmiTag(a0); ++ __ Move(a1, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); ++ __ Push(a0, a1); ++ __ Move(cp, Smi::kZero); ++ __ TailCallRuntime(Runtime::kAllocateInTargetSpace); ++} ++ ++// static ++void Builtins::Generate_Abort(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : message_id as Smi ++ // -- ra : return address ++ // ----------------------------------- ++ __ Push(a0); ++ __ Move(cp, Smi::kZero); ++ __ TailCallRuntime(Runtime::kAbort); ++} ++ ++void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { ++ // State setup as expected by MacroAssembler::InvokePrologue. ++ // ----------- S t a t e ------------- ++ // -- a0: actual arguments count ++ // -- a1: function (passed through to callee) ++ // -- a2: expected arguments count ++ // -- a3: new target (passed through to callee) ++ // ----------------------------------- ++ ++ Label invoke, dont_adapt_arguments, stack_overflow; ++ ++ Label enough, too_few; ++ __ Branch(&dont_adapt_arguments, eq, a2, ++ Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); ++ // We use Uless as the number of argument should always be greater than 0. ++ __ Branch(&too_few, Uless, a0, Operand(a2)); ++ ++ { // Enough parameters: actual >= expected. ++ // a0: actual number of arguments as a smi ++ // a1: function ++ // a2: expected number of arguments ++ // a3: new target (passed through to callee) ++ __ bind(&enough); ++ EnterArgumentsAdaptorFrame(masm); ++ Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow); ++ ++ // Calculate copy start address into a0 and copy end address into a4. ++ __ SmiScale(a0, a0, kPointerSizeLog2); ++ __ Add_d(a0, fp, a0); ++ // Adjust for return address and receiver. ++ __ Add_d(a0, a0, Operand(2 * kPointerSize)); ++ // Compute copy end address. ++ __ slli_d(a4, a2, kPointerSizeLog2); ++ __ sub_d(a4, a0, a4); ++ ++ // Copy the arguments (including the receiver) to the new stack frame. ++ // a0: copy start address ++ // a1: function ++ // a2: expected number of arguments ++ // a3: new target (passed through to callee) ++ // a4: copy end address ++ ++ Label copy; ++ __ bind(©); ++ __ Ld_d(a5, MemOperand(a0)); ++ __ push(a5); ++ __ addi_d(a0, a0, -kPointerSize); // In delay slot. ++ __ Branch(©, ge, a0, Operand(a4)); ++ ++ __ jmp(&invoke); ++ } ++ ++ { // Too few parameters: Actual < expected. ++ __ bind(&too_few); ++ EnterArgumentsAdaptorFrame(masm); ++ Generate_StackOverflowCheck(masm, a2, a5, kScratchReg, &stack_overflow); ++ ++ // Calculate copy start address into a0 and copy end address into a7. ++ // a0: actual number of arguments as a smi ++ // a1: function ++ // a2: expected number of arguments ++ // a3: new target (passed through to callee) ++ __ SmiScale(a0, a0, kPointerSizeLog2); ++ __ Add_d(a0, fp, a0); ++ // Adjust for return address and receiver. ++ __ Add_d(a0, a0, Operand(2 * kPointerSize)); ++ // Compute copy end address. Also adjust for return address. ++ __ Add_d(a7, fp, kPointerSize); ++ ++ // Copy the arguments (including the receiver) to the new stack frame. ++ // a0: copy start address ++ // a1: function ++ // a2: expected number of arguments ++ // a3: new target (passed through to callee) ++ // a7: copy end address ++ Label copy; ++ __ bind(©); ++ __ Ld_d(a4, MemOperand(a0)); // Adjusted above for return addr and receiver. ++ __ Sub_d(sp, sp, kPointerSize); ++ __ Sub_d(a0, a0, kPointerSize); ++ __ St_d(a4, MemOperand(sp)); // In the delay slot. ++ __ Branch(©, ne, a0, Operand(a7)); ++ ++ // Fill the remaining expected arguments with undefined. ++ // a1: function ++ // a2: expected number of arguments ++ // a3: new target (passed through to callee) ++ __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); ++ __ slli_d(a6, a2, kPointerSizeLog2); ++ __ Sub_d(a4, fp, Operand(a6)); ++ // Adjust for frame. ++ __ Sub_d(a4, a4, ++ Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + ++ kPointerSize)); ++ ++ Label fill; ++ __ bind(&fill); ++ __ Sub_d(sp, sp, kPointerSize); ++ __ St_d(a5, MemOperand(sp)); ++ __ Branch(&fill, ne, sp, Operand(a4)); ++ } ++ ++ // Call the entry point. ++ __ bind(&invoke); ++ __ mov(a0, a2); ++ // a0 : expected number of arguments ++ // a1 : function (passed through to callee) ++ // a3: new target (passed through to callee) ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); ++ __ Add_d(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Call(a2); ++ ++ // Store offset of return address for deoptimizer. ++ masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); ++ ++ // Exit frame and return. ++ LeaveArgumentsAdaptorFrame(masm); ++ __ Ret(); ++ ++ // ------------------------------------------- ++ // Don't adapt arguments. ++ // ------------------------------------------- ++ __ bind(&dont_adapt_arguments); ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Ld_d(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); ++ __ Add_d(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Jump(a2); ++ ++ __ bind(&stack_overflow); ++ { ++ FrameScope frame(masm, StackFrame::MANUAL); ++ __ CallRuntime(Runtime::kThrowStackOverflow); ++ __ break_(0xCC); ++ } ++} ++ ++void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ ++ // Save all parameter registers (see wasm-linkage.cc). They might be ++ // overwritten in the runtime call below. We don't have any callee-saved ++ // registers in wasm, so no need to store anything else. ++ constexpr RegList gp_regs = Register::ListOf(); ++ constexpr RegList fp_regs = ++ DoubleRegister::ListOf(); ++ __ MultiPush(gp_regs); ++ __ MultiPushFPU(fp_regs); ++ ++ // Pass the WASM instance as an explicit argument to WasmCompileLazy. ++ __ push(kWasmInstanceRegister); ++ // Initialize the JavaScript context with 0. CEntry will use it to ++ // set the current context on the isolate. ++ __ Move(kContextRegister, Smi::kZero); ++ __ CallRuntime(Runtime::kWasmCompileLazy); ++ // The WASM instance is the second return value. ++ __ mov(t8, a0); ++ __ mov(kWasmInstanceRegister, kReturnRegister1); ++ ++ // Restore registers. ++ __ MultiPopFPU(fp_regs); ++ __ MultiPop(gp_regs); ++ } ++ // Finally, jump to the entrypoint. ++ __ Jump(t8); ++} ++ ++void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, ++ SaveFPRegsMode save_doubles, ArgvMode argv_mode, ++ bool builtin_exit_frame) { ++ // Called from JavaScript; parameters are on stack as if calling JS function ++ // a0: number of arguments including receiver ++ // a1: pointer to builtin function ++ // fp: frame pointer (restored after C call) ++ // sp: stack pointer (restored as callee's sp after C call) ++ // cp: current context (C callee-saved) ++ // ++ // If argv_mode == kArgvInRegister: ++ // a2: pointer to the first argument ++ ++ ProfileEntryHookStub::MaybeCallEntryHook(masm); ++ ++ if (argv_mode == kArgvInRegister) { ++ // Move argv into the correct register. ++ __ mov(s1, a2); ++ } else { ++ // Compute the argv pointer in a callee-saved register. ++ __ Alsl_d(s1, a0, sp, kPointerSizeLog2, t7); ++ __ Sub_d(s1, s1, kPointerSize); ++ } ++ ++ // Enter the exit frame that transitions from JavaScript to C++. ++ FrameScope scope(masm, StackFrame::MANUAL); ++ __ EnterExitFrame( ++ save_doubles == kSaveFPRegs, 0, ++ builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); ++ ++ // s0: number of arguments including receiver (C callee-saved) ++ // s1: pointer to first argument (C callee-saved) ++ // s2: pointer to builtin function (C callee-saved) ++ ++ // Prepare arguments for C routine. ++ // a0 = argc ++ __ mov(s0, a0); ++ __ mov(s2, a1); ++ ++ // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We ++ // also need to reserve the 4 argument slots on the stack. ++ ++ __ AssertStackIsAligned(); ++ ++ // a0 = argc, a1 = argv, a2 = isolate ++ __ li(a2, ExternalReference::isolate_address(masm->isolate())); ++ __ mov(a1, s1); ++ ++ // To let the GC traverse the return address of the exit frames, we need to ++ // know where the return address is. The CEntry is unmovable, so ++ // we can store the address on the stack to be able to find it again and ++ // we never have to restore it, because it will not change. ++ { ++ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); ++ int kNumInstructionsToJump = 3; ++ Label find_ra; ++ // Adjust the value in ra to point to the correct return location, 2nd ++ // instruction past the real call into C code (the jalr(t9)), and push it. ++ // This is the return address of the exit frame. ++ __ pcaddi(ra, kNumInstructionsToJump + 1); ++ __ bind(&find_ra); ++ ++ // This spot was reserved in EnterExitFrame. ++ __ St_d(ra, MemOperand(sp)); ++ // Stack space reservation moved to the branch delay slot below. ++ // Stack is still aligned. ++ ++ // Call the C routine. ++ __ mov(t7, s2); // Function pointer to t9 to conform to ABI for PIC. ++ __ Call(t7); ++ // Make sure the stored 'ra' points to this position. ++ DCHECK_EQ(kNumInstructionsToJump, ++ masm->InstructionsGeneratedSince(&find_ra)); ++ } ++ ++ // Result returned in v0 or v1:v0 - do not destroy these registers! ++ ++ // Check result for exception sentinel. ++ Label exception_returned; ++ __ LoadRoot(a4, Heap::kExceptionRootIndex); ++ __ Branch(&exception_returned, eq, a4, Operand(a0)); ++ ++ // Check that there is no pending exception, otherwise we ++ // should have returned the exception sentinel. ++ if (FLAG_debug_code) { ++ Label okay; ++ ExternalReference pending_exception_address = ExternalReference::Create( ++ IsolateAddressId::kPendingExceptionAddress, masm->isolate()); ++ __ li(a2, pending_exception_address); ++ __ Ld_d(a2, MemOperand(a2)); ++ __ LoadRoot(a4, Heap::kTheHoleValueRootIndex); ++ // Cannot use check here as it attempts to generate call into runtime. ++ __ Branch(&okay, eq, a4, Operand(a2)); ++ __ stop("Unexpected pending exception"); ++ __ bind(&okay); ++ } ++ ++ // Exit C frame and return. ++ // v0:v1: result ++ // sp: stack pointer ++ // fp: frame pointer ++ Register argc = argv_mode == kArgvInRegister ++ // We don't want to pop arguments so set argc to no_reg. ++ ? no_reg ++ // s0: still holds argc (callee-saved). ++ : s0; ++ __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN); ++ ++ // Handling of exception. ++ __ bind(&exception_returned); ++ ++ ExternalReference pending_handler_context_address = ExternalReference::Create( ++ IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ++ ExternalReference pending_handler_entrypoint_address = ++ ExternalReference::Create( ++ IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ++ ExternalReference pending_handler_fp_address = ExternalReference::Create( ++ IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ++ ExternalReference pending_handler_sp_address = ExternalReference::Create( ++ IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); ++ ++ // Ask the runtime for help to determine the handler. This will set v0 to ++ // contain the current pending exception, don't clobber it. ++ ExternalReference find_handler = ++ ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); ++ { ++ FrameScope scope(masm, StackFrame::MANUAL); ++ __ PrepareCallCFunction(3, 0, a0); ++ __ mov(a0, zero_reg); ++ __ mov(a1, zero_reg); ++ __ li(a2, ExternalReference::isolate_address(masm->isolate())); ++ __ CallCFunction(find_handler, 3); ++ } ++ ++ // Retrieve the handler context, SP and FP. ++ __ li(cp, pending_handler_context_address); ++ __ Ld_d(cp, MemOperand(cp)); ++ __ li(sp, pending_handler_sp_address); ++ __ Ld_d(sp, MemOperand(sp)); ++ __ li(fp, pending_handler_fp_address); ++ __ Ld_d(fp, MemOperand(fp)); ++ ++ // If the handler is a JS frame, restore the context to the frame. Note that ++ // the context will be set to (cp == 0) for non-JS frames. ++ Label zero; ++ __ Branch(&zero, eq, cp, Operand(zero_reg)); ++ __ St_d(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); ++ __ bind(&zero); ++ ++ // Reset the masking register. This is done independent of the underlying ++ // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with ++ // both configurations. It is safe to always do this, because the underlying ++ // register is caller-saved and can be arbitrarily clobbered. ++ __ ResetSpeculationPoisonRegister(); ++ ++ // Compute the handler entry address and jump to it. ++ __ li(t7, pending_handler_entrypoint_address); ++ __ Ld_d(t7, MemOperand(t7)); ++ __ Jump(t7); ++} ++ ++void Builtins::Generate_DoubleToI(MacroAssembler* masm) { ++ Label out_of_range, only_low, negate, done; ++ Register result_reg = t0; ++ ++ Register scratch = GetRegisterThatIsNotOneOf(result_reg); ++ Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); ++ Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); ++ DoubleRegister double_scratch = kScratchDoubleReg; ++ ++ // Account for saved regs. ++ const int kArgumentOffset = 4 * kPointerSize; ++ ++ __ Push(result_reg); ++ __ Push(scratch, scratch2, scratch3); ++ ++ // Load double input. ++ __ Fld_d(double_scratch, MemOperand(sp, kArgumentOffset)); ++ ++ // Try a conversion to a signed integer. ++ __ ftintrz_w_d(double_scratch, double_scratch); ++ // Move the converted value into the result register. ++ __ movfr2gr_s(scratch3, double_scratch); ++ __ movfcsr2gr(scratch); ++ ++ // Check for overflow and NaNs. ++ __ And( ++ scratch, scratch, ++ (kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask) << 8); ++ // If we had no exceptions then set result_reg and we are done. ++ Label error; ++ __ Branch(&error, ne, scratch, Operand(zero_reg)); ++ __ Move(result_reg, scratch3); ++ __ Branch(&done); ++ __ bind(&error); ++ ++ // Load the double value and perform a manual truncation. ++ Register input_high = scratch2; ++ Register input_low = scratch3; ++ ++ __ Ld_w(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); ++ __ Ld_w(input_high, ++ MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); ++ ++ Label normal_exponent, restore_sign; ++ // Extract the biased exponent in result. ++ __ bstrpick_w(result_reg, input_high, ++ HeapNumber::kExponentShift + HeapNumber::kExponentBits - 1, ++ HeapNumber::kExponentShift); ++ ++ // Check for Infinity and NaNs, which should return 0. ++ __ Sub_w(scratch, result_reg, HeapNumber::kExponentMask); ++ __ Movz(result_reg, zero_reg, scratch); ++ __ Branch(&done, eq, scratch, Operand(zero_reg)); ++ ++ // Express exponent as delta to (number of mantissa bits + 31). ++ __ Sub_w(result_reg, result_reg, ++ Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); ++ ++ // If the delta is strictly positive, all bits would be shifted away, ++ // which means that we can return 0. ++ __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); ++ __ mov(result_reg, zero_reg); ++ __ Branch(&done); ++ ++ __ bind(&normal_exponent); ++ const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; ++ // Calculate shift. ++ __ Add_w(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); ++ ++ // Save the sign. ++ Register sign = result_reg; ++ result_reg = no_reg; ++ __ And(sign, input_high, Operand(HeapNumber::kSignMask)); ++ ++ // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need ++ // to check for this specific case. ++ Label high_shift_needed, high_shift_done; ++ __ Branch(&high_shift_needed, lt, scratch, Operand(32)); ++ __ mov(input_high, zero_reg); ++ __ Branch(&high_shift_done); ++ __ bind(&high_shift_needed); ++ ++ // Set the implicit 1 before the mantissa part in input_high. ++ __ Or(input_high, input_high, ++ Operand(1 << HeapNumber::kMantissaBitsInTopWord)); ++ // Shift the mantissa bits to the correct position. ++ // We don't need to clear non-mantissa bits as they will be shifted away. ++ // If they weren't, it would mean that the answer is in the 32bit range. ++ __ sll_w(input_high, input_high, scratch); ++ ++ __ bind(&high_shift_done); ++ ++ // Replace the shifted bits with bits from the lower mantissa word. ++ Label pos_shift, shift_done; ++ __ li(kScratchReg, 32); ++ __ sub_w(scratch, kScratchReg, scratch); ++ __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); ++ ++ // Negate scratch. ++ __ Sub_w(scratch, zero_reg, scratch); ++ __ sll_w(input_low, input_low, scratch); ++ __ Branch(&shift_done); ++ ++ __ bind(&pos_shift); ++ __ srl_w(input_low, input_low, scratch); ++ ++ __ bind(&shift_done); ++ __ Or(input_high, input_high, Operand(input_low)); ++ // Restore sign if necessary. ++ __ mov(scratch, sign); ++ result_reg = sign; ++ sign = no_reg; ++ __ Sub_w(result_reg, zero_reg, input_high); ++ __ Movz(result_reg, input_high, scratch); ++ ++ __ bind(&done); ++ ++ __ St_d(result_reg, MemOperand(sp, kArgumentOffset)); ++ __ Pop(scratch, scratch2, scratch3); ++ __ Pop(result_reg); ++ __ Ret(); ++} ++ ++void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { ++ const Register exponent = MathPowTaggedDescriptor::exponent(); ++ DCHECK(exponent == a2); ++ const DoubleRegister double_base = f2; ++ const DoubleRegister double_exponent = f4; ++ const DoubleRegister double_result = f0; ++ const DoubleRegister double_scratch = f6; ++ const FPURegister single_scratch = f8; ++ const Register scratch = t1; ++ const Register scratch2 = a7; ++ ++ Label call_runtime, done, int_exponent; ++ ++ Label int_exponent_convert; ++ // Detect integer exponents stored as double. ++ __ EmitFPUTruncate(kRoundToMinusInf, scratch, double_exponent, kScratchReg, ++ double_scratch, scratch2, kCheckForInexactConversion); ++ // scratch2 == 0 means there was no conversion error. ++ __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); ++ ++ __ push(ra); ++ { ++ AllowExternalCallThatCantCauseGC scope(masm); ++ __ PrepareCallCFunction(0, 2, scratch2); ++ __ MovToFloatParameters(double_base, double_exponent); ++ __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); ++ } ++ __ pop(ra); ++ __ MovFromFloatResult(double_result); ++ __ jmp(&done); ++ ++ __ bind(&int_exponent_convert); ++ ++ // Calculate power with integer exponent. ++ __ bind(&int_exponent); ++ ++ // Get two copies of exponent in the registers scratch and exponent. ++ // Exponent has previously been stored into scratch as untagged integer. ++ __ mov(exponent, scratch); ++ ++ __ fmov_d(double_scratch, double_base); // Back up base. ++ __ Move(double_result, 1.0); ++ ++ // Get absolute value of exponent. ++ Label positive_exponent, bail_out; ++ __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); ++ __ Sub_d(scratch, zero_reg, scratch); ++ // Check when Dsubu overflows and we get negative result ++ // (happens only when input is MIN_INT). ++ __ Branch(&bail_out, gt, zero_reg, Operand(scratch)); ++ __ bind(&positive_exponent); ++ __ Assert(ge, AbortReason::kUnexpectedNegativeValue, scratch, ++ Operand(zero_reg)); ++ ++ Label while_true, no_carry, loop_end; ++ __ bind(&while_true); ++ ++ __ And(scratch2, scratch, 1); ++ ++ __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); ++ __ fmul_d(double_result, double_result, double_scratch); ++ __ bind(&no_carry); ++ ++ __ srai_d(scratch, scratch, 1); ++ ++ __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); ++ __ fmul_d(double_scratch, double_scratch, double_scratch); ++ ++ __ Branch(&while_true); ++ ++ __ bind(&loop_end); ++ ++ __ Branch(&done, ge, exponent, Operand(zero_reg)); ++ __ Move(double_scratch, 1.0); ++ __ fdiv_d(double_result, double_scratch, double_result); ++ // Test whether result is zero. Bail out to check for subnormal result. ++ // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. ++ __ CompareF64(double_result, kDoubleRegZero, CEQ); ++ __ BranchFalseShortF(&done); ++ ++ // double_exponent may not contain the exponent value if the input was a ++ // smi. We set it with exponent value before bailing out. ++ __ bind(&bail_out); ++ __ movgr2fr_w(single_scratch, exponent); ++ __ ffint_d_w(double_exponent, single_scratch); ++ ++ // Returning or bailing out. ++ __ push(ra); ++ { ++ AllowExternalCallThatCantCauseGC scope(masm); ++ __ PrepareCallCFunction(0, 2, scratch); ++ __ MovToFloatParameters(double_base, double_exponent); ++ __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); ++ } ++ __ pop(ra); ++ __ MovFromFloatResult(double_result); ++ ++ __ bind(&done); ++ __ Ret(); ++} ++ ++#undef __ ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/code-stubs.h b/deps/v8/src/code-stubs.h +index cdc9c98..1b6aa66 100644 +--- a/deps/v8/src/code-stubs.h ++++ b/deps/v8/src/code-stubs.h +@@ -82,6 +82,12 @@ class Node; + #define CODE_STUB_LIST_MIPS(V) + #endif + ++#if V8_TARGET_ARCH_LOONG64 ++#define CODE_STUB_LIST_LOONG64(V) V(DirectCEntry) ++#else ++#define CODE_STUB_LIST_LOONG64(V) ++#endif ++ + // List of code stubs only used on S390 platforms. + #ifdef V8_TARGET_ARCH_S390 + #define CODE_STUB_LIST_S390(V) V(DirectCEntry) +@@ -96,6 +102,7 @@ class Node; + CODE_STUB_LIST_ARM64(V) \ + CODE_STUB_LIST_PPC(V) \ + CODE_STUB_LIST_MIPS(V) \ ++ CODE_STUB_LIST_LOONG64(V) \ + CODE_STUB_LIST_S390(V) + + static const int kHasReturnedMinusZeroSentinel = 1; +@@ -423,6 +430,8 @@ class TurboFanCodeStub : public CodeStub { + #include "src/mips64/code-stubs-mips64.h" + #elif V8_TARGET_ARCH_S390 + #include "src/s390/code-stubs-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/code-stubs-loong64.h" + #else + #error Unsupported target architecture. + #endif +diff --git a/deps/v8/src/compiler/c-linkage.cc b/deps/v8/src/compiler/c-linkage.cc +index 02b6f5f..e65d64b 100644 +--- a/deps/v8/src/compiler/c-linkage.cc ++++ b/deps/v8/src/compiler/c-linkage.cc +@@ -99,6 +99,18 @@ namespace { + #define CALLEE_SAVE_FP_REGISTERS \ + f20.bit() | f22.bit() | f24.bit() | f26.bit() | f28.bit() | f30.bit() + ++#elif V8_TARGET_ARCH_LOONG64 ++// =========================================================================== ++// == loong64 ================================================================= ++// =========================================================================== ++#define PARAM_REGISTERS a0, a1, a2, a3, a4, a5, a6, a7 ++#define CALLEE_SAVE_REGISTERS \ ++ s0.bit() | s1.bit() | s2.bit() | s3.bit() | s4.bit() | s5.bit() | s6.bit() | \ ++ s7.bit() | fp.bit() ++#define CALLEE_SAVE_FP_REGISTERS \ ++ f24.bit() | f25.bit() | f26.bit() | f27.bit() | f28.bit() | f29.bit() | \ ++ f30.bit() | f31.bit() ++ + #elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 + // =========================================================================== + // == ppc & ppc64 ============================================================ +diff --git a/deps/v8/src/compiler/instruction-codes.h b/deps/v8/src/compiler/instruction-codes.h +index 17d032c..1d5b4c0 100644 +--- a/deps/v8/src/compiler/instruction-codes.h ++++ b/deps/v8/src/compiler/instruction-codes.h +@@ -23,6 +23,8 @@ + #include "src/compiler/ppc/instruction-codes-ppc.h" + #elif V8_TARGET_ARCH_S390 + #include "src/compiler/s390/instruction-codes-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/compiler/loong64/instruction-codes-loong64.h" + #else + #define TARGET_ARCH_OPCODE_LIST(V) + #define TARGET_ADDRESSING_MODE_LIST(V) +diff --git a/deps/v8/src/compiler/instruction-selector.cc b/deps/v8/src/compiler/instruction-selector.cc +index c8c6afe..ab06f54 100644 +--- a/deps/v8/src/compiler/instruction-selector.cc ++++ b/deps/v8/src/compiler/instruction-selector.cc +@@ -2315,7 +2315,7 @@ void InstructionSelector::VisitWord32PairSar(Node* node) { UNIMPLEMENTED(); } + #endif // V8_TARGET_ARCH_64_BIT + + #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \ +- !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 ++ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_LOONG64 + void InstructionSelector::VisitF32x4SConvertI32x4(Node* node) { + UNIMPLEMENTED(); + } +@@ -2353,7 +2353,7 @@ void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { + #endif // !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM64 + + #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \ +- !V8_TARGET_ARCH_MIPS64 ++ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_LOONG64 + void InstructionSelector::VisitI32x4SConvertF32x4(Node* node) { + UNIMPLEMENTED(); + } +@@ -2365,7 +2365,7 @@ void InstructionSelector::VisitI32x4UConvertF32x4(Node* node) { + // && !V8_TARGET_ARCH_MIPS64 + + #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \ +- !V8_TARGET_ARCH_MIPS64 ++ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_LOONG64 + void InstructionSelector::VisitI32x4SConvertI16x8Low(Node* node) { + UNIMPLEMENTED(); + } +@@ -2402,7 +2402,7 @@ void InstructionSelector::VisitI16x8UConvertI8x16High(Node* node) { + // && !V8_TARGET_ARCH_MIPS64 + + #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \ +- !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 ++ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_LOONG64 + void InstructionSelector::VisitI16x8SConvertI32x4(Node* node) { + UNIMPLEMENTED(); + } +@@ -2421,7 +2421,7 @@ void InstructionSelector::VisitI8x16UConvertI16x8(Node* node) { + // && !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 + + #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \ +- !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 ++ !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_LOONG64 + void InstructionSelector::VisitI8x16Shl(Node* node) { UNIMPLEMENTED(); } + + void InstructionSelector::VisitI8x16ShrS(Node* node) { UNIMPLEMENTED(); } +diff --git a/deps/v8/src/compiler/loong64/code-generator-loong64.cc b/deps/v8/src/compiler/loong64/code-generator-loong64.cc +new file mode 100644 +index 0000000..c39c360 +--- /dev/null ++++ b/deps/v8/src/compiler/loong64/code-generator-loong64.cc +@@ -0,0 +1,2648 @@ ++// Copyright 2014 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include "src/assembler-inl.h" ++#include "src/callable.h" ++#include "src/compiler/code-generator-impl.h" ++#include "src/compiler/code-generator.h" ++#include "src/compiler/gap-resolver.h" ++#include "src/compiler/node-matchers.h" ++#include "src/compiler/osr.h" ++#include "src/heap/heap-inl.h" ++#include "src/loong64/macro-assembler-loong64.h" ++#include "src/optimized-compilation-info.h" ++ ++namespace v8 { ++namespace internal { ++namespace compiler { ++ ++#define __ tasm()-> ++ ++ ++// TODO(plind): consider renaming these macros. ++#define TRACE_MSG(msg) \ ++ PrintF("code_gen: \'%s\' in function %s at line %d\n", msg, __FUNCTION__, \ ++ __LINE__) ++ ++#define TRACE_UNIMPL() \ ++ PrintF("UNIMPLEMENTED code_generator_loong64: %s at line %d\n", __FUNCTION__, \ ++ __LINE__) ++ ++ ++// Adds Loong64-specific methods to convert InstructionOperands. ++class Loong64OperandConverter final : public InstructionOperandConverter { ++ public: ++ Loong64OperandConverter(CodeGenerator* gen, Instruction* instr) ++ : InstructionOperandConverter(gen, instr) {} ++ ++ FloatRegister OutputSingleRegister(size_t index = 0) { ++ return ToSingleRegister(instr_->OutputAt(index)); ++ } ++ ++ FloatRegister InputSingleRegister(size_t index) { ++ return ToSingleRegister(instr_->InputAt(index)); ++ } ++ ++ FloatRegister ToSingleRegister(InstructionOperand* op) { ++ // Single (Float) and Double register namespace is same on MIPS, ++ // both are typedefs of FPURegister. ++ return ToDoubleRegister(op); ++ } ++ ++ Register InputOrZeroRegister(size_t index) { ++ if (instr_->InputAt(index)->IsImmediate()) { ++ DCHECK_EQ(0, InputInt32(index)); ++ return zero_reg; ++ } ++ return InputRegister(index); ++ } ++ ++ DoubleRegister InputOrZeroDoubleRegister(size_t index) { ++ if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero; ++ ++ return InputDoubleRegister(index); ++ } ++ ++ DoubleRegister InputOrZeroSingleRegister(size_t index) { ++ if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero; ++ ++ return InputSingleRegister(index); ++ } ++ ++ Operand InputImmediate(size_t index) { ++ Constant constant = ToConstant(instr_->InputAt(index)); ++ switch (constant.type()) { ++ case Constant::kInt32: ++ return Operand(constant.ToInt32()); ++ case Constant::kInt64: ++ return Operand(constant.ToInt64()); ++ case Constant::kFloat32: ++ return Operand::EmbeddedNumber(constant.ToFloat32()); ++ case Constant::kFloat64: ++ return Operand::EmbeddedNumber(constant.ToFloat64().value()); ++ case Constant::kExternalReference: ++ case Constant::kHeapObject: ++ // TODO(plind): Maybe we should handle ExtRef & HeapObj here? ++ // maybe not done on arm due to const pool ?? ++ break; ++ case Constant::kRpoNumber: ++ UNREACHABLE(); // TODO(titzer): RPO immediates on mips? ++ break; ++ } ++ UNREACHABLE(); ++ } ++ ++ Operand InputOperand(size_t index) { ++ InstructionOperand* op = instr_->InputAt(index); ++ if (op->IsRegister()) { ++ return Operand(ToRegister(op)); ++ } ++ return InputImmediate(index); ++ } ++ ++ MemOperand MemoryOperand(size_t* first_index) { ++ const size_t index = *first_index; ++ switch (AddressingModeField::decode(instr_->opcode())) { ++ case kMode_None: ++ break; ++ case kMode_MRI: ++ *first_index += 2; ++ return MemOperand(InputRegister(index + 0), InputInt32(index + 1)); ++ case kMode_MRR: ++ // TODO(plind): r6 address mode, to be implemented ... ++ UNREACHABLE(); ++ } ++ UNREACHABLE(); ++ } ++ ++ MemOperand MemoryOperand(size_t index = 0) { return MemoryOperand(&index); } ++ ++ MemOperand ToMemOperand(InstructionOperand* op) const { ++ DCHECK_NOT_NULL(op); ++ DCHECK(op->IsStackSlot() || op->IsFPStackSlot()); ++ return SlotToMemOperand(AllocatedOperand::cast(op)->index()); ++ } ++ ++ MemOperand SlotToMemOperand(int slot) const { ++ FrameOffset offset = frame_access_state()->GetFrameOffset(slot); ++ return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset()); ++ } ++}; ++ ++ ++static inline bool HasRegisterInput(Instruction* instr, size_t index) { ++ return instr->InputAt(index)->IsRegister(); ++} ++ ++ ++namespace { ++ ++ ++class OutOfLineRecordWrite final : public OutOfLineCode { ++ public: ++ OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register index, ++ Register value, Register scratch0, Register scratch1, ++ RecordWriteMode mode) ++ : OutOfLineCode(gen), ++ object_(object), ++ index_(index), ++ value_(value), ++ scratch0_(scratch0), ++ scratch1_(scratch1), ++ mode_(mode), ++ must_save_lr_(!gen->frame_access_state()->has_frame()), ++ zone_(gen->zone()) {} ++ ++ void SaveRegisters(RegList registers) { ++ DCHECK_LT(0, NumRegs(registers)); ++ RegList regs = 0; ++ for (int i = 0; i < Register::kNumRegisters; ++i) { ++ if ((registers >> i) & 1u) { ++ regs |= Register::from_code(i).bit(); ++ } ++ } ++ __ MultiPush(regs | ra.bit()); ++ } ++ ++ void RestoreRegisters(RegList registers) { ++ DCHECK_LT(0, NumRegs(registers)); ++ RegList regs = 0; ++ for (int i = 0; i < Register::kNumRegisters; ++i) { ++ if ((registers >> i) & 1u) { ++ regs |= Register::from_code(i).bit(); ++ } ++ } ++ __ MultiPop(regs | ra.bit()); ++ } ++ ++ void Generate() final { ++ if (mode_ > RecordWriteMode::kValueIsPointer) { ++ __ JumpIfSmi(value_, exit()); ++ } ++ __ CheckPageFlag(value_, scratch0_, ++ MemoryChunk::kPointersToHereAreInterestingMask, eq, ++ exit()); ++ __ Add_d(scratch1_, object_, index_); ++ RememberedSetAction const remembered_set_action = ++ mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET ++ : OMIT_REMEMBERED_SET; ++ SaveFPRegsMode const save_fp_mode = ++ frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs; ++ if (must_save_lr_) { ++ // We need to save and restore ra if the frame was elided. ++ __ Push(ra); ++ } ++ __ CallRecordWriteStub(object_, scratch1_, remembered_set_action, ++ save_fp_mode); ++ if (must_save_lr_) { ++ __ Pop(ra); ++ } ++ } ++ ++ private: ++ Register const object_; ++ Register const index_; ++ Register const value_; ++ Register const scratch0_; ++ Register const scratch1_; ++ RecordWriteMode const mode_; ++ bool must_save_lr_; ++ Zone* zone_; ++}; ++ ++#define CREATE_OOL_CLASS(ool_name, tasm_ool_name, T) \ ++ class ool_name final : public OutOfLineCode { \ ++ public: \ ++ ool_name(CodeGenerator* gen, T dst, T src1, T src2) \ ++ : OutOfLineCode(gen), dst_(dst), src1_(src1), src2_(src2) {} \ ++ \ ++ void Generate() final { __ tasm_ool_name(dst_, src1_, src2_); } \ ++ \ ++ private: \ ++ T const dst_; \ ++ T const src1_; \ ++ T const src2_; \ ++ } ++ ++CREATE_OOL_CLASS(OutOfLineFloat32Max, Float32MaxOutOfLine, FPURegister); ++CREATE_OOL_CLASS(OutOfLineFloat32Min, Float32MinOutOfLine, FPURegister); ++CREATE_OOL_CLASS(OutOfLineFloat64Max, Float64MaxOutOfLine, FPURegister); ++CREATE_OOL_CLASS(OutOfLineFloat64Min, Float64MinOutOfLine, FPURegister); ++ ++#undef CREATE_OOL_CLASS ++ ++Condition FlagsConditionToConditionCmp(FlagsCondition condition) { ++ switch (condition) { ++ case kEqual: ++ return eq; ++ case kNotEqual: ++ return ne; ++ case kSignedLessThan: ++ return lt; ++ case kSignedGreaterThanOrEqual: ++ return ge; ++ case kSignedLessThanOrEqual: ++ return le; ++ case kSignedGreaterThan: ++ return gt; ++ case kUnsignedLessThan: ++ return lo; ++ case kUnsignedGreaterThanOrEqual: ++ return hs; ++ case kUnsignedLessThanOrEqual: ++ return ls; ++ case kUnsignedGreaterThan: ++ return hi; ++ case kUnorderedEqual: ++ case kUnorderedNotEqual: ++ break; ++ default: ++ break; ++ } ++ UNREACHABLE(); ++} ++ ++ ++Condition FlagsConditionToConditionTst(FlagsCondition condition) { ++ switch (condition) { ++ case kNotEqual: ++ return ne; ++ case kEqual: ++ return eq; ++ default: ++ break; ++ } ++ UNREACHABLE(); ++} ++ ++ ++Condition FlagsConditionToConditionOvf(FlagsCondition condition) { ++ switch (condition) { ++ case kOverflow: ++ return ne; ++ case kNotOverflow: ++ return eq; ++ default: ++ break; ++ } ++ UNREACHABLE(); ++} ++ ++ ++FPUCondition FlagsConditionToConditionCmpFPU(bool& predicate, ++ FlagsCondition condition) { ++ switch (condition) { ++ case kEqual: ++ predicate = true; ++ return CEQ; ++ case kNotEqual: ++ predicate = false; ++ return CEQ; ++ case kUnsignedLessThan: ++ predicate = true; ++ return CLT; ++ case kUnsignedGreaterThanOrEqual: ++ predicate = false; ++ return CLT; ++ case kUnsignedLessThanOrEqual: ++ predicate = true; ++ return CLE; ++ case kUnsignedGreaterThan: ++ predicate = false; ++ return CLE; ++ case kUnorderedEqual: ++ case kUnorderedNotEqual: ++ predicate = true; ++ break; ++ default: ++ predicate = true; ++ break; ++ } ++ UNREACHABLE(); ++} ++ ++void EmitWordLoadPoisoningIfNeeded(CodeGenerator* codegen, ++ InstructionCode opcode, Instruction* instr, ++ Loong64OperandConverter& i) { ++ const MemoryAccessMode access_mode = ++ static_cast(MiscField::decode(opcode)); ++ if (access_mode == kMemoryAccessPoisoned) { ++ Register value = i.OutputRegister(); ++ codegen->tasm()->And(value, value, kSpeculationPoisonRegister); ++ } ++} ++ ++} // namespace ++ ++#define ASSEMBLE_ATOMIC_LOAD_INTEGER(asm_instr) \ ++ do { \ ++ __ asm_instr(i.OutputRegister(), i.MemoryOperand()); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_STORE_INTEGER(asm_instr) \ ++ do { \ ++ __ dbar(0); \ ++ __ asm_instr(i.InputOrZeroRegister(2), i.MemoryOperand()); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_BINOP(bin_instr) \ ++ do { \ ++ Label binop; \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ __ dbar(0); \ ++ __ bind(&binop); \ ++ __ Ll_w(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0)); \ ++ __ bin_instr(i.TempRegister(1), i.OutputRegister(0), \ ++ Operand(i.InputRegister(2))); \ ++ __ Sc_w(i.TempRegister(1), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg)); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_BINOP_EXT(sign_extend, size, bin_instr, \ ++ representation) \ ++ do { \ ++ Label binop; \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ if (representation == 32) { \ ++ __ andi(i.TempRegister(3), i.TempRegister(0), 0x3); \ ++ } else { \ ++ DCHECK_EQ(representation, 64); \ ++ __ andi(i.TempRegister(3), i.TempRegister(0), 0x7); \ ++ } \ ++ __ Sub_d(i.TempRegister(0), i.TempRegister(0), \ ++ Operand(i.TempRegister(3))); \ ++ __ slli_w(i.TempRegister(3), i.TempRegister(3), 3); \ ++ __ dbar(0); \ ++ __ bind(&binop); \ ++ __ Ll_w(i.TempRegister(1), MemOperand(i.TempRegister(0), 0)); \ ++ __ ExtractBits(i.OutputRegister(0), i.TempRegister(1), i.TempRegister(3), \ ++ size, sign_extend); \ ++ __ bin_instr(i.TempRegister(2), i.OutputRegister(0), \ ++ Operand(i.InputRegister(2))); \ ++ __ InsertBits(i.TempRegister(1), i.TempRegister(2), i.TempRegister(3), \ ++ size); \ ++ __ Sc_w(i.TempRegister(1), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg)); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER() \ ++ do { \ ++ Label exchange; \ ++ __ dbar(0); \ ++ __ bind(&exchange); \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ __ Ll_w(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0)); \ ++ __ mov(i.TempRegister(1), i.InputRegister(2)); \ ++ __ Sc_w(i.TempRegister(1), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&exchange, eq, i.TempRegister(1), Operand(zero_reg)); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(sign_extend, size, \ ++ representation) \ ++ do { \ ++ Label exchange; \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ if (representation == 32) { \ ++ __ andi(i.TempRegister(1), i.TempRegister(0), 0x3); \ ++ } else { \ ++ DCHECK_EQ(representation, 64); \ ++ __ andi(i.TempRegister(1), i.TempRegister(0), 0x7); \ ++ } \ ++ __ Sub_d(i.TempRegister(0), i.TempRegister(0), \ ++ Operand(i.TempRegister(1))); \ ++ __ slli_w(i.TempRegister(1), i.TempRegister(1), 3); \ ++ __ dbar(0); \ ++ __ bind(&exchange); \ ++ __ Ll_w(i.TempRegister(2), MemOperand(i.TempRegister(0), 0)); \ ++ __ ExtractBits(i.OutputRegister(0), i.TempRegister(2), i.TempRegister(1), \ ++ size, sign_extend); \ ++ __ InsertBits(i.TempRegister(2), i.InputRegister(2), i.TempRegister(1), \ ++ size); \ ++ __ Sc_w(i.TempRegister(2), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&exchange, eq, i.TempRegister(2), Operand(zero_reg)); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER() \ ++ do { \ ++ Label compareExchange; \ ++ Label exit; \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ __ dbar(0); \ ++ __ bind(&compareExchange); \ ++ __ Ll_w(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&exit, ne, i.InputRegister(2), \ ++ Operand(i.OutputRegister(0))); \ ++ __ mov(i.TempRegister(2), i.InputRegister(3)); \ ++ __ Sc_w(i.TempRegister(2), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&compareExchange, eq, i.TempRegister(2), \ ++ Operand(zero_reg)); \ ++ __ bind(&exit); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT( \ ++ sign_extend, size, representation) \ ++ do { \ ++ Label compareExchange; \ ++ Label exit; \ ++ __ Add_d(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \ ++ if (representation == 32) { \ ++ __ andi(i.TempRegister(1), i.TempRegister(0), 0x3); \ ++ } else { \ ++ DCHECK_EQ(representation, 64); \ ++ __ andi(i.TempRegister(1), i.TempRegister(0), 0x7); \ ++ } \ ++ __ Sub_d(i.TempRegister(0), i.TempRegister(0), \ ++ Operand(i.TempRegister(1))); \ ++ __ slli_w(i.TempRegister(1), i.TempRegister(1), 3); \ ++ __ dbar(0); \ ++ __ bind(&compareExchange); \ ++ __ Ll_w(i.TempRegister(2), MemOperand(i.TempRegister(0), 0)); \ ++ __ ExtractBits(i.OutputRegister(0), i.TempRegister(2), i.TempRegister(1), \ ++ size, sign_extend); \ ++ __ BranchShort(&exit, ne, i.InputRegister(2), \ ++ Operand(i.OutputRegister(0))); \ ++ __ InsertBits(i.TempRegister(2), i.InputRegister(3), i.TempRegister(1), \ ++ size); \ ++ __ Sc_w(i.TempRegister(2), MemOperand(i.TempRegister(0), 0)); \ ++ __ BranchShort(&compareExchange, eq, i.TempRegister(2), \ ++ Operand(zero_reg)); \ ++ __ bind(&exit); \ ++ __ dbar(0); \ ++ } while (0) ++ ++#define ASSEMBLE_IEEE754_BINOP(name) \ ++ do { \ ++ FrameScope scope(tasm(), StackFrame::MANUAL); \ ++ __ PrepareCallCFunction(0, 2, kScratchReg); \ ++ __ MovToFloatParameters(i.InputDoubleRegister(0), \ ++ i.InputDoubleRegister(1)); \ ++ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 2); \ ++ /* Move the result in the double result register. */ \ ++ __ MovFromFloatResult(i.OutputDoubleRegister()); \ ++ } while (0) ++ ++#define ASSEMBLE_IEEE754_UNOP(name) \ ++ do { \ ++ FrameScope scope(tasm(), StackFrame::MANUAL); \ ++ __ PrepareCallCFunction(0, 1, kScratchReg); \ ++ __ MovToFloatParameter(i.InputDoubleRegister(0)); \ ++ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 1); \ ++ /* Move the result in the double result register. */ \ ++ __ MovFromFloatResult(i.OutputDoubleRegister()); \ ++ } while (0) ++ ++void CodeGenerator::AssembleDeconstructFrame() { ++ __ mov(sp, fp); ++ __ Pop(ra, fp); ++} ++ ++void CodeGenerator::AssemblePrepareTailCall() { ++ if (frame_access_state()->has_frame()) { ++ __ Ld_d(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); ++ __ Ld_d(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); ++ } ++ frame_access_state()->SetFrameAccessToSP(); ++} ++ ++void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg, ++ Register scratch1, ++ Register scratch2, ++ Register scratch3) { ++ DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); ++ Label done; ++ ++ // Check if current frame is an arguments adaptor frame. ++ __ Ld_d(scratch3, MemOperand(fp, StandardFrameConstants::kContextOffset)); ++ __ Branch(&done, ne, scratch3, ++ Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); ++ ++ // Load arguments count from current arguments adaptor frame (note, it ++ // does not include receiver). ++ Register caller_args_count_reg = scratch1; ++ __ Ld_d(caller_args_count_reg, ++ MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); ++ __ SmiUntag(caller_args_count_reg); ++ ++ ParameterCount callee_args_count(args_reg); ++ __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, ++ scratch3); ++ __ bind(&done); ++} ++ ++namespace { ++ ++void AdjustStackPointerForTailCall(TurboAssembler* tasm, ++ FrameAccessState* state, ++ int new_slot_above_sp, ++ bool allow_shrinkage = true) { ++ int current_sp_offset = state->GetSPToFPSlotCount() + ++ StandardFrameConstants::kFixedSlotCountAboveFp; ++ int stack_slot_delta = new_slot_above_sp - current_sp_offset; ++ if (stack_slot_delta > 0) { ++ tasm->Sub_d(sp, sp, stack_slot_delta * kPointerSize); ++ state->IncreaseSPDelta(stack_slot_delta); ++ } else if (allow_shrinkage && stack_slot_delta < 0) { ++ tasm->Add_d(sp, sp, -stack_slot_delta * kPointerSize); ++ state->IncreaseSPDelta(stack_slot_delta); ++ } ++} ++ ++} // namespace ++ ++void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr, ++ int first_unused_stack_slot) { ++ AdjustStackPointerForTailCall(tasm(), frame_access_state(), ++ first_unused_stack_slot, false); ++} ++ ++void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr, ++ int first_unused_stack_slot) { ++ AdjustStackPointerForTailCall(tasm(), frame_access_state(), ++ first_unused_stack_slot); ++} ++ ++// Check that {kJavaScriptCallCodeStartRegister} is correct. ++void CodeGenerator::AssembleCodeStartRegisterCheck() { ++ __ ComputeCodeStartAddress(kScratchReg); ++ __ Assert(eq, AbortReason::kWrongFunctionCodeStart, ++ kJavaScriptCallCodeStartRegister, Operand(kScratchReg)); ++} ++ ++// Check if the code object is marked for deoptimization. If it is, then it ++// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need ++// to: ++// 1. read from memory the word that contains that bit, which can be found in ++// the flags in the referenced {CodeDataContainer} object; ++// 2. test kMarkedForDeoptimizationBit in those flags; and ++// 3. if it is not zero then it jumps to the builtin. ++void CodeGenerator::BailoutIfDeoptimized() { ++ int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize; ++ __ Ld_d(kScratchReg, MemOperand(kJavaScriptCallCodeStartRegister, offset)); ++ __ Ld_w(kScratchReg, ++ FieldMemOperand(kScratchReg, ++ CodeDataContainer::kKindSpecificFlagsOffset)); ++ __ And(kScratchReg, kScratchReg, ++ Operand(1 << Code::kMarkedForDeoptimizationBit)); ++ // Ensure we're not serializing (otherwise we'd need to use an indirection to ++ // access the builtin below). ++ DCHECK(!isolate()->ShouldLoadConstantsFromRootList()); ++ Handle code = isolate()->builtins()->builtin_handle( ++ Builtins::kCompileLazyDeoptimizedCode); ++ __ Jump(code, RelocInfo::CODE_TARGET, ne, kScratchReg, Operand(zero_reg)); ++} ++ ++void CodeGenerator::GenerateSpeculationPoisonFromCodeStartRegister() { ++ // Calculate a mask which has all bits set in the normal case, but has all ++ // bits cleared if we are speculatively executing the wrong PC. ++ // difference = (current - expected) | (expected - current) ++ // poison = ~(difference >> (kBitsPerPointer - 1)) ++ __ ComputeCodeStartAddress(kScratchReg); ++ __ Move(kSpeculationPoisonRegister, kScratchReg); ++ __ sub_w(kSpeculationPoisonRegister, kSpeculationPoisonRegister, ++ kJavaScriptCallCodeStartRegister); ++ __ sub_w(kJavaScriptCallCodeStartRegister, kJavaScriptCallCodeStartRegister, ++ kScratchReg); ++ __ or_(kSpeculationPoisonRegister, kSpeculationPoisonRegister, ++ kJavaScriptCallCodeStartRegister); ++ __ srai_w(kSpeculationPoisonRegister, kSpeculationPoisonRegister, ++ kBitsPerPointer - 1 - 32); ++ __ nor(kSpeculationPoisonRegister, kSpeculationPoisonRegister, ++ kSpeculationPoisonRegister); ++} ++ ++void CodeGenerator::AssembleRegisterArgumentPoisoning() { ++ __ And(kJSFunctionRegister, kJSFunctionRegister, kSpeculationPoisonRegister); ++ __ And(kContextRegister, kContextRegister, kSpeculationPoisonRegister); ++ __ And(sp, sp, kSpeculationPoisonRegister); ++} ++ ++// Assembles an instruction after register allocation, producing machine code. ++CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction( ++ Instruction* instr) { ++ Loong64OperandConverter i(this, instr); ++ InstructionCode opcode = instr->opcode(); ++ ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode); ++ switch (arch_opcode) { ++ case kArchCallCodeObject: { ++ if (instr->InputAt(0)->IsImmediate()) { ++ __ Call(i.InputCode(0), RelocInfo::CODE_TARGET); ++ } else { ++ __ addi_d(kScratchReg, i.InputRegister(0), ++ Code::kHeaderSize - kHeapObjectTag); ++ __ Call(kScratchReg); ++ } ++ RecordCallPosition(instr); ++ frame_access_state()->ClearSPDelta(); ++ break; ++ } ++ case kArchCallWasmFunction: { ++ if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) { ++ AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, ++ i.TempRegister(0), i.TempRegister(1), ++ i.TempRegister(2)); ++ } ++ if (instr->InputAt(0)->IsImmediate()) { ++ Address wasm_code = ++ static_cast
(i.ToConstant(instr->InputAt(0)).ToInt64()); ++ __ Call(wasm_code, info()->IsWasm() ? RelocInfo::WASM_CALL ++ : RelocInfo::JS_TO_WASM_CALL); ++ } else { ++ __ addi_d(kScratchReg, i.InputRegister(0), 0); ++ __ Call(kScratchReg); ++ } ++ RecordCallPosition(instr); ++ frame_access_state()->ClearSPDelta(); ++ break; ++ } ++ case kArchTailCallCodeObjectFromJSFunction: ++ case kArchTailCallCodeObject: { ++ if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) { ++ AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, ++ i.TempRegister(0), i.TempRegister(1), ++ i.TempRegister(2)); ++ } ++ if (instr->InputAt(0)->IsImmediate()) { ++ __ Jump(i.InputCode(0), RelocInfo::CODE_TARGET); ++ } else { ++ __ addi_d(kScratchReg, i.InputRegister(0), ++ Code::kHeaderSize - kHeapObjectTag); ++ __ Jump(kScratchReg); ++ } ++ frame_access_state()->ClearSPDelta(); ++ frame_access_state()->SetFrameAccessToDefault(); ++ break; ++ } ++ case kArchTailCallWasm: { ++ if (instr->InputAt(0)->IsImmediate()) { ++ Address wasm_code = ++ static_cast
(i.ToConstant(instr->InputAt(0)).ToInt64()); ++ __ Jump(wasm_code, info()->IsWasm() ? RelocInfo::WASM_CALL ++ : RelocInfo::JS_TO_WASM_CALL); ++ } else { ++ __ addi_d(kScratchReg, i.InputRegister(0), 0); ++ __ Jump(kScratchReg); ++ } ++ frame_access_state()->ClearSPDelta(); ++ frame_access_state()->SetFrameAccessToDefault(); ++ break; ++ } ++ case kArchTailCallAddress: { ++ CHECK(!instr->InputAt(0)->IsImmediate()); ++ __ Jump(i.InputRegister(0)); ++ frame_access_state()->ClearSPDelta(); ++ frame_access_state()->SetFrameAccessToDefault(); ++ break; ++ } ++ case kArchCallJSFunction: { ++ Register func = i.InputRegister(0); ++ if (FLAG_debug_code) { ++ // Check the function's context matches the context argument. ++ __ Ld_d(kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset)); ++ __ Assert(eq, AbortReason::kWrongFunctionContext, cp, ++ Operand(kScratchReg)); ++ } ++ static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); ++ __ Ld_d(a2, FieldMemOperand(func, JSFunction::kCodeOffset)); ++ __ Add_d(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ __ Call(a2); ++ RecordCallPosition(instr); ++ frame_access_state()->ClearSPDelta(); ++ break; ++ } ++ case kArchPrepareCallCFunction: { ++ int const num_parameters = MiscField::decode(instr->opcode()); ++ __ PrepareCallCFunction(num_parameters, kScratchReg); ++ // Frame alignment requires using FP-relative frame addressing. ++ frame_access_state()->SetFrameAccessToFP(); ++ break; ++ } ++ case kArchSaveCallerRegisters: { ++ fp_mode_ = ++ static_cast(MiscField::decode(instr->opcode())); ++ DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs); ++ // kReturnRegister0 should have been saved before entering the stub. ++ int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0); ++ DCHECK_EQ(0, bytes % kPointerSize); ++ DCHECK_EQ(0, frame_access_state()->sp_delta()); ++ frame_access_state()->IncreaseSPDelta(bytes / kPointerSize); ++ DCHECK(!caller_registers_saved_); ++ caller_registers_saved_ = true; ++ break; ++ } ++ case kArchRestoreCallerRegisters: { ++ DCHECK(fp_mode_ == ++ static_cast(MiscField::decode(instr->opcode()))); ++ DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs); ++ // Don't overwrite the returned value. ++ int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0); ++ frame_access_state()->IncreaseSPDelta(-(bytes / kPointerSize)); ++ DCHECK_EQ(0, frame_access_state()->sp_delta()); ++ DCHECK(caller_registers_saved_); ++ caller_registers_saved_ = false; ++ break; ++ } ++ case kArchPrepareTailCall: ++ AssemblePrepareTailCall(); ++ break; ++ case kArchCallCFunction: { ++ int const num_parameters = MiscField::decode(instr->opcode()); ++ if (instr->InputAt(0)->IsImmediate()) { ++ ExternalReference ref = i.InputExternalReference(0); ++ __ CallCFunction(ref, num_parameters); ++ } else { ++ Register func = i.InputRegister(0); ++ __ CallCFunction(func, num_parameters); ++ } ++ frame_access_state()->SetFrameAccessToDefault(); ++ // Ideally, we should decrement SP delta to match the change of stack ++ // pointer in CallCFunction. However, for certain architectures (e.g. ++ // ARM), there may be more strict alignment requirement, causing old SP ++ // to be saved on the stack. In those cases, we can not calculate the SP ++ // delta statically. ++ frame_access_state()->ClearSPDelta(); ++ if (caller_registers_saved_) { ++ // Need to re-sync SP delta introduced in kArchSaveCallerRegisters. ++ // Here, we assume the sequence to be: ++ // kArchSaveCallerRegisters; ++ // kArchCallCFunction; ++ // kArchRestoreCallerRegisters; ++ int bytes = ++ __ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0); ++ frame_access_state()->IncreaseSPDelta(bytes / kPointerSize); ++ } ++ break; ++ } ++ case kArchJmp: ++ AssembleArchJump(i.InputRpo(0)); ++ break; ++ case kArchLookupSwitch: ++ AssembleArchLookupSwitch(instr); ++ break; ++ case kArchTableSwitch: ++ AssembleArchTableSwitch(instr); ++ break; ++ case kArchDebugAbort: ++ DCHECK(i.InputRegister(0) == a0); ++ if (!frame_access_state()->has_frame()) { ++ // We don't actually want to generate a pile of code for this, so just ++ // claim there is a stack frame, without generating one. ++ FrameScope scope(tasm(), StackFrame::NONE); ++ __ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS), ++ RelocInfo::CODE_TARGET); ++ } else { ++ __ Call(isolate()->builtins()->builtin_handle(Builtins::kAbortJS), ++ RelocInfo::CODE_TARGET); ++ } ++ __ stop("kArchDebugAbort"); ++ break; ++ case kArchDebugBreak: ++ __ stop("kArchDebugBreak"); ++ break; ++ case kArchComment: ++ __ RecordComment(reinterpret_cast(i.InputInt64(0))); ++ break; ++ case kArchNop: ++ case kArchThrowTerminator: ++ // don't emit code for nops. ++ break; ++ case kArchDeoptimize: { ++ int deopt_state_id = ++ BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore()); ++ CodeGenResult result = ++ AssembleDeoptimizerCall(deopt_state_id, current_source_position_); ++ if (result != kSuccess) return result; ++ break; ++ } ++ case kArchRet: ++ AssembleReturn(instr->InputAt(0)); ++ break; ++ case kArchStackPointer: ++ __ mov(i.OutputRegister(), sp); ++ break; ++ case kArchFramePointer: ++ __ mov(i.OutputRegister(), fp); ++ break; ++ case kArchParentFramePointer: ++ if (frame_access_state()->has_frame()) { ++ __ Ld_d(i.OutputRegister(), MemOperand(fp, 0)); ++ } else { ++ __ mov(i.OutputRegister(), fp); ++ } ++ break; ++ case kArchRootsPointer: ++ __ mov(i.OutputRegister(), kRootRegister); ++ break; ++ case kArchTruncateDoubleToI: ++ __ TruncateDoubleToI(isolate(), zone(), i.OutputRegister(), ++ i.InputDoubleRegister(0)); ++ break; ++ case kArchStoreWithWriteBarrier: { ++ RecordWriteMode mode = ++ static_cast(MiscField::decode(instr->opcode())); ++ Register object = i.InputRegister(0); ++ Register index = i.InputRegister(1); ++ Register value = i.InputRegister(2); ++ Register scratch0 = i.TempRegister(0); ++ Register scratch1 = i.TempRegister(1); ++ auto ool = new (zone()) OutOfLineRecordWrite(this, object, index, value, ++ scratch0, scratch1, mode); ++ __ Add_d(kScratchReg, object, index); ++ __ St_d(value, MemOperand(kScratchReg)); ++ __ CheckPageFlag(object, scratch0, ++ MemoryChunk::kPointersFromHereAreInterestingMask, ne, ++ ool->entry()); ++ __ bind(ool->exit()); ++ break; ++ } ++ case kArchStackSlot: { ++ FrameOffset offset = ++ frame_access_state()->GetFrameOffset(i.InputInt32(0)); ++ Register base_reg = offset.from_stack_pointer() ? sp : fp; ++ __ Add_d(i.OutputRegister(), base_reg, Operand(offset.offset())); ++ int alignment = i.InputInt32(1); ++ DCHECK(alignment == 0 || alignment == 4 || alignment == 8 || ++ alignment == 16); ++ if (FLAG_debug_code && alignment > 0) { ++ // Verify that the output_register is properly aligned ++ __ And(kScratchReg, i.OutputRegister(), Operand(kPointerSize - 1)); ++ __ Assert(eq, AbortReason::kAllocationIsNotDoubleAligned, kScratchReg, ++ Operand(zero_reg)); ++ } ++ if (alignment == 2 * kPointerSize) { ++ Label done; ++ __ Add_d(kScratchReg, base_reg, Operand(offset.offset())); ++ __ And(kScratchReg, kScratchReg, Operand(alignment - 1)); ++ __ BranchShort(&done, eq, kScratchReg, Operand(zero_reg)); ++ __ Add_d(i.OutputRegister(), i.OutputRegister(), kPointerSize); ++ __ bind(&done); ++ } else if (alignment > 2 * kPointerSize) { ++ Label done; ++ __ Add_d(kScratchReg, base_reg, Operand(offset.offset())); ++ __ And(kScratchReg, kScratchReg, Operand(alignment - 1)); ++ __ BranchShort(&done, eq, kScratchReg, Operand(zero_reg)); ++ __ li(kScratchReg2, alignment); ++ __ Sub_d(kScratchReg2, kScratchReg2, Operand(kScratchReg)); ++ __ Add_d(i.OutputRegister(), i.OutputRegister(), kScratchReg2); ++ __ bind(&done); ++ } ++ ++ break; ++ } ++ case kArchWordPoisonOnSpeculation: ++ __ And(i.OutputRegister(), i.InputRegister(0), ++ kSpeculationPoisonRegister); ++ break; ++ case kIeee754Float64Acos: ++ ASSEMBLE_IEEE754_UNOP(acos); ++ break; ++ case kIeee754Float64Acosh: ++ ASSEMBLE_IEEE754_UNOP(acosh); ++ break; ++ case kIeee754Float64Asin: ++ ASSEMBLE_IEEE754_UNOP(asin); ++ break; ++ case kIeee754Float64Asinh: ++ ASSEMBLE_IEEE754_UNOP(asinh); ++ break; ++ case kIeee754Float64Atan: ++ ASSEMBLE_IEEE754_UNOP(atan); ++ break; ++ case kIeee754Float64Atanh: ++ ASSEMBLE_IEEE754_UNOP(atanh); ++ break; ++ case kIeee754Float64Atan2: ++ ASSEMBLE_IEEE754_BINOP(atan2); ++ break; ++ case kIeee754Float64Cos: ++ ASSEMBLE_IEEE754_UNOP(cos); ++ break; ++ case kIeee754Float64Cosh: ++ ASSEMBLE_IEEE754_UNOP(cosh); ++ break; ++ case kIeee754Float64Cbrt: ++ ASSEMBLE_IEEE754_UNOP(cbrt); ++ break; ++ case kIeee754Float64Exp: ++ ASSEMBLE_IEEE754_UNOP(exp); ++ break; ++ case kIeee754Float64Expm1: ++ ASSEMBLE_IEEE754_UNOP(expm1); ++ break; ++ case kIeee754Float64Log: ++ ASSEMBLE_IEEE754_UNOP(log); ++ break; ++ case kIeee754Float64Log1p: ++ ASSEMBLE_IEEE754_UNOP(log1p); ++ break; ++ case kIeee754Float64Log2: ++ ASSEMBLE_IEEE754_UNOP(log2); ++ break; ++ case kIeee754Float64Log10: ++ ASSEMBLE_IEEE754_UNOP(log10); ++ break; ++ case kIeee754Float64Pow: { ++ __ Call(BUILTIN_CODE(isolate(), MathPowInternal), RelocInfo::CODE_TARGET); ++ break; ++ } ++ case kIeee754Float64Sin: ++ ASSEMBLE_IEEE754_UNOP(sin); ++ break; ++ case kIeee754Float64Sinh: ++ ASSEMBLE_IEEE754_UNOP(sinh); ++ break; ++ case kIeee754Float64Tan: ++ ASSEMBLE_IEEE754_UNOP(tan); ++ break; ++ case kIeee754Float64Tanh: ++ ASSEMBLE_IEEE754_UNOP(tanh); ++ break; ++ case kLoong64Add: ++ __ Add_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Dadd: ++ __ Add_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64DaddOvf: ++ __ AdddOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), ++ kScratchReg); ++ break; ++ case kLoong64Sub: ++ __ Sub_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Dsub: ++ __ Sub_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64DsubOvf: ++ __ SubdOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), ++ kScratchReg); ++ break; ++ case kLoong64Mul: ++ __ Mul_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64MulOvf: ++ __ MulOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), ++ kScratchReg); ++ break; ++ case kLoong64MulHigh: ++ __ Mulh_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64MulHighU: ++ __ Mulh_wu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64DMulHigh: ++ __ Mulh_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Div: ++ __ Div_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ masknez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ break; ++ case kLoong64DivU: ++ __ Div_wu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ masknez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ break; ++ case kLoong64Mod: ++ __ Mod_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64ModU: ++ __ Mod_wu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Dmul: ++ __ Mul_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Ddiv: ++ __ Div_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ masknez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ break; ++ case kLoong64DdivU: ++ __ Div_du(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ masknez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ break; ++ case kLoong64Dmod: ++ __ Mod_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64DmodU: ++ __ Mod_du(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Dlsa: ++ DCHECK(instr->InputAt(2)->IsImmediate()); ++ __ Alsl_d(i.OutputRegister(), i.InputRegister(1), i.InputRegister(0), ++ i.InputInt8(2)); ++ break; ++ case kLoong64Lsa: ++ DCHECK(instr->InputAt(2)->IsImmediate()); ++ __ Alsl_w(i.OutputRegister(), i.InputRegister(1), i.InputRegister(0), ++ i.InputInt8(2)); ++ break; ++ case kLoong64And: ++ __ And(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64And32: ++ __ And(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ slli_w(i.OutputRegister(), i.OutputRegister(), 0x0); ++ break; ++ case kLoong64Or: ++ __ Or(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Or32: ++ __ Or(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ slli_w(i.OutputRegister(), i.OutputRegister(), 0x0); ++ break; ++ case kLoong64Nor: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ Nor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ } else { ++ DCHECK_EQ(0, i.InputOperand(1).immediate()); ++ __ Nor(i.OutputRegister(), i.InputRegister(0), zero_reg); ++ } ++ break; ++ case kLoong64Nor32: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ Nor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ slli_w(i.OutputRegister(), i.OutputRegister(), 0x0); ++ } else { ++ DCHECK_EQ(0, i.InputOperand(1).immediate()); ++ __ Nor(i.OutputRegister(), i.InputRegister(0), zero_reg); ++ __ slli_w(i.OutputRegister(), i.OutputRegister(), 0x0); ++ } ++ break; ++ case kLoong64Xor: ++ __ Xor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Xor32: ++ __ Xor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ __ slli_w(i.OutputRegister(), i.OutputRegister(), 0x0); ++ break; ++ case kLoong64Clz: ++ __ Clz_w(i.OutputRegister(), i.InputRegister(0)); ++ break; ++ case kLoong64Dclz: ++ __ clz_d(i.OutputRegister(), i.InputRegister(0)); ++ break; ++ case kLoong64Ctz: { ++ Register src = i.InputRegister(0); ++ Register dst = i.OutputRegister(); ++ __ Ctz_w(dst, src); ++ } break; ++ case kLoong64Dctz: { ++ Register src = i.InputRegister(0); ++ Register dst = i.OutputRegister(); ++ __ Ctz_d(dst, src); ++ } break; ++ case kLoong64Popcnt: { ++ Register src = i.InputRegister(0); ++ Register dst = i.OutputRegister(); ++ __ Popcnt_w(dst, src); ++ } break; ++ case kLoong64Dpopcnt: { ++ Register src = i.InputRegister(0); ++ Register dst = i.OutputRegister(); ++ __ Popcnt_d(dst, src); ++ } break; ++ case kLoong64Shl: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ sll_w(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ slli_w(i.OutputRegister(), i.InputRegister(0), ++ static_cast(imm)); ++ } ++ break; ++ case kLoong64Shr: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ slli_w(i.InputRegister(0), i.InputRegister(0), 0x0); ++ __ srl_w(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ slli_w(i.InputRegister(0), i.InputRegister(0), 0x0); ++ __ srli_w(i.OutputRegister(), i.InputRegister(0), ++ static_cast(imm)); ++ } ++ break; ++ case kLoong64Sar: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ slli_w(i.InputRegister(0), i.InputRegister(0), 0x0); ++ __ sra_w(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ slli_w(i.InputRegister(0), i.InputRegister(0), 0x0); ++ __ srai_w(i.OutputRegister(), i.InputRegister(0), ++ static_cast(imm)); ++ } ++ break; ++ case kLoong64Ext: ++ __ bstrpick_w(i.OutputRegister(), i.InputRegister(0), ++ i.InputInt8(1) + i.InputInt8(2) - 1, ++ i.InputInt8(1)); ++ break; ++ case kLoong64Ins: ++ if (instr->InputAt(1)->IsImmediate() && i.InputInt8(1) == 0) { ++ __ bstrins_w(i.OutputRegister(), zero_reg, ++ i.InputInt8(1) + i.InputInt8(2) - 1, i.InputInt8(1)); ++ } else { ++ __ bstrins_w(i.OutputRegister(), i.InputRegister(0), ++ i.InputInt8(1) + i.InputInt8(2) - 1, i.InputInt8(1)); ++ } ++ break; ++ case kLoong64Dext: { ++ __ bstrpick_d(i.OutputRegister(), i.InputRegister(0), ++ i.InputInt8(1) + i.InputInt8(2) - 1, ++ i.InputInt8(1)); ++ break; ++ } ++ case kLoong64Dins: ++ if (instr->InputAt(1)->IsImmediate() && i.InputInt8(1) == 0) { ++ __ bstrins_d(i.OutputRegister(), zero_reg, ++ i.InputInt8(1) + i.InputInt8(2) - 1, i.InputInt8(1)); ++ } else { ++ __ bstrins_d(i.OutputRegister(), i.InputRegister(0), ++ i.InputInt8(1) + i.InputInt8(2) - 1, i.InputInt8(1)); ++ } ++ break; ++ case kLoong64Dshl: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ sll_d(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ slli_d(i.OutputRegister(), i.InputRegister(0), ++ static_cast(imm)); ++ } ++ break; ++ case kLoong64Dshr: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ srl_d(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ srli_d(i.OutputRegister(), i.InputRegister(0), ++ static_cast(imm)); ++ } ++ break; ++ case kLoong64Dsar: ++ if (instr->InputAt(1)->IsRegister()) { ++ __ sra_d(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); ++ } else { ++ int64_t imm = i.InputOperand(1).immediate(); ++ __ srai_d(i.OutputRegister(), i.InputRegister(0), imm); ++ } ++ break; ++ case kLoong64Ror: ++ __ Rotr_w(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Dror: ++ __ Rotr_d(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); ++ break; ++ case kLoong64Tst: ++ __ And(kScratchReg, i.InputRegister(0), i.InputOperand(1)); ++ // Pseudo-instruction used for cmp/branch. No opcode emitted here. ++ break; ++ case kLoong64Cmp: ++ // Pseudo-instruction used for cmp/branch. No opcode emitted here. ++ break; ++ case kLoong64Mov: ++ // TODO(plind): Should we combine mov/li like this, or use separate instr? ++ // - Also see x64 ASSEMBLE_BINOP & RegisterOrOperandType ++ if (HasRegisterInput(instr, 0)) { ++ __ mov(i.OutputRegister(), i.InputRegister(0)); ++ } else { ++ __ li(i.OutputRegister(), i.InputOperand(0)); ++ } ++ break; ++ ++ case kLoong64CmpS: { ++ FPURegister left = i.InputOrZeroSingleRegister(0); ++ FPURegister right = i.InputOrZeroSingleRegister(1); ++ bool predicate; ++ FPUCondition cc = ++ FlagsConditionToConditionCmpFPU(predicate, instr->flags_condition()); ++ ++ if ((left == kDoubleRegZero || right == kDoubleRegZero) && ++ !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ CompareF32(left, right, cc); ++ } ++ break; ++ case kLoong64AddS: ++ // TODO(plind): add special case: combine mult & add. ++ __ fadd_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64SubS: ++ __ fsub_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64MulS: ++ // TODO(plind): add special case: right op is -1.0, see arm port. ++ __ fmul_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64DivS: ++ __ fdiv_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64ModS: { ++ // TODO(bmeurer): We should really get rid of this special instruction, ++ // and generate a CallAddress instruction instead. ++ FrameScope scope(tasm(), StackFrame::MANUAL); ++ __ PrepareCallCFunction(0, 2, kScratchReg); ++ __ MovToFloatParameters(i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ // TODO(balazs.kilvady): implement mod_two_floats_operation(isolate()) ++ __ CallCFunction(ExternalReference::mod_two_doubles_operation(), 0, 2); ++ // Move the result in the double result register. ++ __ MovFromFloatResult(i.OutputSingleRegister()); ++ break; ++ } ++ case kLoong64AbsS: ++ __ fabs_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ case kLoong64NegS: ++ __ Neg_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ case kLoong64SqrtS: { ++ __ fsqrt_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64MaxS: ++ __ fmax_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64MinS: ++ __ fmin_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64CmpD: { ++ FPURegister left = i.InputOrZeroDoubleRegister(0); ++ FPURegister right = i.InputOrZeroDoubleRegister(1); ++ bool predicate; ++ FPUCondition cc = ++ FlagsConditionToConditionCmpFPU(predicate, instr->flags_condition()); ++ if ((left == kDoubleRegZero || right == kDoubleRegZero) && ++ !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ CompareF64(left, right, cc); ++ } break; ++ case kLoong64AddD: ++ // TODO(plind): add special case: combine mult & add. ++ __ fadd_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64SubD: ++ __ fsub_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64MulD: ++ // TODO(plind): add special case: right op is -1.0, see arm port. ++ __ fmul_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64DivD: ++ __ fdiv_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64ModD: { ++ // TODO(bmeurer): We should really get rid of this special instruction, ++ // and generate a CallAddress instruction instead. ++ FrameScope scope(tasm(), StackFrame::MANUAL); ++ __ PrepareCallCFunction(0, 2, kScratchReg); ++ __ MovToFloatParameters(i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ __ CallCFunction(ExternalReference::mod_two_doubles_operation(), 0, 2); ++ // Move the result in the double result register. ++ __ MovFromFloatResult(i.OutputDoubleRegister()); ++ break; ++ } ++ case kLoong64AbsD: ++ __ fabs_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64NegD: ++ __ Neg_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64SqrtD: { ++ __ fsqrt_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64MaxD: ++ __ fmax_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64MinD: ++ __ fmin_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), ++ i.InputDoubleRegister(1)); ++ break; ++ case kLoong64Float64RoundDown: { ++ __ Floor_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64Float32RoundDown: { ++ __ Floor_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ } ++ case kLoong64Float64RoundTruncate: { ++ __ Trunc_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64Float32RoundTruncate: { ++ __ Trunc_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ } ++ case kLoong64Float64RoundUp: { ++ __ Ceil_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64Float32RoundUp: { ++ __ Ceil_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ } ++ case kLoong64Float64RoundTiesEven: { ++ __ Round_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ } ++ case kLoong64Float32RoundTiesEven: { ++ __ Round_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); ++ break; ++ } ++ case kLoong64Float32Max: { ++ FPURegister dst = i.OutputSingleRegister(); ++ FPURegister src1 = i.InputSingleRegister(0); ++ FPURegister src2 = i.InputSingleRegister(1); ++ auto ool = new (zone()) OutOfLineFloat32Max(this, dst, src1, src2); ++ __ Float32Max(dst, src1, src2, ool->entry()); ++ __ bind(ool->exit()); ++ break; ++ } ++ case kLoong64Float64Max: { ++ FPURegister dst = i.OutputDoubleRegister(); ++ FPURegister src1 = i.InputDoubleRegister(0); ++ FPURegister src2 = i.InputDoubleRegister(1); ++ auto ool = new (zone()) OutOfLineFloat64Max(this, dst, src1, src2); ++ __ Float64Max(dst, src1, src2, ool->entry()); ++ __ bind(ool->exit()); ++ break; ++ } ++ case kLoong64Float32Min: { ++ FPURegister dst = i.OutputSingleRegister(); ++ FPURegister src1 = i.InputSingleRegister(0); ++ FPURegister src2 = i.InputSingleRegister(1); ++ auto ool = new (zone()) OutOfLineFloat32Min(this, dst, src1, src2); ++ __ Float32Min(dst, src1, src2, ool->entry()); ++ __ bind(ool->exit()); ++ break; ++ } ++ case kLoong64Float64Min: { ++ FPURegister dst = i.OutputDoubleRegister(); ++ FPURegister src1 = i.InputDoubleRegister(0); ++ FPURegister src2 = i.InputDoubleRegister(1); ++ auto ool = new (zone()) OutOfLineFloat64Min(this, dst, src1, src2); ++ __ Float64Min(dst, src1, src2, ool->entry()); ++ __ bind(ool->exit()); ++ break; ++ } ++ case kLoong64Float64SilenceNaN: ++ __ FPUCanonicalizeNaN(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64CvtSD: ++ __ fcvt_s_d(i.OutputSingleRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64CvtDS: ++ __ fcvt_d_s(i.OutputDoubleRegister(), i.InputSingleRegister(0)); ++ break; ++ case kLoong64CvtDW: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ movgr2fr_w(scratch, i.InputRegister(0)); ++ __ ffint_d_w(i.OutputDoubleRegister(), scratch); ++ break; ++ } ++ case kLoong64CvtSW: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ movgr2fr_w(scratch, i.InputRegister(0)); ++ __ ffint_s_w(i.OutputDoubleRegister(), scratch); ++ break; ++ } ++ case kLoong64CvtSUw: { ++ __ Ffint_s_uw(i.OutputDoubleRegister(), i.InputRegister(0)); ++ break; ++ } ++ case kLoong64CvtSL: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ movgr2fr_d(scratch, i.InputRegister(0)); ++ __ ffint_s_l(i.OutputDoubleRegister(), scratch); ++ break; ++ } ++ case kLoong64CvtDL: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ movgr2fr_d(scratch, i.InputRegister(0)); ++ __ ffint_d_l(i.OutputDoubleRegister(), scratch); ++ break; ++ } ++ case kLoong64CvtDUw: { ++ __ Ffint_d_uw(i.OutputDoubleRegister(), i.InputRegister(0)); ++ break; ++ } ++ case kLoong64CvtDUl: { ++ __ Ffint_d_ul(i.OutputDoubleRegister(), i.InputRegister(0)); ++ break; ++ } ++ case kLoong64CvtSUl: { ++ __ Ffint_s_ul(i.OutputDoubleRegister(), i.InputRegister(0)); ++ break; ++ } ++ case kLoong64FloorWD: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrm_w_d(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64CeilWD: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrp_w_d(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64RoundWD: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrne_w_d(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64TruncWD: { ++ FPURegister scratch = kScratchDoubleReg; ++ // Other arches use round to zero here, so we follow. ++ __ ftintrz_w_d(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64FloorWS: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrm_w_s(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64CeilWS: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrp_w_s(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64RoundWS: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrne_w_s(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ break; ++ } ++ case kLoong64TruncWS: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ ftintrz_w_s(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_s(i.OutputRegister(), scratch); ++ // Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead, ++ // because INT32_MIN allows easier out-of-bounds detection. ++ __ addi_w(kScratchReg, i.OutputRegister(), 1); ++ __ slt(kScratchReg2, kScratchReg, i.OutputRegister()); ++ __ Movn(i.OutputRegister(), kScratchReg, kScratchReg2); ++ break; ++ } ++ case kLoong64TruncLS: { ++ FPURegister scratch = kScratchDoubleReg; ++ Register tmp_fcsr = kScratchReg; ++ Register result = kScratchReg2; ++ ++ bool load_status = instr->OutputCount() > 1; ++ if (load_status) { ++ // Save FCSR. ++ __ movfcsr2gr(tmp_fcsr); ++ // Clear FPU flags. ++ __ movgr2fcsr(zero_reg); ++ } ++ // Other arches use round to zero here, so we follow. ++ __ ftintrz_l_s(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_d(i.OutputRegister(), scratch); ++ if (load_status) { ++ __ movfcsr2gr(result); ++ // Check for overflow and NaNs. ++ __ And(result, result, ++ (kFCSROverflowFlagMask | kFCSRInvalidOpFlagMask)); ++ __ Slt(result, zero_reg, result); ++ __ xori(result, result, 1); ++ __ mov(i.OutputRegister(1), result); ++ // Restore FCSR ++ __ movgr2fcsr(tmp_fcsr); ++ } ++ break; ++ } ++ case kLoong64TruncLD: { ++ FPURegister scratch = kScratchDoubleReg; ++ Register tmp_fcsr = kScratchReg; ++ Register result = kScratchReg2; ++ ++ bool load_status = instr->OutputCount() > 1; ++ if (load_status) { ++ // Save FCSR. ++ __ movfcsr2gr(tmp_fcsr); ++ // Clear FPU flags. ++ __ movgr2fcsr(zero_reg); ++ } ++ // Other arches use round to zero here, so we follow. ++ __ ftintrz_l_d(scratch, i.InputDoubleRegister(0)); ++ __ movfr2gr_d(i.OutputRegister(0), scratch); ++ if (load_status) { ++ __ movfcsr2gr(result); ++ // Check for overflow and NaNs. ++ __ And(result, result, ++ (kFCSROverflowFlagMask | kFCSRInvalidOpFlagMask)); ++ __ Slt(result, zero_reg, result); ++ __ xori(result, result, 1); ++ __ mov(i.OutputRegister(1), result); ++ // Restore FCSR ++ __ movgr2fcsr(tmp_fcsr); ++ } ++ break; ++ } ++ case kLoong64TruncUwD: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ Ftintrz_uw_d(i.OutputRegister(), i.InputDoubleRegister(0), scratch); ++ break; ++ } ++ case kLoong64TruncUwS: { ++ FPURegister scratch = kScratchDoubleReg; ++ __ Ftintrz_uw_s(i.OutputRegister(), i.InputDoubleRegister(0), scratch); ++ // Avoid UINT32_MAX as an overflow indicator and use 0 instead, ++ // because 0 allows easier out-of-bounds detection. ++ __ addi_w(kScratchReg, i.OutputRegister(), 1); ++ __ Movz(i.OutputRegister(), zero_reg, kScratchReg); ++ break; ++ } ++ case kLoong64TruncUlS: { ++ FPURegister scratch = kScratchDoubleReg; ++ Register result = instr->OutputCount() > 1 ? i.OutputRegister(1) : no_reg; ++ __ Ftintrz_ul_s(i.OutputRegister(), i.InputDoubleRegister(0), scratch, ++ result); ++ break; ++ } ++ case kLoong64TruncUlD: { ++ FPURegister scratch = kScratchDoubleReg; ++ Register result = instr->OutputCount() > 1 ? i.OutputRegister(1) : no_reg; ++ __ Ftintrz_ul_d(i.OutputRegister(0), i.InputDoubleRegister(0), scratch, ++ result); ++ break; ++ } ++ case kLoong64BitcastDL: ++ __ movfr2gr_d(i.OutputRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64BitcastLD: ++ __ movgr2fr_d(i.OutputDoubleRegister(), i.InputRegister(0)); ++ break; ++ case kLoong64Float64ExtractLowWord32: ++ __ FmoveLow(i.OutputRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64Float64ExtractHighWord32: ++ __ movfrh2gr_s(i.OutputRegister(), i.InputDoubleRegister(0)); ++ break; ++ case kLoong64Float64InsertLowWord32: ++ __ FmoveLow(i.OutputDoubleRegister(), i.InputRegister(1)); ++ break; ++ case kLoong64Float64InsertHighWord32: ++ __ movgr2frh_w(i.OutputDoubleRegister(), i.InputRegister(1)); ++ break; ++ // ... more basic instructions ... ++ ++ case kLoong64Seb: ++ __ ext_w_b(i.OutputRegister(), i.InputRegister(0)); ++ break; ++ case kLoong64Seh: ++ __ ext_w_h(i.OutputRegister(), i.InputRegister(0)); ++ break; ++ case kLoong64Lbu: ++ __ Ld_bu(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Lb: ++ __ Ld_b(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Sb: ++ __ St_b(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Lhu: ++ __ Ld_hu(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Ulhu: ++ __ Ld_hu(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Lh: ++ __ Ld_h(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Ulh: ++ __ Ld_h(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Sh: ++ __ St_h(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Ush: ++ __ St_h(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Lw: ++ __ Ld_w(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Ulw: ++ __ Ld_w(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Lwu: ++ __ Ld_wu(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Ulwu: ++ __ Ld_wu(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Ld: ++ __ Ld_d(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Uld: ++ __ Ld_d(i.OutputRegister(), i.MemoryOperand()); ++ EmitWordLoadPoisoningIfNeeded(this, opcode, instr, i); ++ break; ++ case kLoong64Sw: ++ __ St_w(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Usw: ++ __ St_w(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Sd: ++ __ St_d(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Usd: ++ __ St_d(i.InputOrZeroRegister(2), i.MemoryOperand()); ++ break; ++ case kLoong64Lwc1: { ++ __ Fld_s(i.OutputSingleRegister(), i.MemoryOperand()); ++ break; ++ } ++ case kLoong64Ulwc1: { ++ __ Fld_s(i.OutputSingleRegister(), i.MemoryOperand()); ++ break; ++ } ++ case kLoong64Swc1: { ++ size_t index = 0; ++ MemOperand operand = i.MemoryOperand(&index); ++ FPURegister ft = i.InputOrZeroSingleRegister(index); ++ if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ Fst_s(ft, operand); ++ break; ++ } ++ case kLoong64Uswc1: { ++ size_t index = 0; ++ MemOperand operand = i.MemoryOperand(&index); ++ FPURegister ft = i.InputOrZeroSingleRegister(index); ++ if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ Fst_s(ft, operand); ++ break; ++ } ++ case kLoong64Ldc1: ++ __ Fld_d(i.OutputDoubleRegister(), i.MemoryOperand()); ++ break; ++ case kLoong64Uldc1: ++ __ Fld_d(i.OutputDoubleRegister(), i.MemoryOperand()); ++ break; ++ case kLoong64Sdc1: { ++ FPURegister ft = i.InputOrZeroDoubleRegister(2); ++ if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ Fst_d(ft, i.MemoryOperand()); ++ break; ++ } ++ case kLoong64Usdc1: { ++ FPURegister ft = i.InputOrZeroDoubleRegister(2); ++ if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ __ Fst_d(ft, i.MemoryOperand()); ++ break; ++ } ++ case kLoong64Push: ++ if (instr->InputAt(0)->IsFPRegister()) { ++ __ Fst_d(i.InputDoubleRegister(0), MemOperand(sp, -kDoubleSize)); ++ __ Sub_w(sp, sp, Operand(kDoubleSize)); ++ frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); ++ } else { ++ __ Push(i.InputRegister(0)); ++ frame_access_state()->IncreaseSPDelta(1); ++ } ++ break; ++ case kLoong64Peek: { ++ // The incoming value is 0-based, but we need a 1-based value. ++ int reverse_slot = i.InputInt32(0) + 1; ++ int offset = ++ FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot); ++ if (instr->OutputAt(0)->IsFPRegister()) { ++ LocationOperand* op = LocationOperand::cast(instr->OutputAt(0)); ++ if (op->representation() == MachineRepresentation::kFloat64) { ++ __ Fld_d(i.OutputDoubleRegister(), MemOperand(fp, offset)); ++ } else { ++ DCHECK_EQ(op->representation(), MachineRepresentation::kFloat32); ++ __ Fld_s(i.OutputSingleRegister(0), MemOperand(fp, offset)); ++ } ++ } else { ++ __ Ld_d(i.OutputRegister(0), MemOperand(fp, offset)); ++ } ++ break; ++ } ++ case kLoong64StackClaim: { ++ __ Sub_d(sp, sp, Operand(i.InputInt32(0))); ++ frame_access_state()->IncreaseSPDelta(i.InputInt32(0) / kPointerSize); ++ break; ++ } ++ case kLoong64StoreToStackSlot: { ++ if (instr->InputAt(0)->IsFPRegister()) { ++ __ Fst_d(i.InputDoubleRegister(0), MemOperand(sp, i.InputInt32(1))); ++ } else { ++ __ St_d(i.InputRegister(0), MemOperand(sp, i.InputInt32(1))); ++ } ++ break; ++ } ++ case kLoong64ByteSwap64: { ++ __ ByteSwapSigned(i.OutputRegister(0), i.InputRegister(0), 8); ++ break; ++ } ++ case kLoong64ByteSwap32: { ++ __ ByteSwapUnsigned(i.OutputRegister(0), i.InputRegister(0), 4); ++ __ srli_d(i.OutputRegister(0), i.OutputRegister(0), 32); ++ break; ++ } ++ case kWord32AtomicLoadInt8: ++ ASSEMBLE_ATOMIC_LOAD_INTEGER(Ld_b); ++ break; ++ case kWord32AtomicLoadUint8: ++ ASSEMBLE_ATOMIC_LOAD_INTEGER(Ld_bu); ++ break; ++ case kWord32AtomicLoadInt16: ++ ASSEMBLE_ATOMIC_LOAD_INTEGER(Ld_h); ++ break; ++ case kWord32AtomicLoadUint16: ++ ASSEMBLE_ATOMIC_LOAD_INTEGER(Ld_hu); ++ break; ++ case kWord32AtomicLoadWord32: ++ ASSEMBLE_ATOMIC_LOAD_INTEGER(Ld_w); ++ break; ++ case kWord32AtomicStoreWord8: ++ ASSEMBLE_ATOMIC_STORE_INTEGER(St_b); ++ break; ++ case kWord32AtomicStoreWord16: ++ ASSEMBLE_ATOMIC_STORE_INTEGER(St_h); ++ break; ++ case kWord32AtomicStoreWord32: ++ ASSEMBLE_ATOMIC_STORE_INTEGER(St_w); ++ break; ++ case kWord32AtomicExchangeInt8: ++ ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(true, 8, 32); ++ break; ++ case kWord32AtomicExchangeUint8: ++ ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(false, 8, 32); ++ break; ++ case kWord32AtomicExchangeInt16: ++ ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(true, 16, 32); ++ break; ++ case kWord32AtomicExchangeUint16: ++ ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(false, 16, 32); ++ break; ++ case kWord32AtomicExchangeWord32: ++ ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(); ++ break; ++ case kWord32AtomicCompareExchangeInt8: ++ ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(true, 8, 32); ++ break; ++ case kWord32AtomicCompareExchangeUint8: ++ ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(false, 8, 32); ++ break; ++ case kWord32AtomicCompareExchangeInt16: ++ ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(true, 16, 32); ++ break; ++ case kWord32AtomicCompareExchangeUint16: ++ ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(false, 16, 32); ++ break; ++ case kWord32AtomicCompareExchangeWord32: ++ __ slli_w(i.InputRegister(2), i.InputRegister(2), 0); ++ ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER(); ++ break; ++#define ATOMIC_BINOP_CASE(op, inst) \ ++ case kWord32Atomic##op##Int8: \ ++ ASSEMBLE_ATOMIC_BINOP_EXT(true, 8, inst, 32); \ ++ break; \ ++ case kWord32Atomic##op##Uint8: \ ++ ASSEMBLE_ATOMIC_BINOP_EXT(false, 8, inst, 32); \ ++ break; \ ++ case kWord32Atomic##op##Int16: \ ++ ASSEMBLE_ATOMIC_BINOP_EXT(true, 16, inst, 32); \ ++ break; \ ++ case kWord32Atomic##op##Uint16: \ ++ ASSEMBLE_ATOMIC_BINOP_EXT(false, 16, inst, 32); \ ++ break; \ ++ case kWord32Atomic##op##Word32: \ ++ ASSEMBLE_ATOMIC_BINOP(inst); \ ++ break; ++ ATOMIC_BINOP_CASE(Add, Add_w) ++ ATOMIC_BINOP_CASE(Sub, Sub_w) ++ ATOMIC_BINOP_CASE(And, And) ++ ATOMIC_BINOP_CASE(Or, Or) ++ ATOMIC_BINOP_CASE(Xor, Xor) ++#undef ATOMIC_BINOP_CASE ++ case kLoong64AssertEqual: ++ __ Assert(eq, static_cast(i.InputOperand(2).immediate()), ++ i.InputRegister(0), Operand(i.InputRegister(1))); ++ break; ++ case kLoong64S128Zero: ++ default: ++ break; ++ } ++ return kSuccess; ++} // NOLINT(readability/fn_size) ++ ++ ++#define UNSUPPORTED_COND(opcode, condition) \ ++ OFStream out(stdout); \ ++ out << "Unsupported " << #opcode << " condition: \"" << condition << "\""; \ ++ UNIMPLEMENTED(); ++ ++ ++void AssembleBranchToLabels(CodeGenerator* gen, TurboAssembler* tasm, ++ Instruction* instr, FlagsCondition condition, ++ Label* tlabel, Label* flabel, bool fallthru) { ++#undef __ ++#define __ tasm-> ++ Loong64OperandConverter i(gen, instr); ++ ++ Condition cc = kNoCondition; ++ // MIPS does not have condition code flags, so compare and branch are ++ // implemented differently than on the other arch's. The compare operations ++ // emit mips pseudo-instructions, which are handled here by branch ++ // instructions that do the actual comparison. Essential that the input ++ // registers to compare pseudo-op are not modified before this branch op, as ++ // they are tested here. ++ ++ if (instr->arch_opcode() == kLoong64Tst) { ++ cc = FlagsConditionToConditionTst(condition); ++ __ Branch(tlabel, cc, kScratchReg, Operand(zero_reg)); ++ } else if (instr->arch_opcode() == kLoong64Dadd || ++ instr->arch_opcode() == kLoong64Dsub) { ++ cc = FlagsConditionToConditionOvf(condition); ++ __ srai_d(kScratchReg, i.OutputRegister(), 32); ++ __ srai_w(kScratchReg2, i.OutputRegister(), 31); ++ __ Branch(tlabel, cc, kScratchReg2, Operand(kScratchReg)); ++ } else if (instr->arch_opcode() == kLoong64DaddOvf || ++ instr->arch_opcode() == kLoong64DsubOvf) { ++ switch (condition) { ++ // Overflow occurs if overflow register is negative ++ case kOverflow: ++ __ Branch(tlabel, lt, kScratchReg, Operand(zero_reg)); ++ break; ++ case kNotOverflow: ++ __ Branch(tlabel, ge, kScratchReg, Operand(zero_reg)); ++ break; ++ default: ++ UNSUPPORTED_COND(instr->arch_opcode(), condition); ++ break; ++ } ++ } else if (instr->arch_opcode() == kLoong64MulOvf) { ++ // Overflow occurs if overflow register is not zero ++ switch (condition) { ++ case kOverflow: ++ __ Branch(tlabel, ne, kScratchReg, Operand(zero_reg)); ++ break; ++ case kNotOverflow: ++ __ Branch(tlabel, eq, kScratchReg, Operand(zero_reg)); ++ break; ++ default: ++ UNSUPPORTED_COND(kLoong64MulOvf, condition); ++ break; ++ } ++ } else if (instr->arch_opcode() == kLoong64Cmp) { ++ cc = FlagsConditionToConditionCmp(condition); ++ __ Branch(tlabel, cc, i.InputRegister(0), i.InputOperand(1)); ++ } else if (instr->arch_opcode() == kLoong64CmpS || ++ instr->arch_opcode() == kLoong64CmpD) { ++ bool predicate; ++ FlagsConditionToConditionCmpFPU(predicate, condition); ++ if (predicate) { ++ __ BranchTrueF(tlabel); ++ } else { ++ __ BranchFalseF(tlabel); ++ } ++ } else { ++ PrintF("AssembleArchBranch Unimplemented arch_opcode: %d\n", ++ instr->arch_opcode()); ++ UNIMPLEMENTED(); ++ } ++ if (!fallthru) __ Branch(flabel); // no fallthru to flabel. ++#undef __ ++#define __ tasm()-> ++} ++ ++// Assembles branches after an instruction. ++void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) { ++ Label* tlabel = branch->true_label; ++ Label* flabel = branch->false_label; ++ ++ AssembleBranchToLabels(this, tasm(), instr, branch->condition, tlabel, flabel, ++ branch->fallthru); ++} ++ ++void CodeGenerator::AssembleBranchPoisoning(FlagsCondition condition, ++ Instruction* instr) { ++ // TODO(jarin) Handle float comparisons (kUnordered[Not]Equal). ++ if (condition == kUnorderedEqual || condition == kUnorderedNotEqual) { ++ return; ++ } ++ ++ Loong64OperandConverter i(this, instr); ++ condition = NegateFlagsCondition(condition); ++ ++ switch (instr->arch_opcode()) { ++ case kLoong64Cmp: { ++ __ LoadZeroOnCondition(kSpeculationPoisonRegister, i.InputRegister(0), ++ i.InputOperand(1), ++ FlagsConditionToConditionCmp(condition)); ++ } ++ return; ++ case kLoong64Tst: { ++ switch (condition) { ++ case kEqual: ++ __ LoadZeroIfConditionZero(kSpeculationPoisonRegister, kScratchReg); ++ break; ++ case kNotEqual: ++ __ LoadZeroIfConditionNotZero(kSpeculationPoisonRegister, ++ kScratchReg); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++ return; ++ case kLoong64Dadd: ++ case kLoong64Dsub: { ++ // Check for overflow creates 1 or 0 for result. ++ __ srli_d(kScratchReg, i.OutputRegister(), 63); ++ __ srli_w(kScratchReg2, i.OutputRegister(), 31); ++ __ xor_(kScratchReg2, kScratchReg, kScratchReg2); ++ switch (condition) { ++ case kOverflow: ++ __ LoadZeroIfConditionNotZero(kSpeculationPoisonRegister, ++ kScratchReg2); ++ break; ++ case kNotOverflow: ++ __ LoadZeroIfConditionZero(kSpeculationPoisonRegister, kScratchReg2); ++ break; ++ default: ++ UNSUPPORTED_COND(instr->arch_opcode(), condition); ++ } ++ } ++ return; ++ case kLoong64DaddOvf: ++ case kLoong64DsubOvf: { ++ // Overflow occurs if overflow register is negative ++ __ Slt(kScratchReg2, kScratchReg, zero_reg); ++ switch (condition) { ++ case kOverflow: ++ __ LoadZeroIfConditionNotZero(kSpeculationPoisonRegister, ++ kScratchReg2); ++ break; ++ case kNotOverflow: ++ __ LoadZeroIfConditionZero(kSpeculationPoisonRegister, kScratchReg2); ++ break; ++ default: ++ UNSUPPORTED_COND(instr->arch_opcode(), condition); ++ } ++ } ++ return; ++ case kLoong64MulOvf: { ++ // Overflow occurs if overflow register is not zero ++ switch (condition) { ++ case kOverflow: ++ __ LoadZeroIfConditionNotZero(kSpeculationPoisonRegister, ++ kScratchReg); ++ break; ++ case kNotOverflow: ++ __ LoadZeroIfConditionZero(kSpeculationPoisonRegister, kScratchReg); ++ break; ++ default: ++ UNSUPPORTED_COND(instr->arch_opcode(), condition); ++ } ++ } ++ return; ++ case kLoong64CmpS: ++ case kLoong64CmpD: { ++ bool predicate; ++ FlagsConditionToConditionCmpFPU(predicate, condition); ++ if (predicate) { ++ __ LoadZeroIfFPUCondition(kSpeculationPoisonRegister); ++ } else { ++ __ LoadZeroIfNotFPUCondition(kSpeculationPoisonRegister); ++ } ++ } ++ return; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++} ++ ++void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr, ++ BranchInfo* branch) { ++ AssembleArchBranch(instr, branch); ++} ++ ++void CodeGenerator::AssembleArchJump(RpoNumber target) { ++ if (!IsNextInAssemblyOrder(target)) __ Branch(GetLabel(target)); ++} ++ ++void CodeGenerator::AssembleArchTrap(Instruction* instr, ++ FlagsCondition condition) { ++ class OutOfLineTrap final : public OutOfLineCode { ++ public: ++ OutOfLineTrap(CodeGenerator* gen, bool frame_elided, Instruction* instr) ++ : OutOfLineCode(gen), ++ frame_elided_(frame_elided), ++ instr_(instr), ++ gen_(gen) {} ++ void Generate() final { ++ Loong64OperandConverter i(gen_, instr_); ++ Builtins::Name trap_id = ++ static_cast(i.InputInt32(instr_->InputCount() - 1)); ++ bool old_has_frame = __ has_frame(); ++ if (frame_elided_) { ++ __ set_has_frame(true); ++ __ EnterFrame(StackFrame::WASM_COMPILED); ++ } ++ GenerateCallToTrap(trap_id); ++ if (frame_elided_) { ++ __ set_has_frame(old_has_frame); ++ } ++ } ++ ++ private: ++ void GenerateCallToTrap(Builtins::Name trap_id) { ++ if (trap_id == Builtins::builtin_count) { ++ // We cannot test calls to the runtime in cctest/test-run-wasm. ++ // Therefore we emit a call to C here instead of a call to the runtime. ++ // We use the context register as the scratch register, because we do ++ // not have a context here. ++ __ PrepareCallCFunction(0, 0, cp); ++ __ CallCFunction( ++ ExternalReference::wasm_call_trap_callback_for_testing(), 0); ++ __ LeaveFrame(StackFrame::WASM_COMPILED); ++ auto call_descriptor = gen_->linkage()->GetIncomingDescriptor(); ++ int pop_count = ++ static_cast(call_descriptor->StackParameterCount()); ++ pop_count += (pop_count & 1); // align ++ __ Drop(pop_count); ++ __ Ret(); ++ } else { ++ gen_->AssembleSourcePosition(instr_); ++ __ Call(tasm()->isolate()->builtins()->builtin_handle(trap_id), ++ RelocInfo::CODE_TARGET); ++ ReferenceMap* reference_map = ++ new (gen_->zone()) ReferenceMap(gen_->zone()); ++ gen_->RecordSafepoint(reference_map, Safepoint::kSimple, 0, ++ Safepoint::kNoLazyDeopt); ++ if (FLAG_debug_code) { ++ __ stop(GetAbortReason(AbortReason::kUnexpectedReturnFromWasmTrap)); ++ } ++ } ++ } ++ bool frame_elided_; ++ Instruction* instr_; ++ CodeGenerator* gen_; ++ }; ++ bool frame_elided = !frame_access_state()->has_frame(); ++ auto ool = new (zone()) OutOfLineTrap(this, frame_elided, instr); ++ Label* tlabel = ool->entry(); ++ AssembleBranchToLabels(this, tasm(), instr, condition, tlabel, nullptr, true); ++} ++ ++// Assembles boolean materializations after an instruction. ++void CodeGenerator::AssembleArchBoolean(Instruction* instr, ++ FlagsCondition condition) { ++ Loong64OperandConverter i(this, instr); ++ Label done; ++ ++ // Materialize a full 32-bit 1 or 0 value. The result register is always the ++ // last output of the instruction. ++ Label false_value; ++ DCHECK_NE(0u, instr->OutputCount()); ++ Register result = i.OutputRegister(instr->OutputCount() - 1); ++ Condition cc = kNoCondition; ++ // MIPS does not have condition code flags, so compare and branch are ++ // implemented differently than on the other arch's. The compare operations ++ // emit mips pseudo-instructions, which are checked and handled here. ++ ++ if (instr->arch_opcode() == kLoong64Tst) { ++ cc = FlagsConditionToConditionTst(condition); ++ if (cc == eq) { ++ __ Sltu(result, kScratchReg, 1); ++ } else { ++ __ Sltu(result, zero_reg, kScratchReg); ++ } ++ return; ++ } else if (instr->arch_opcode() == kLoong64Dadd || ++ instr->arch_opcode() == kLoong64Dsub) { ++ cc = FlagsConditionToConditionOvf(condition); ++ // Check for overflow creates 1 or 0 for result. ++ __ srli_d(kScratchReg, i.OutputRegister(), 63); ++ __ srli_w(kScratchReg2, i.OutputRegister(), 31); ++ __ xor_(result, kScratchReg, kScratchReg2); ++ if (cc == eq) // Toggle result for not overflow. ++ __ xori(result, result, 1); ++ return; ++ } else if (instr->arch_opcode() == kLoong64DaddOvf || ++ instr->arch_opcode() == kLoong64DsubOvf) { ++ // Overflow occurs if overflow register is negative ++ __ slt(result, kScratchReg, zero_reg); ++ } else if (instr->arch_opcode() == kLoong64MulOvf) { ++ // Overflow occurs if overflow register is not zero ++ __ Sgtu(result, kScratchReg, zero_reg); ++ } else if (instr->arch_opcode() == kLoong64Cmp) { ++ cc = FlagsConditionToConditionCmp(condition); ++ switch (cc) { ++ case eq: ++ case ne: { ++ Register left = i.InputRegister(0); ++ Operand right = i.InputOperand(1); ++ if (instr->InputAt(1)->IsImmediate()) { ++ if (is_int12(-right.immediate())) { ++ if (right.immediate() == 0) { ++ if (cc == eq) { ++ __ Sltu(result, left, 1); ++ } else { ++ __ Sltu(result, zero_reg, left); ++ } ++ } else { ++ __ Add_d(result, left, Operand(-right.immediate())); ++ if (cc == eq) { ++ __ Sltu(result, result, 1); ++ } else { ++ __ Sltu(result, zero_reg, result); ++ } ++ } ++ } else { ++ if (is_uint16(right.immediate())) { ++ __ Xor(result, left, right); ++ } else { ++ __ li(kScratchReg, right); ++ __ Xor(result, left, kScratchReg); ++ } ++ if (cc == eq) { ++ __ Sltu(result, result, 1); ++ } else { ++ __ Sltu(result, zero_reg, result); ++ } ++ } ++ } else { ++ __ Xor(result, left, right); ++ if (cc == eq) { ++ __ Sltu(result, result, 1); ++ } else { ++ __ Sltu(result, zero_reg, result); ++ } ++ } ++ } break; ++ case lt: ++ case ge: { ++ Register left = i.InputRegister(0); ++ Operand right = i.InputOperand(1); ++ __ Slt(result, left, right); ++ if (cc == ge) { ++ __ xori(result, result, 1); ++ } ++ } break; ++ case gt: ++ case le: { ++ Register left = i.InputRegister(1); ++ Operand right = i.InputOperand(0); ++ __ Slt(result, left, right); ++ if (cc == le) { ++ __ xori(result, result, 1); ++ } ++ } break; ++ case lo: ++ case hs: { ++ Register left = i.InputRegister(0); ++ Operand right = i.InputOperand(1); ++ __ Sltu(result, left, right); ++ if (cc == hs) { ++ __ xori(result, result, 1); ++ } ++ } break; ++ case hi: ++ case ls: { ++ Register left = i.InputRegister(1); ++ Operand right = i.InputOperand(0); ++ __ Sltu(result, left, right); ++ if (cc == ls) { ++ __ xori(result, result, 1); ++ } ++ } break; ++ default: ++ UNREACHABLE(); ++ } ++ return; ++ } else if (instr->arch_opcode() == kLoong64CmpD || ++ instr->arch_opcode() == kLoong64CmpS) { ++ FPURegister left = i.InputOrZeroDoubleRegister(0); ++ FPURegister right = i.InputOrZeroDoubleRegister(1); ++ if ((left == kDoubleRegZero || right == kDoubleRegZero) && ++ !__ IsDoubleZeroRegSet()) { ++ __ Move(kDoubleRegZero, 0.0); ++ } ++ bool predicate; ++ FlagsConditionToConditionCmpFPU(predicate, condition); ++ { ++ __ movcf2gr(result, FCC0); ++ if (!predicate) { ++ __ xori(result, result, 1); ++ } ++ } ++ return; ++ } else { ++ PrintF("AssembleArchBranch Unimplemented arch_opcode is : %d\n", ++ instr->arch_opcode()); ++ TRACE_UNIMPL(); ++ UNIMPLEMENTED(); ++ } ++} ++ ++ ++void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) { ++ Loong64OperandConverter i(this, instr); ++ Register input = i.InputRegister(0); ++ for (size_t index = 2; index < instr->InputCount(); index += 2) { ++ __ li(kScratchReg, Operand(i.InputInt32(index + 0))); ++ __ Branch(GetLabel(i.InputRpo(index + 1)), eq, input, Operand(kScratchReg)); ++ } ++ AssembleArchJump(i.InputRpo(1)); ++} ++ ++void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) { ++ Loong64OperandConverter i(this, instr); ++ Register input = i.InputRegister(0); ++ size_t const case_count = instr->InputCount() - 2; ++ ++ __ Branch(GetLabel(i.InputRpo(1)), hs, input, Operand(case_count)); ++ __ GenerateSwitchTable(input, case_count, [&i, this](size_t index) { ++ return GetLabel(i.InputRpo(index + 2)); ++ }); ++} ++ ++void CodeGenerator::FinishFrame(Frame* frame) { ++ auto call_descriptor = linkage()->GetIncomingDescriptor(); ++ ++ const RegList saves_fpu = call_descriptor->CalleeSavedFPRegisters(); ++ if (saves_fpu != 0) { ++ int count = base::bits::CountPopulation(saves_fpu); ++ DCHECK_EQ(kNumCalleeSavedFPU, count); ++ frame->AllocateSavedCalleeRegisterSlots(count * ++ (kDoubleSize / kPointerSize)); ++ } ++ ++ const RegList saves = call_descriptor->CalleeSavedRegisters(); ++ if (saves != 0) { ++ int count = base::bits::CountPopulation(saves); ++ DCHECK_EQ(kNumCalleeSaved, count + 1); ++ frame->AllocateSavedCalleeRegisterSlots(count); ++ } ++} ++ ++void CodeGenerator::AssembleConstructFrame() { ++ auto call_descriptor = linkage()->GetIncomingDescriptor(); ++ ++ if (frame_access_state()->has_frame()) { ++ if (call_descriptor->IsCFunctionCall()) { ++ __ Push(ra, fp); ++ __ mov(fp, sp); ++ } else if (call_descriptor->IsJSFunctionCall()) { ++ __ Prologue(); ++ if (call_descriptor->PushArgumentCount()) { ++ __ Push(kJavaScriptCallArgCountRegister); ++ } ++ } else { ++ __ StubPrologue(info()->GetOutputStackFrameType()); ++ if (call_descriptor->IsWasmFunctionCall()) { ++ __ Push(kWasmInstanceRegister); ++ } ++ } ++ } ++ ++ int shrink_slots = frame()->GetTotalFrameSlotCount() - ++ call_descriptor->CalculateFixedFrameSize(); ++ ++ if (info()->is_osr()) { ++ // TurboFan OSR-compiled functions cannot be entered directly. ++ __ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction); ++ ++ // Unoptimized code jumps directly to this entrypoint while the unoptimized ++ // frame is still on the stack. Optimized code uses OSR values directly from ++ // the unoptimized frame. Thus, all that needs to be done is to allocate the ++ // remaining stack slots. ++ if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --"); ++ osr_pc_offset_ = __ pc_offset(); ++ shrink_slots -= osr_helper()->UnoptimizedFrameSlots(); ++ ResetSpeculationPoison(); ++ } ++ ++ const RegList saves = call_descriptor->CalleeSavedRegisters(); ++ const RegList saves_fpu = call_descriptor->CalleeSavedFPRegisters(); ++ const int returns = frame()->GetReturnSlotCount(); ++ ++ // Skip callee-saved and return slots, which are pushed below. ++ shrink_slots -= base::bits::CountPopulation(saves); ++ shrink_slots -= base::bits::CountPopulation(saves_fpu); ++ shrink_slots -= returns; ++ if (shrink_slots > 0) { ++ __ Sub_d(sp, sp, Operand(shrink_slots * kPointerSize)); ++ } ++ ++ if (saves_fpu != 0) { ++ // Save callee-saved FPU registers. ++ __ MultiPushFPU(saves_fpu); ++ DCHECK_EQ(kNumCalleeSavedFPU, base::bits::CountPopulation(saves_fpu)); ++ } ++ ++ if (saves != 0) { ++ // Save callee-saved registers. ++ __ MultiPush(saves); ++ DCHECK_EQ(kNumCalleeSaved, base::bits::CountPopulation(saves) + 1); ++ } ++ ++ if (returns != 0) { ++ // Create space for returns. ++ __ Sub_d(sp, sp, Operand(returns * kPointerSize)); ++ } ++} ++ ++void CodeGenerator::AssembleReturn(InstructionOperand* pop) { ++ auto call_descriptor = linkage()->GetIncomingDescriptor(); ++ ++ const int returns = frame()->GetReturnSlotCount(); ++ if (returns != 0) { ++ __ Add_d(sp, sp, Operand(returns * kPointerSize)); ++ } ++ ++ // Restore GP registers. ++ const RegList saves = call_descriptor->CalleeSavedRegisters(); ++ if (saves != 0) { ++ __ MultiPop(saves); ++ } ++ ++ // Restore FPU registers. ++ const RegList saves_fpu = call_descriptor->CalleeSavedFPRegisters(); ++ if (saves_fpu != 0) { ++ __ MultiPopFPU(saves_fpu); ++ } ++ ++ Loong64OperandConverter g(this, nullptr); ++ if (call_descriptor->IsCFunctionCall()) { ++ AssembleDeconstructFrame(); ++ } else if (frame_access_state()->has_frame()) { ++ // Canonicalize JSFunction return sites for now unless they have an variable ++ // number of stack slot pops. ++ if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) { ++ if (return_label_.is_bound()) { ++ __ Branch(&return_label_); ++ return; ++ } else { ++ __ bind(&return_label_); ++ AssembleDeconstructFrame(); ++ } ++ } else { ++ AssembleDeconstructFrame(); ++ } ++ } ++ int pop_count = static_cast(call_descriptor->StackParameterCount()); ++ if (pop->IsImmediate()) { ++ pop_count += g.ToConstant(pop).ToInt32(); ++ } else { ++ Register pop_reg = g.ToRegister(pop); ++ __ slli_d(pop_reg, pop_reg, kPointerSizeLog2); ++ __ Add_d(sp, sp, pop_reg); ++ } ++ if (pop_count != 0) { ++ __ DropAndRet(pop_count); ++ } else { ++ __ Ret(); ++ } ++} ++ ++void CodeGenerator::FinishCode() {} ++ ++void CodeGenerator::AssembleMove(InstructionOperand* source, ++ InstructionOperand* destination) { ++ Loong64OperandConverter g(this, nullptr); ++ // Dispatch on the source and destination operand kinds. Not all ++ // combinations are possible. ++ if (source->IsRegister()) { ++ DCHECK(destination->IsRegister() || destination->IsStackSlot()); ++ Register src = g.ToRegister(source); ++ if (destination->IsRegister()) { ++ __ mov(g.ToRegister(destination), src); ++ } else { ++ __ St_d(src, g.ToMemOperand(destination)); ++ } ++ } else if (source->IsStackSlot()) { ++ DCHECK(destination->IsRegister() || destination->IsStackSlot()); ++ MemOperand src = g.ToMemOperand(source); ++ if (destination->IsRegister()) { ++ __ Ld_d(g.ToRegister(destination), src); ++ } else { ++ Register temp = kScratchReg; ++ __ Ld_d(temp, src); ++ __ St_d(temp, g.ToMemOperand(destination)); ++ } ++ } else if (source->IsConstant()) { ++ Constant src = g.ToConstant(source); ++ if (destination->IsRegister() || destination->IsStackSlot()) { ++ Register dst = ++ destination->IsRegister() ? g.ToRegister(destination) : kScratchReg; ++ switch (src.type()) { ++ case Constant::kInt32: ++ __ li(dst, Operand(src.ToInt32())); ++ break; ++ case Constant::kFloat32: ++ __ li(dst, Operand::EmbeddedNumber(src.ToFloat32())); ++ break; ++ case Constant::kInt64: ++ if (RelocInfo::IsWasmPtrReference(src.rmode())) { ++ __ li(dst, Operand(src.ToInt64(), src.rmode())); ++ } else { ++ __ li(dst, Operand(src.ToInt64())); ++ } ++ break; ++ case Constant::kFloat64: ++ __ li(dst, Operand::EmbeddedNumber(src.ToFloat64().value())); ++ break; ++ case Constant::kExternalReference: ++ __ li(dst, Operand(src.ToExternalReference())); ++ break; ++ case Constant::kHeapObject: { ++ Handle src_object = src.ToHeapObject(); ++ Heap::RootListIndex index; ++ if (IsMaterializableFromRoot(src_object, &index)) { ++ __ LoadRoot(dst, index); ++ } else { ++ __ li(dst, src_object); ++ } ++ break; ++ } ++ case Constant::kRpoNumber: ++ UNREACHABLE(); // TODO(titzer): loading RPO numbers on mips64. ++ break; ++ } ++ if (destination->IsStackSlot()) __ St_d(dst, g.ToMemOperand(destination)); ++ } else if (src.type() == Constant::kFloat32) { ++ if (destination->IsFPStackSlot()) { ++ MemOperand dst = g.ToMemOperand(destination); ++ if (bit_cast(src.ToFloat32()) == 0) { ++ __ St_w(zero_reg, dst); ++ } else { ++ __ li(kScratchReg, Operand(bit_cast(src.ToFloat32()))); ++ __ St_w(kScratchReg, dst); ++ } ++ } else { ++ DCHECK(destination->IsFPRegister()); ++ FloatRegister dst = g.ToSingleRegister(destination); ++ __ Move(dst, src.ToFloat32()); ++ } ++ } else { ++ DCHECK_EQ(Constant::kFloat64, src.type()); ++ DoubleRegister dst = destination->IsFPRegister() ++ ? g.ToDoubleRegister(destination) ++ : kScratchDoubleReg; ++ __ Move(dst, src.ToFloat64().value()); ++ if (destination->IsFPStackSlot()) { ++ __ Fst_d(dst, g.ToMemOperand(destination)); ++ } ++ } ++ } else if (source->IsFPRegister()) { ++ MachineRepresentation rep = LocationOperand::cast(source)->representation(); ++ FPURegister src = g.ToDoubleRegister(source); ++ if (destination->IsFPRegister()) { ++ FPURegister dst = g.ToDoubleRegister(destination); ++ __ Move(dst, src); ++ } else { ++ DCHECK(destination->IsFPStackSlot()); ++ __ Fst_d(src, g.ToMemOperand(destination)); ++ } ++ } else if (source->IsFPStackSlot()) { ++ DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot()); ++ MemOperand src = g.ToMemOperand(source); ++ MachineRepresentation rep = LocationOperand::cast(source)->representation(); ++ if (destination->IsFPRegister()) { ++ __ Fld_d(g.ToDoubleRegister(destination), src); ++ } else { ++ DCHECK(destination->IsFPStackSlot()); ++ FPURegister temp = kScratchDoubleReg; ++ __ Fld_d(temp, src); ++ __ Fst_d(temp, g.ToMemOperand(destination)); ++ } ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++ ++void CodeGenerator::AssembleSwap(InstructionOperand* source, ++ InstructionOperand* destination) { ++ Loong64OperandConverter g(this, nullptr); ++ // Dispatch on the source and destination operand kinds. Not all ++ // combinations are possible. ++ if (source->IsRegister()) { ++ // Register-register. ++ Register temp = kScratchReg; ++ Register src = g.ToRegister(source); ++ if (destination->IsRegister()) { ++ Register dst = g.ToRegister(destination); ++ __ Move(temp, src); ++ __ nop(); ++ __ Move(src, dst); ++ __ Move(dst, temp); ++ } else { ++ DCHECK(destination->IsStackSlot()); ++ MemOperand dst = g.ToMemOperand(destination); ++ __ mov(temp, src); ++ __ Ld_d(src, dst); ++ __ St_d(temp, dst); ++ } ++ } else if (source->IsStackSlot()) { ++ DCHECK(destination->IsStackSlot()); ++ Register temp_0 = kScratchReg; ++ Register temp_1 = kScratchReg2; ++ MemOperand src = g.ToMemOperand(source); ++ MemOperand dst = g.ToMemOperand(destination); ++ __ Ld_d(temp_0, src); ++ __ Ld_d(temp_1, dst); ++ __ St_d(temp_0, dst); ++ __ St_d(temp_1, src); ++ } else if (source->IsFPRegister()) { ++ MachineRepresentation rep = LocationOperand::cast(source)->representation(); ++ FPURegister temp = kScratchDoubleReg; ++ FPURegister src = g.ToDoubleRegister(source); ++ if (destination->IsFPRegister()) { ++ FPURegister dst = g.ToDoubleRegister(destination); ++ __ Move(temp, src); ++ __ Move(src, dst); ++ __ Move(dst, temp); ++ } else { ++ DCHECK(destination->IsFPStackSlot()); ++ MemOperand dst = g.ToMemOperand(destination); ++ __ Move(temp, src); ++ __ Fld_d(src, dst); ++ __ Fst_d(temp, dst); ++ } ++ } else if (source->IsFPStackSlot()) { ++ DCHECK(destination->IsFPStackSlot()); ++ Register temp_0 = kScratchReg; ++ MemOperand src0 = g.ToMemOperand(source); ++ MemOperand src1(src0.base(), src0.offset() + kIntSize); ++ MemOperand dst0 = g.ToMemOperand(destination); ++ MemOperand dst1(dst0.base(), dst0.offset() + kIntSize); ++ MachineRepresentation rep = LocationOperand::cast(source)->representation(); ++ FPURegister temp_1 = kScratchDoubleReg; ++ __ Fld_d(temp_1, dst0); // Save destination in temp_1. ++ __ Ld_w(temp_0, src0); // Then use temp_0 to copy source to destination. ++ __ St_w(temp_0, dst0); ++ __ Ld_w(temp_0, src1); ++ __ St_w(temp_0, dst1); ++ __ Fst_d(temp_1, src0); ++ } else { ++ // No other combinations are possible. ++ UNREACHABLE(); ++ } ++} ++ ++ ++void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) { ++ // On 64-bit MIPS we emit the jump tables inline. ++ UNREACHABLE(); ++} ++ ++#undef __ ++ ++} // namespace compiler ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/src/compiler/loong64/instruction-codes-loong64.h b/deps/v8/src/compiler/loong64/instruction-codes-loong64.h +new file mode 100644 +index 0000000..b944dd2 +--- /dev/null ++++ b/deps/v8/src/compiler/loong64/instruction-codes-loong64.h +@@ -0,0 +1,334 @@ ++// Copyright 2014 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_COMPILER_LOONG64_INSTRUCTION_CODES_LOONG64_H_ ++#define V8_COMPILER_LOONG64_INSTRUCTION_CODES_LOONG64_H_ ++ ++namespace v8 { ++namespace internal { ++namespace compiler { ++ ++// MIPS64-specific opcodes that specify which assembly sequence to emit. ++// Most opcodes specify a single instruction. ++#define TARGET_ARCH_OPCODE_LIST(V) \ ++ V(Loong64Add) \ ++ V(Loong64Dadd) \ ++ V(Loong64DaddOvf) \ ++ V(Loong64Sub) \ ++ V(Loong64Dsub) \ ++ V(Loong64DsubOvf) \ ++ V(Loong64Mul) \ ++ V(Loong64MulOvf) \ ++ V(Loong64MulHigh) \ ++ V(Loong64DMulHigh) \ ++ V(Loong64MulHighU) \ ++ V(Loong64Dmul) \ ++ V(Loong64Div) \ ++ V(Loong64Ddiv) \ ++ V(Loong64DivU) \ ++ V(Loong64DdivU) \ ++ V(Loong64Mod) \ ++ V(Loong64Dmod) \ ++ V(Loong64ModU) \ ++ V(Loong64DmodU) \ ++ V(Loong64And) \ ++ V(Loong64And32) \ ++ V(Loong64Or) \ ++ V(Loong64Or32) \ ++ V(Loong64Nor) \ ++ V(Loong64Nor32) \ ++ V(Loong64Xor) \ ++ V(Loong64Xor32) \ ++ V(Loong64Clz) \ ++ V(Loong64Lsa) \ ++ V(Loong64Dlsa) \ ++ V(Loong64Shl) \ ++ V(Loong64Shr) \ ++ V(Loong64Sar) \ ++ V(Loong64Ext) \ ++ V(Loong64Ins) \ ++ V(Loong64Dext) \ ++ V(Loong64Dins) \ ++ V(Loong64Dclz) \ ++ V(Loong64Ctz) \ ++ V(Loong64Dctz) \ ++ V(Loong64Popcnt) \ ++ V(Loong64Dpopcnt) \ ++ V(Loong64Dshl) \ ++ V(Loong64Dshr) \ ++ V(Loong64Dsar) \ ++ V(Loong64Ror) \ ++ V(Loong64Dror) \ ++ V(Loong64Mov) \ ++ V(Loong64Tst) \ ++ V(Loong64Cmp) \ ++ V(Loong64CmpS) \ ++ V(Loong64AddS) \ ++ V(Loong64SubS) \ ++ V(Loong64MulS) \ ++ V(Loong64DivS) \ ++ V(Loong64ModS) \ ++ V(Loong64AbsS) \ ++ V(Loong64NegS) \ ++ V(Loong64SqrtS) \ ++ V(Loong64MaxS) \ ++ V(Loong64MinS) \ ++ V(Loong64CmpD) \ ++ V(Loong64AddD) \ ++ V(Loong64SubD) \ ++ V(Loong64MulD) \ ++ V(Loong64DivD) \ ++ V(Loong64ModD) \ ++ V(Loong64AbsD) \ ++ V(Loong64NegD) \ ++ V(Loong64SqrtD) \ ++ V(Loong64MaxD) \ ++ V(Loong64MinD) \ ++ V(Loong64Float64RoundDown) \ ++ V(Loong64Float64RoundTruncate) \ ++ V(Loong64Float64RoundUp) \ ++ V(Loong64Float64RoundTiesEven) \ ++ V(Loong64Float32RoundDown) \ ++ V(Loong64Float32RoundTruncate) \ ++ V(Loong64Float32RoundUp) \ ++ V(Loong64Float32RoundTiesEven) \ ++ V(Loong64CvtSD) \ ++ V(Loong64CvtDS) \ ++ V(Loong64TruncWD) \ ++ V(Loong64RoundWD) \ ++ V(Loong64FloorWD) \ ++ V(Loong64CeilWD) \ ++ V(Loong64TruncWS) \ ++ V(Loong64RoundWS) \ ++ V(Loong64FloorWS) \ ++ V(Loong64CeilWS) \ ++ V(Loong64TruncLS) \ ++ V(Loong64TruncLD) \ ++ V(Loong64TruncUwD) \ ++ V(Loong64TruncUwS) \ ++ V(Loong64TruncUlS) \ ++ V(Loong64TruncUlD) \ ++ V(Loong64CvtDW) \ ++ V(Loong64CvtSL) \ ++ V(Loong64CvtSW) \ ++ V(Loong64CvtSUw) \ ++ V(Loong64CvtSUl) \ ++ V(Loong64CvtDL) \ ++ V(Loong64CvtDUw) \ ++ V(Loong64CvtDUl) \ ++ V(Loong64Lb) \ ++ V(Loong64Lbu) \ ++ V(Loong64Sb) \ ++ V(Loong64Lh) \ ++ V(Loong64Ulh) \ ++ V(Loong64Lhu) \ ++ V(Loong64Ulhu) \ ++ V(Loong64Sh) \ ++ V(Loong64Ush) \ ++ V(Loong64Ld) \ ++ V(Loong64Uld) \ ++ V(Loong64Lw) \ ++ V(Loong64Ulw) \ ++ V(Loong64Lwu) \ ++ V(Loong64Ulwu) \ ++ V(Loong64Sw) \ ++ V(Loong64Usw) \ ++ V(Loong64Sd) \ ++ V(Loong64Usd) \ ++ V(Loong64Lwc1) \ ++ V(Loong64Ulwc1) \ ++ V(Loong64Swc1) \ ++ V(Loong64Uswc1) \ ++ V(Loong64Ldc1) \ ++ V(Loong64Uldc1) \ ++ V(Loong64Sdc1) \ ++ V(Loong64Usdc1) \ ++ V(Loong64BitcastDL) \ ++ V(Loong64BitcastLD) \ ++ V(Loong64Float64ExtractLowWord32) \ ++ V(Loong64Float64ExtractHighWord32) \ ++ V(Loong64Float64InsertLowWord32) \ ++ V(Loong64Float64InsertHighWord32) \ ++ V(Loong64Float32Max) \ ++ V(Loong64Float64Max) \ ++ V(Loong64Float32Min) \ ++ V(Loong64Float64Min) \ ++ V(Loong64Float64SilenceNaN) \ ++ V(Loong64Push) \ ++ V(Loong64Peek) \ ++ V(Loong64StoreToStackSlot) \ ++ V(Loong64ByteSwap64) \ ++ V(Loong64ByteSwap32) \ ++ V(Loong64StackClaim) \ ++ V(Loong64Seb) \ ++ V(Loong64Seh) \ ++ V(Loong64AssertEqual) \ ++ V(Loong64S128Zero) \ ++ V(Loong64I32x4Splat) \ ++ V(Loong64I32x4ExtractLane) \ ++ V(Loong64I32x4ReplaceLane) \ ++ V(Loong64I32x4Add) \ ++ V(Loong64I32x4AddHoriz) \ ++ V(Loong64I32x4Sub) \ ++ V(Loong64F32x4Splat) \ ++ V(Loong64F32x4ExtractLane) \ ++ V(Loong64F32x4ReplaceLane) \ ++ V(Loong64F32x4SConvertI32x4) \ ++ V(Loong64F32x4UConvertI32x4) \ ++ V(Loong64I32x4Mul) \ ++ V(Loong64I32x4MaxS) \ ++ V(Loong64I32x4MinS) \ ++ V(Loong64I32x4Eq) \ ++ V(Loong64I32x4Ne) \ ++ V(Loong64I32x4Shl) \ ++ V(Loong64I32x4ShrS) \ ++ V(Loong64I32x4ShrU) \ ++ V(Loong64I32x4MaxU) \ ++ V(Loong64I32x4MinU) \ ++ V(Loong64F32x4Abs) \ ++ V(Loong64F32x4Neg) \ ++ V(Loong64F32x4RecipApprox) \ ++ V(Loong64F32x4RecipSqrtApprox) \ ++ V(Loong64F32x4Add) \ ++ V(Loong64F32x4AddHoriz) \ ++ V(Loong64F32x4Sub) \ ++ V(Loong64F32x4Mul) \ ++ V(Loong64F32x4Max) \ ++ V(Loong64F32x4Min) \ ++ V(Loong64F32x4Eq) \ ++ V(Loong64F32x4Ne) \ ++ V(Loong64F32x4Lt) \ ++ V(Loong64F32x4Le) \ ++ V(Loong64I32x4SConvertF32x4) \ ++ V(Loong64I32x4UConvertF32x4) \ ++ V(Loong64I32x4Neg) \ ++ V(Loong64I32x4GtS) \ ++ V(Loong64I32x4GeS) \ ++ V(Loong64I32x4GtU) \ ++ V(Loong64I32x4GeU) \ ++ V(Loong64I16x8Splat) \ ++ V(Loong64I16x8ExtractLane) \ ++ V(Loong64I16x8ReplaceLane) \ ++ V(Loong64I16x8Neg) \ ++ V(Loong64I16x8Shl) \ ++ V(Loong64I16x8ShrS) \ ++ V(Loong64I16x8ShrU) \ ++ V(Loong64I16x8Add) \ ++ V(Loong64I16x8AddSaturateS) \ ++ V(Loong64I16x8AddHoriz) \ ++ V(Loong64I16x8Sub) \ ++ V(Loong64I16x8SubSaturateS) \ ++ V(Loong64I16x8Mul) \ ++ V(Loong64I16x8MaxS) \ ++ V(Loong64I16x8MinS) \ ++ V(Loong64I16x8Eq) \ ++ V(Loong64I16x8Ne) \ ++ V(Loong64I16x8GtS) \ ++ V(Loong64I16x8GeS) \ ++ V(Loong64I16x8AddSaturateU) \ ++ V(Loong64I16x8SubSaturateU) \ ++ V(Loong64I16x8MaxU) \ ++ V(Loong64I16x8MinU) \ ++ V(Loong64I16x8GtU) \ ++ V(Loong64I16x8GeU) \ ++ V(Loong64I8x16Splat) \ ++ V(Loong64I8x16ExtractLane) \ ++ V(Loong64I8x16ReplaceLane) \ ++ V(Loong64I8x16Neg) \ ++ V(Loong64I8x16Shl) \ ++ V(Loong64I8x16ShrS) \ ++ V(Loong64I8x16Add) \ ++ V(Loong64I8x16AddSaturateS) \ ++ V(Loong64I8x16Sub) \ ++ V(Loong64I8x16SubSaturateS) \ ++ V(Loong64I8x16Mul) \ ++ V(Loong64I8x16MaxS) \ ++ V(Loong64I8x16MinS) \ ++ V(Loong64I8x16Eq) \ ++ V(Loong64I8x16Ne) \ ++ V(Loong64I8x16GtS) \ ++ V(Loong64I8x16GeS) \ ++ V(Loong64I8x16ShrU) \ ++ V(Loong64I8x16AddSaturateU) \ ++ V(Loong64I8x16SubSaturateU) \ ++ V(Loong64I8x16MaxU) \ ++ V(Loong64I8x16MinU) \ ++ V(Loong64I8x16GtU) \ ++ V(Loong64I8x16GeU) \ ++ V(Loong64S128And) \ ++ V(Loong64S128Or) \ ++ V(Loong64S128Xor) \ ++ V(Loong64S128Not) \ ++ V(Loong64S128Select) \ ++ V(Loong64S1x4AnyTrue) \ ++ V(Loong64S1x4AllTrue) \ ++ V(Loong64S1x8AnyTrue) \ ++ V(Loong64S1x8AllTrue) \ ++ V(Loong64S1x16AnyTrue) \ ++ V(Loong64S1x16AllTrue) \ ++ V(Loong64S32x4InterleaveRight) \ ++ V(Loong64S32x4InterleaveLeft) \ ++ V(Loong64S32x4PackEven) \ ++ V(Loong64S32x4PackOdd) \ ++ V(Loong64S32x4InterleaveEven) \ ++ V(Loong64S32x4InterleaveOdd) \ ++ V(Loong64S32x4Shuffle) \ ++ V(Loong64S16x8InterleaveRight) \ ++ V(Loong64S16x8InterleaveLeft) \ ++ V(Loong64S16x8PackEven) \ ++ V(Loong64S16x8PackOdd) \ ++ V(Loong64S16x8InterleaveEven) \ ++ V(Loong64S16x8InterleaveOdd) \ ++ V(Loong64S16x4Reverse) \ ++ V(Loong64S16x2Reverse) \ ++ V(Loong64S8x16InterleaveRight) \ ++ V(Loong64S8x16InterleaveLeft) \ ++ V(Loong64S8x16PackEven) \ ++ V(Loong64S8x16PackOdd) \ ++ V(Loong64S8x16InterleaveEven) \ ++ V(Loong64S8x16InterleaveOdd) \ ++ V(Loong64S8x16Shuffle) \ ++ V(Loong64S8x16Concat) \ ++ V(Loong64S8x8Reverse) \ ++ V(Loong64S8x4Reverse) \ ++ V(Loong64S8x2Reverse) \ ++ V(Loong64MsaLd) \ ++ V(Loong64MsaSt) \ ++ V(Loong64I32x4SConvertI16x8Low) \ ++ V(Loong64I32x4SConvertI16x8High) \ ++ V(Loong64I32x4UConvertI16x8Low) \ ++ V(Loong64I32x4UConvertI16x8High) \ ++ V(Loong64I16x8SConvertI8x16Low) \ ++ V(Loong64I16x8SConvertI8x16High) \ ++ V(Loong64I16x8SConvertI32x4) \ ++ V(Loong64I16x8UConvertI32x4) \ ++ V(Loong64I16x8UConvertI8x16Low) \ ++ V(Loong64I16x8UConvertI8x16High) \ ++ V(Loong64I8x16SConvertI16x8) \ ++ V(Loong64I8x16UConvertI16x8) ++ ++// Addressing modes represent the "shape" of inputs to an instruction. ++// Many instructions support multiple addressing modes. Addressing modes ++// are encoded into the InstructionCode of the instruction and tell the ++// code generator after register allocation which assembler method to call. ++// ++// We use the following local notation for addressing modes: ++// ++// R = register ++// O = register or stack slot ++// D = double register ++// I = immediate (handle, external, int32) ++// MRI = [register + immediate] ++// MRR = [register + register] ++// TODO(plind): Add the new r6 address modes. ++#define TARGET_ADDRESSING_MODE_LIST(V) \ ++ V(MRI) /* [%r0 + K] */ \ ++ V(MRR) /* [%r0 + %r1] */ ++ ++ ++} // namespace compiler ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_COMPILER_LOONG64_INSTRUCTION_CODES_LOONG64_H_ +diff --git a/deps/v8/src/compiler/loong64/instruction-scheduler-loong64.cc b/deps/v8/src/compiler/loong64/instruction-scheduler-loong64.cc +new file mode 100644 +index 0000000..af86a87 +--- /dev/null ++++ b/deps/v8/src/compiler/loong64/instruction-scheduler-loong64.cc +@@ -0,0 +1,26 @@ ++// Copyright 2015 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include "src/compiler/instruction-scheduler.h" ++ ++namespace v8 { ++namespace internal { ++namespace compiler { ++ ++bool InstructionScheduler::SchedulerSupported() { return false; } ++ ++ ++int InstructionScheduler::GetTargetInstructionFlags( ++ const Instruction* instr) const { ++ UNIMPLEMENTED(); ++} ++ ++ ++int InstructionScheduler::GetInstructionLatency(const Instruction* instr) { ++ UNIMPLEMENTED(); ++} ++ ++} // namespace compiler ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/src/compiler/loong64/instruction-selector-loong64.cc b/deps/v8/src/compiler/loong64/instruction-selector-loong64.cc +new file mode 100644 +index 0000000..8f3b292 +--- /dev/null ++++ b/deps/v8/src/compiler/loong64/instruction-selector-loong64.cc +@@ -0,0 +1,2921 @@ ++// Copyright 2014 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include "src/base/adapters.h" ++#include "src/base/bits.h" ++#include "src/compiler/instruction-selector-impl.h" ++#include "src/compiler/node-matchers.h" ++#include "src/compiler/node-properties.h" ++ ++namespace v8 { ++namespace internal { ++namespace compiler { ++ ++#define TRACE_UNIMPL() \ ++ PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) ++ ++#define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) ++ ++ ++// Adds Loong64-specific methods for generating InstructionOperands. ++class Loong64OperandGenerator final : public OperandGenerator { ++ public: ++ explicit Loong64OperandGenerator(InstructionSelector* selector) ++ : OperandGenerator(selector) {} ++ ++ InstructionOperand UseOperand(Node* node, InstructionCode opcode) { ++ if (CanBeImmediate(node, opcode)) { ++ return UseImmediate(node); ++ } ++ return UseRegister(node); ++ } ++ ++ // Use the zero register if the node has the immediate value zero, otherwise ++ // assign a register. ++ InstructionOperand UseRegisterOrImmediateZero(Node* node) { ++ if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || ++ (IsFloatConstant(node) && ++ (bit_cast(GetFloatConstantValue(node)) == 0))) { ++ return UseImmediate(node); ++ } ++ return UseRegister(node); ++ } ++ ++ bool IsIntegerConstant(Node* node) { ++ return (node->opcode() == IrOpcode::kInt32Constant) || ++ (node->opcode() == IrOpcode::kInt64Constant); ++ } ++ ++ int64_t GetIntegerConstantValue(Node* node) { ++ if (node->opcode() == IrOpcode::kInt32Constant) { ++ return OpParameter(node->op()); ++ } ++ DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); ++ return OpParameter(node->op()); ++ } ++ ++ bool IsFloatConstant(Node* node) { ++ return (node->opcode() == IrOpcode::kFloat32Constant) || ++ (node->opcode() == IrOpcode::kFloat64Constant); ++ } ++ ++ double GetFloatConstantValue(Node* node) { ++ if (node->opcode() == IrOpcode::kFloat32Constant) { ++ return OpParameter(node->op()); ++ } ++ DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); ++ return OpParameter(node->op()); ++ } ++ ++ bool CanBeImmediate(Node* node, InstructionCode mode) { ++ return IsIntegerConstant(node) && ++ CanBeImmediate(GetIntegerConstantValue(node), mode); ++ } ++ ++ bool CanBeImmediate(int64_t value, InstructionCode opcode) { ++ switch (ArchOpcodeField::decode(opcode)) { ++ case kLoong64Shl: ++ case kLoong64Sar: ++ case kLoong64Shr: ++ return is_uint5(value); ++ case kLoong64Dshl: ++ case kLoong64Dsar: ++ case kLoong64Dshr: ++ return is_uint6(value); ++ case kLoong64Add: ++ case kLoong64And32: ++ case kLoong64And: ++ case kLoong64Dadd: ++ case kLoong64Or32: ++ case kLoong64Or: ++ case kLoong64Tst: ++ case kLoong64Xor: ++ return is_uint16(value); ++ case kLoong64Lb: ++ case kLoong64Lbu: ++ case kLoong64Sb: ++ case kLoong64Lh: ++ case kLoong64Lhu: ++ case kLoong64Sh: ++ case kLoong64Lw: ++ case kLoong64Sw: ++ case kLoong64Ld: ++ case kLoong64Sd: ++ case kLoong64Lwc1: ++ case kLoong64Swc1: ++ case kLoong64Ldc1: ++ case kLoong64Sdc1: ++ return is_int32(value); ++ default: ++ return is_int16(value); ++ } ++ } ++ ++ private: ++ bool ImmediateFitsAddrMode1Instruction(int32_t imm) const { ++ TRACE_UNIMPL(); ++ return false; ++ } ++}; ++ ++ ++static void VisitRR(InstructionSelector* selector, ArchOpcode opcode, ++ Node* node) { ++ Loong64OperandGenerator g(selector); ++ selector->Emit(opcode, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, ++ Node* node) { ++ Loong64OperandGenerator g(selector); ++ int32_t imm = OpParameter(node->op()); ++ selector->Emit(opcode, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); ++} ++ ++static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, ++ Node* node) { ++ Loong64OperandGenerator g(selector); ++ int32_t imm = OpParameter(node->op()); ++ selector->Emit(opcode, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), ++ g.UseRegister(node->InputAt(1))); ++} ++ ++static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, ++ Node* node) { ++ Loong64OperandGenerator g(selector); ++ selector->Emit(opcode, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), ++ g.UseRegister(node->InputAt(1))); ++} ++ ++void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ++ Loong64OperandGenerator g(selector); ++ selector->Emit( ++ opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), ++ g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); ++} ++ ++static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, ++ Node* node) { ++ Loong64OperandGenerator g(selector); ++ selector->Emit(opcode, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), ++ g.UseOperand(node->InputAt(1), opcode)); ++} ++ ++struct ExtendingLoadMatcher { ++ ExtendingLoadMatcher(Node* node, InstructionSelector* selector) ++ : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { ++ Initialize(node); ++ } ++ ++ bool Matches() const { return matches_; } ++ ++ Node* base() const { ++ DCHECK(Matches()); ++ return base_; ++ } ++ int64_t immediate() const { ++ DCHECK(Matches()); ++ return immediate_; ++ } ++ ArchOpcode opcode() const { ++ DCHECK(Matches()); ++ return opcode_; ++ } ++ ++ private: ++ bool matches_; ++ InstructionSelector* selector_; ++ Node* base_; ++ int64_t immediate_; ++ ArchOpcode opcode_; ++ ++ void Initialize(Node* node) { ++ Int64BinopMatcher m(node); ++ // When loading a 64-bit value and shifting by 32, we should ++ // just load and sign-extend the interesting 4 bytes instead. ++ // This happens, for example, when we're loading and untagging SMIs. ++ DCHECK(m.IsWord64Sar()); ++ if (m.left().IsLoad() && m.right().Is(32) && ++ selector_->CanCover(m.node(), m.left().node())) { ++ MachineRepresentation rep = ++ LoadRepresentationOf(m.left().node()->op()).representation(); ++ DCHECK_EQ(3, ElementSizeLog2Of(rep)); ++ if (rep != MachineRepresentation::kTaggedSigned && ++ rep != MachineRepresentation::kTaggedPointer && ++ rep != MachineRepresentation::kTagged && ++ rep != MachineRepresentation::kWord64) { ++ return; ++ } ++ ++ Loong64OperandGenerator g(selector_); ++ Node* load = m.left().node(); ++ Node* offset = load->InputAt(1); ++ base_ = load->InputAt(0); ++ opcode_ = kLoong64Lw; ++ if (g.CanBeImmediate(offset, opcode_)) { ++#if defined(V8_TARGET_LITTLE_ENDIAN) ++ immediate_ = g.GetIntegerConstantValue(offset) + 4; ++#elif defined(V8_TARGET_BIG_ENDIAN) ++ immediate_ = g.GetIntegerConstantValue(offset); ++#endif ++ matches_ = g.CanBeImmediate(immediate_, kLoong64Lw); ++ } ++ } ++ } ++}; ++ ++bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node, ++ Node* output_node) { ++ ExtendingLoadMatcher m(node, selector); ++ Loong64OperandGenerator g(selector); ++ if (m.Matches()) { ++ InstructionOperand inputs[2]; ++ inputs[0] = g.UseRegister(m.base()); ++ InstructionCode opcode = ++ m.opcode() | AddressingModeField::encode(kMode_MRI); ++ DCHECK(is_int32(m.immediate())); ++ inputs[1] = g.TempImmediate(static_cast(m.immediate())); ++ InstructionOperand outputs[] = {g.DefineAsRegister(output_node)}; ++ selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), ++ inputs); ++ return true; ++ } ++ return false; ++} ++ ++bool TryMatchImmediate(InstructionSelector* selector, ++ InstructionCode* opcode_return, Node* node, ++ size_t* input_count_return, InstructionOperand* inputs) { ++ Loong64OperandGenerator g(selector); ++ if (g.CanBeImmediate(node, *opcode_return)) { ++ *opcode_return |= AddressingModeField::encode(kMode_MRI); ++ inputs[0] = g.UseImmediate(node); ++ *input_count_return = 1; ++ return true; ++ } ++ return false; ++} ++ ++static void VisitBinop(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, bool has_reverse_opcode, ++ InstructionCode reverse_opcode, ++ FlagsContinuation* cont) { ++ Loong64OperandGenerator g(selector); ++ Int32BinopMatcher m(node); ++ InstructionOperand inputs[2]; ++ size_t input_count = 0; ++ InstructionOperand outputs[1]; ++ size_t output_count = 0; ++ ++ if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count, ++ &inputs[1])) { ++ inputs[0] = g.UseRegister(m.left().node()); ++ input_count++; ++ } else if (has_reverse_opcode && ++ TryMatchImmediate(selector, &reverse_opcode, m.left().node(), ++ &input_count, &inputs[1])) { ++ inputs[0] = g.UseRegister(m.right().node()); ++ opcode = reverse_opcode; ++ input_count++; ++ } else { ++ inputs[input_count++] = g.UseRegister(m.left().node()); ++ inputs[input_count++] = g.UseOperand(m.right().node(), opcode); ++ } ++ ++ if (cont->IsDeoptimize()) { ++ // If we can deoptimize as a result of the binop, we need to make sure that ++ // the deopt inputs are not overwritten by the binop result. One way ++ // to achieve that is to declare the output register as same-as-first. ++ outputs[output_count++] = g.DefineSameAsFirst(node); ++ } else { ++ outputs[output_count++] = g.DefineAsRegister(node); ++ } ++ ++ DCHECK_NE(0u, input_count); ++ DCHECK_EQ(1u, output_count); ++ DCHECK_GE(arraysize(inputs), input_count); ++ DCHECK_GE(arraysize(outputs), output_count); ++ ++ selector->EmitWithContinuation(opcode, output_count, outputs, input_count, ++ inputs, cont); ++} ++ ++static void VisitBinop(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, bool has_reverse_opcode, ++ InstructionCode reverse_opcode) { ++ FlagsContinuation cont; ++ VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont); ++} ++ ++static void VisitBinop(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, FlagsContinuation* cont) { ++ VisitBinop(selector, node, opcode, false, kArchNop, cont); ++} ++ ++static void VisitBinop(InstructionSelector* selector, Node* node, ++ InstructionCode opcode) { ++ VisitBinop(selector, node, opcode, false, kArchNop); ++} ++ ++void InstructionSelector::VisitStackSlot(Node* node) { ++ StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); ++ int alignment = rep.alignment(); ++ int slot = frame_->AllocateSpillSlot(rep.size(), alignment); ++ OperandGenerator g(this); ++ ++ Emit(kArchStackSlot, g.DefineAsRegister(node), ++ sequence()->AddImmediate(Constant(slot)), ++ sequence()->AddImmediate(Constant(alignment)), 0, nullptr); ++} ++ ++void InstructionSelector::VisitDebugAbort(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), a0)); ++} ++ ++void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, ++ Node* output = nullptr) { ++ Loong64OperandGenerator g(selector); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ ++ if (g.CanBeImmediate(index, opcode)) { ++ selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(output == nullptr ? node : output), ++ g.UseRegister(base), g.UseImmediate(index)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ selector->Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), ++ addr_reg, g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired load opcode, using temp addr_reg. ++ selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(output == nullptr ? node : output), ++ addr_reg, g.TempImmediate(0)); ++ } ++} ++ ++void InstructionSelector::VisitLoad(Node* node) { ++ LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ++ ++ InstructionCode opcode = kArchNop; ++ switch (load_rep.representation()) { ++ case MachineRepresentation::kFloat32: ++ opcode = kLoong64Lwc1; ++ break; ++ case MachineRepresentation::kFloat64: ++ opcode = kLoong64Ldc1; ++ break; ++ case MachineRepresentation::kBit: // Fall through. ++ case MachineRepresentation::kWord8: ++ opcode = load_rep.IsUnsigned() ? kLoong64Lbu : kLoong64Lb; ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = load_rep.IsUnsigned() ? kLoong64Lhu : kLoong64Lh; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = load_rep.IsUnsigned() ? kLoong64Lwu : kLoong64Lw; ++ break; ++ case MachineRepresentation::kTaggedSigned: // Fall through. ++ case MachineRepresentation::kTaggedPointer: // Fall through. ++ case MachineRepresentation::kTagged: // Fall through. ++ case MachineRepresentation::kWord64: ++ opcode = kLoong64Ld; ++ break; ++ case MachineRepresentation::kSimd128: ++ opcode = kLoong64MsaLd; ++ break; ++ case MachineRepresentation::kNone: ++ UNREACHABLE(); ++ return; ++ } ++ if (node->opcode() == IrOpcode::kPoisonedLoad) { ++ CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); ++ opcode |= MiscField::encode(kMemoryAccessPoisoned); ++ } ++ ++ EmitLoad(this, node, opcode); ++} ++ ++void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } ++ ++void InstructionSelector::VisitProtectedLoad(Node* node) { ++ // TODO(eholk) ++ UNIMPLEMENTED(); ++} ++ ++void InstructionSelector::VisitStore(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* value = node->InputAt(2); ++ ++ StoreRepresentation store_rep = StoreRepresentationOf(node->op()); ++ WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); ++ MachineRepresentation rep = store_rep.representation(); ++ ++ // TODO(LoongArch): I guess this could be done in a better way. ++ if (write_barrier_kind != kNoWriteBarrier) { ++ DCHECK(CanBeTaggedPointer(rep)); ++ InstructionOperand inputs[3]; ++ size_t input_count = 0; ++ inputs[input_count++] = g.UseUniqueRegister(base); ++ inputs[input_count++] = g.UseUniqueRegister(index); ++ inputs[input_count++] = g.UseUniqueRegister(value); ++ RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; ++ switch (write_barrier_kind) { ++ case kNoWriteBarrier: ++ UNREACHABLE(); ++ break; ++ case kMapWriteBarrier: ++ record_write_mode = RecordWriteMode::kValueIsMap; ++ break; ++ case kPointerWriteBarrier: ++ record_write_mode = RecordWriteMode::kValueIsPointer; ++ break; ++ case kFullWriteBarrier: ++ record_write_mode = RecordWriteMode::kValueIsAny; ++ break; ++ } ++ InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; ++ size_t const temp_count = arraysize(temps); ++ InstructionCode code = kArchStoreWithWriteBarrier; ++ code |= MiscField::encode(static_cast(record_write_mode)); ++ Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); ++ } else { ++ ArchOpcode opcode = kArchNop; ++ switch (rep) { ++ case MachineRepresentation::kFloat32: ++ opcode = kLoong64Swc1; ++ break; ++ case MachineRepresentation::kFloat64: ++ opcode = kLoong64Sdc1; ++ break; ++ case MachineRepresentation::kBit: // Fall through. ++ case MachineRepresentation::kWord8: ++ opcode = kLoong64Sb; ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = kLoong64Sh; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = kLoong64Sw; ++ break; ++ case MachineRepresentation::kTaggedSigned: // Fall through. ++ case MachineRepresentation::kTaggedPointer: // Fall through. ++ case MachineRepresentation::kTagged: // Fall through. ++ case MachineRepresentation::kWord64: ++ opcode = kLoong64Sd; ++ break; ++ case MachineRepresentation::kSimd128: ++ opcode = kLoong64MsaSt; ++ break; ++ case MachineRepresentation::kNone: ++ UNREACHABLE(); ++ return; ++ } ++ ++ if (g.CanBeImmediate(index, opcode)) { ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ g.UseRegister(base), g.UseImmediate(index), ++ g.UseRegisterOrImmediateZero(value)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), addr_reg, ++ g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired store opcode, using temp addr_reg. ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); ++ } ++ } ++} ++ ++void InstructionSelector::VisitProtectedStore(Node* node) { ++ // TODO(eholk) ++ UNIMPLEMENTED(); ++} ++ ++void InstructionSelector::VisitWord32And(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && ++ m.right().HasValue()) { ++ uint32_t mask = m.right().Value(); ++ uint32_t mask_width = base::bits::CountPopulation(mask); ++ uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); ++ if ((mask_width != 0) && (mask_msb + mask_width == 32)) { ++ // The mask must be contiguous, and occupy the least-significant bits. ++ DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); ++ ++ // Select Ext for And(Shr(x, imm), mask) where the mask is in the least ++ // significant bits. ++ Int32BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue()) { ++ // Any shift value can match; int32 shifts use `value % 32`. ++ uint32_t lsb = mleft.right().Value() & 0x1F; ++ ++ // Ext cannot extract bits past the register size, however since ++ // shifting the original value would have introduced some zeros we can ++ // still use Ext with a smaller mask and the remaining bits will be ++ // zeros. ++ if (lsb + mask_width > 32) mask_width = 32 - lsb; ++ ++ Emit(kLoong64Ext, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), ++ g.TempImmediate(mask_width)); ++ return; ++ } ++ // Other cases fall through to the normal And operation. ++ } ++ } ++ if (m.right().HasValue()) { ++ uint32_t mask = m.right().Value(); ++ uint32_t shift = base::bits::CountPopulation(~mask); ++ uint32_t msb = base::bits::CountLeadingZeros32(~mask); ++ if (shift != 0 && shift != 32 && msb + shift == 32) { ++ // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction ++ // and remove constant loading of inverted mask. ++ Emit(kLoong64Ins, g.DefineSameAsFirst(node), ++ g.UseRegister(m.left().node()), g.TempImmediate(0), ++ g.TempImmediate(shift)); ++ return; ++ } ++ } ++ VisitBinop(this, node, kLoong64And32, true, kLoong64And32); ++} ++ ++ ++void InstructionSelector::VisitWord64And(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && ++ m.right().HasValue()) { ++ uint64_t mask = m.right().Value(); ++ uint32_t mask_width = base::bits::CountPopulation(mask); ++ uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); ++ if ((mask_width != 0) && (mask_msb + mask_width == 64)) { ++ // The mask must be contiguous, and occupy the least-significant bits. ++ DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); ++ ++ // Select Dext for And(Shr(x, imm), mask) where the mask is in the least ++ // significant bits. ++ Int64BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue()) { ++ // Any shift value can match; int64 shifts use `value % 64`. ++ uint32_t lsb = static_cast(mleft.right().Value() & 0x3F); ++ ++ // Dext cannot extract bits past the register size, however since ++ // shifting the original value would have introduced some zeros we can ++ // still use Dext with a smaller mask and the remaining bits will be ++ // zeros. ++ if (lsb + mask_width > 64) mask_width = 64 - lsb; ++ ++ if (lsb == 0 && mask_width == 64) { ++ Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node())); ++ } else { ++ Emit(kLoong64Dext, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), ++ g.TempImmediate(static_cast(mask_width))); ++ } ++ return; ++ } ++ // Other cases fall through to the normal And operation. ++ } ++ } ++ if (m.right().HasValue()) { ++ uint64_t mask = m.right().Value(); ++ uint32_t shift = base::bits::CountPopulation(~mask); ++ uint32_t msb = base::bits::CountLeadingZeros64(~mask); ++ if (shift != 0 && shift < 32 && msb + shift == 64) { ++ // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction ++ // and remove constant loading of inverted mask. Dins cannot insert bits ++ // past word size, so shifts smaller than 32 are covered. ++ Emit(kLoong64Dins, g.DefineSameAsFirst(node), ++ g.UseRegister(m.left().node()), g.TempImmediate(0), ++ g.TempImmediate(shift)); ++ return; ++ } ++ } ++ VisitBinop(this, node, kLoong64And, true, kLoong64And); ++} ++ ++ ++void InstructionSelector::VisitWord32Or(Node* node) { ++ VisitBinop(this, node, kLoong64Or32, true, kLoong64Or32); ++} ++ ++ ++void InstructionSelector::VisitWord64Or(Node* node) { ++ VisitBinop(this, node, kLoong64Or, true, kLoong64Or); ++} ++ ++ ++void InstructionSelector::VisitWord32Xor(Node* node) { ++ Int32BinopMatcher m(node); ++ if (m.left().IsWord32Or() && CanCover(node, m.left().node()) && ++ m.right().Is(-1)) { ++ Int32BinopMatcher mleft(m.left().node()); ++ if (!mleft.right().HasValue()) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Nor32, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), ++ g.UseRegister(mleft.right().node())); ++ return; ++ } ++ } ++ if (m.right().Is(-1)) { ++ // Use Nor for bit negation and eliminate constant loading for xori. ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Nor32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.TempImmediate(0)); ++ return; ++ } ++ VisitBinop(this, node, kLoong64Xor32, true, kLoong64Xor32); ++} ++ ++ ++void InstructionSelector::VisitWord64Xor(Node* node) { ++ Int64BinopMatcher m(node); ++ if (m.left().IsWord64Or() && CanCover(node, m.left().node()) && ++ m.right().Is(-1)) { ++ Int64BinopMatcher mleft(m.left().node()); ++ if (!mleft.right().HasValue()) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Nor, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), ++ g.UseRegister(mleft.right().node())); ++ return; ++ } ++ } ++ if (m.right().Is(-1)) { ++ // Use Nor for bit negation and eliminate constant loading for xori. ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Nor, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.TempImmediate(0)); ++ return; ++ } ++ VisitBinop(this, node, kLoong64Xor, true, kLoong64Xor); ++} ++ ++ ++void InstructionSelector::VisitWord32Shl(Node* node) { ++ Int32BinopMatcher m(node); ++ if (m.left().IsWord32And() && CanCover(node, m.left().node()) && ++ m.right().IsInRange(1, 31)) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher mleft(m.left().node()); ++ // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is ++ // contiguous, and the shift immediate non-zero. ++ if (mleft.right().HasValue()) { ++ uint32_t mask = mleft.right().Value(); ++ uint32_t mask_width = base::bits::CountPopulation(mask); ++ uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); ++ if ((mask_width != 0) && (mask_msb + mask_width == 32)) { ++ uint32_t shift = m.right().Value(); ++ DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); ++ DCHECK_NE(0u, shift); ++ if ((shift + mask_width) >= 32) { ++ // If the mask is contiguous and reaches or extends beyond the top ++ // bit, only the shift is needed. ++ Emit(kLoong64Shl, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), ++ g.UseImmediate(m.right().node())); ++ return; ++ } ++ } ++ } ++ } ++ VisitRRO(this, kLoong64Shl, node); ++} ++ ++ ++void InstructionSelector::VisitWord32Shr(Node* node) { ++ Int32BinopMatcher m(node); ++ if (m.left().IsWord32And() && m.right().HasValue()) { ++ uint32_t lsb = m.right().Value() & 0x1F; ++ Int32BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue() && mleft.right().Value() != 0) { ++ // Select Ext for Shr(And(x, mask), imm) where the result of the mask is ++ // shifted into the least-significant bits. ++ uint32_t mask = (mleft.right().Value() >> lsb) << lsb; ++ unsigned mask_width = base::bits::CountPopulation(mask); ++ unsigned mask_msb = base::bits::CountLeadingZeros32(mask); ++ if ((mask_msb + mask_width + lsb) == 32) { ++ Loong64OperandGenerator g(this); ++ DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); ++ Emit(kLoong64Ext, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), ++ g.TempImmediate(mask_width)); ++ return; ++ } ++ } ++ } ++ VisitRRO(this, kLoong64Shr, node); ++} ++ ++ ++void InstructionSelector::VisitWord32Sar(Node* node) { ++ Int32BinopMatcher m(node); ++ if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) { ++ Int32BinopMatcher mleft(m.left().node()); ++ if (m.right().HasValue() && mleft.right().HasValue()) { ++ Loong64OperandGenerator g(this); ++ uint32_t sar = m.right().Value(); ++ uint32_t shl = mleft.right().Value(); ++ if ((sar == shl) && (sar == 16)) { ++ Emit(kLoong64Seh, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node())); ++ return; ++ } else if ((sar == shl) && (sar == 24)) { ++ Emit(kLoong64Seb, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node())); ++ return; ++ } else if ((sar == shl) && (sar == 32)) { ++ Emit(kLoong64Shl, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), g.TempImmediate(0)); ++ return; ++ } ++ } ++ } ++ VisitRRO(this, kLoong64Sar, node); ++} ++ ++ ++void InstructionSelector::VisitWord64Shl(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && ++ m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { ++ // There's no need to sign/zero-extend to 64-bit if we shift out the upper ++ // 32 bits anyway. ++ Emit(kLoong64Dshl, g.DefineSameAsFirst(node), ++ g.UseRegister(m.left().node()->InputAt(0)), ++ g.UseImmediate(m.right().node())); ++ return; ++ } ++ if (m.left().IsWord64And() && CanCover(node, m.left().node()) && ++ m.right().IsInRange(1, 63)) { ++ // Match Word64Shl(Word64And(x, mask), imm) to Dshl where the mask is ++ // contiguous, and the shift immediate non-zero. ++ Int64BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue()) { ++ uint64_t mask = mleft.right().Value(); ++ uint32_t mask_width = base::bits::CountPopulation(mask); ++ uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); ++ if ((mask_width != 0) && (mask_msb + mask_width == 64)) { ++ uint64_t shift = m.right().Value(); ++ DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); ++ DCHECK_NE(0u, shift); ++ ++ if ((shift + mask_width) >= 64) { ++ // If the mask is contiguous and reaches or extends beyond the top ++ // bit, only the shift is needed. ++ Emit(kLoong64Dshl, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), ++ g.UseImmediate(m.right().node())); ++ return; ++ } ++ } ++ } ++ } ++ VisitRRO(this, kLoong64Dshl, node); ++} ++ ++ ++void InstructionSelector::VisitWord64Shr(Node* node) { ++ Int64BinopMatcher m(node); ++ if (m.left().IsWord64And() && m.right().HasValue()) { ++ uint32_t lsb = m.right().Value() & 0x3F; ++ Int64BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue() && mleft.right().Value() != 0) { ++ // Select Dext for Shr(And(x, mask), imm) where the result of the mask is ++ // shifted into the least-significant bits. ++ uint64_t mask = (mleft.right().Value() >> lsb) << lsb; ++ unsigned mask_width = base::bits::CountPopulation(mask); ++ unsigned mask_msb = base::bits::CountLeadingZeros64(mask); ++ if ((mask_msb + mask_width + lsb) == 64) { ++ Loong64OperandGenerator g(this); ++ DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); ++ Emit(kLoong64Dext, g.DefineAsRegister(node), ++ g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), ++ g.TempImmediate(mask_width)); ++ return; ++ } ++ } ++ } ++ VisitRRO(this, kLoong64Dshr, node); ++} ++ ++ ++void InstructionSelector::VisitWord64Sar(Node* node) { ++ if (TryEmitExtendingLoad(this, node, node)) return; ++ VisitRRO(this, kLoong64Dsar, node); ++} ++ ++ ++void InstructionSelector::VisitWord32Ror(Node* node) { ++ VisitRRO(this, kLoong64Ror, node); ++} ++ ++ ++void InstructionSelector::VisitWord32Clz(Node* node) { ++ VisitRR(this, kLoong64Clz, node); ++} ++ ++ ++void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } ++ ++ ++void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } ++ ++void InstructionSelector::VisitWord64ReverseBytes(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64ByteSwap64, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitWord32ReverseBytes(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64ByteSwap32, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitWord32Ctz(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Ctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++ ++void InstructionSelector::VisitWord64Ctz(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Dctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++ ++void InstructionSelector::VisitWord32Popcnt(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Popcnt, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++ ++void InstructionSelector::VisitWord64Popcnt(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Dpopcnt, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++ ++void InstructionSelector::VisitWord64Ror(Node* node) { ++ VisitRRO(this, kLoong64Dror, node); ++} ++ ++ ++void InstructionSelector::VisitWord64Clz(Node* node) { ++ VisitRR(this, kLoong64Dclz, node); ++} ++ ++ ++void InstructionSelector::VisitInt32Add(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ ++ // Select Lsa for (left + (left_of_right << imm)). ++ if (m.right().opcode() == IrOpcode::kWord32Shl && ++ CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { ++ Int32BinopMatcher mright(m.right().node()); ++ if (mright.right().HasValue() && !m.left().HasValue()) { ++ int32_t shift_value = static_cast(mright.right().Value()); ++ Emit(kLoong64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(mright.left().node()), g.TempImmediate(shift_value)); ++ return; ++ } ++ } ++ ++ // Select Lsa for ((left_of_left << imm) + right). ++ if (m.left().opcode() == IrOpcode::kWord32Shl && ++ CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { ++ Int32BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue() && !m.right().HasValue()) { ++ int32_t shift_value = static_cast(mleft.right().Value()); ++ Emit(kLoong64Lsa, g.DefineAsRegister(node), ++ g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), ++ g.TempImmediate(shift_value)); ++ return; ++ } ++ } ++ VisitBinop(this, node, kLoong64Add, true, kLoong64Add); ++} ++ ++ ++void InstructionSelector::VisitInt64Add(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ ++ // Select Dlsa for (left + (left_of_right << imm)). ++ if (m.right().opcode() == IrOpcode::kWord64Shl && ++ CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { ++ Int64BinopMatcher mright(m.right().node()); ++ if (mright.right().HasValue() && !m.left().HasValue()) { ++ int32_t shift_value = static_cast(mright.right().Value()); ++ Emit(kLoong64Dlsa, g.DefineAsRegister(node), ++ g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), ++ g.TempImmediate(shift_value)); ++ return; ++ } ++ } ++ ++ // Select Dlsa for ((left_of_left << imm) + right). ++ if (m.left().opcode() == IrOpcode::kWord64Shl && ++ CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { ++ Int64BinopMatcher mleft(m.left().node()); ++ if (mleft.right().HasValue() && !m.right().HasValue()) { ++ int32_t shift_value = static_cast(mleft.right().Value()); ++ Emit(kLoong64Dlsa, g.DefineAsRegister(node), ++ g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), ++ g.TempImmediate(shift_value)); ++ return; ++ } ++ } ++ ++ VisitBinop(this, node, kLoong64Dadd, true, kLoong64Dadd); ++} ++ ++ ++void InstructionSelector::VisitInt32Sub(Node* node) { ++ VisitBinop(this, node, kLoong64Sub); ++} ++ ++ ++void InstructionSelector::VisitInt64Sub(Node* node) { ++ VisitBinop(this, node, kLoong64Dsub); ++} ++ ++ ++void InstructionSelector::VisitInt32Mul(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ if (m.right().HasValue() && m.right().Value() > 0) { ++ uint32_t value = static_cast(m.right().Value()); ++ if (base::bits::IsPowerOfTwo(value)) { ++ Emit(kLoong64Shl | AddressingModeField::encode(kMode_None), ++ g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value))); ++ return; ++ } ++ if (base::bits::IsPowerOfTwo(value - 1)) { ++ Emit(kLoong64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value - 1))); ++ return; ++ } ++ if (base::bits::IsPowerOfTwo(value + 1)) { ++ InstructionOperand temp = g.TempRegister(); ++ Emit(kLoong64Shl | AddressingModeField::encode(kMode_None), temp, ++ g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value + 1))); ++ Emit(kLoong64Sub | AddressingModeField::encode(kMode_None), ++ g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); ++ return; ++ } ++ } ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ if (CanCover(node, left) && CanCover(node, right)) { ++ if (left->opcode() == IrOpcode::kWord64Sar && ++ right->opcode() == IrOpcode::kWord64Sar) { ++ Int64BinopMatcher leftInput(left), rightInput(right); ++ if (leftInput.right().Is(32) && rightInput.right().Is(32)) { ++ // Combine untagging shifts with Dmul high. ++ Emit(kLoong64DMulHigh, g.DefineSameAsFirst(node), ++ g.UseRegister(leftInput.left().node()), ++ g.UseRegister(rightInput.left().node())); ++ return; ++ } ++ } ++ } ++ VisitRRR(this, kLoong64Mul, node); ++} ++ ++ ++void InstructionSelector::VisitInt32MulHigh(Node* node) { ++ VisitRRR(this, kLoong64MulHigh, node); ++} ++ ++ ++void InstructionSelector::VisitUint32MulHigh(Node* node) { ++ VisitRRR(this, kLoong64MulHighU, node); ++} ++ ++ ++void InstructionSelector::VisitInt64Mul(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ // TODO(dusmil): Add optimization for shifts larger than 32. ++ if (m.right().HasValue() && m.right().Value() > 0) { ++ uint64_t value = static_cast(m.right().Value()); ++ if (base::bits::IsPowerOfTwo(value)) { ++ Emit(kLoong64Dshl | AddressingModeField::encode(kMode_None), ++ g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value))); ++ return; ++ } ++ if (base::bits::IsPowerOfTwo(value - 1)) { ++ // Dlsa macro will handle the shifting value out of bound cases. ++ Emit(kLoong64Dlsa, g.DefineAsRegister(node), ++ g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value - 1))); ++ return; ++ } ++ if (base::bits::IsPowerOfTwo(value + 1)) { ++ InstructionOperand temp = g.TempRegister(); ++ Emit(kLoong64Dshl | AddressingModeField::encode(kMode_None), temp, ++ g.UseRegister(m.left().node()), ++ g.TempImmediate(WhichPowerOf2(value + 1))); ++ Emit(kLoong64Dsub | AddressingModeField::encode(kMode_None), ++ g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); ++ return; ++ } ++ } ++ Emit(kLoong64Dmul, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitInt32Div(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ if (CanCover(node, left) && CanCover(node, right)) { ++ if (left->opcode() == IrOpcode::kWord64Sar && ++ right->opcode() == IrOpcode::kWord64Sar) { ++ Int64BinopMatcher rightInput(right), leftInput(left); ++ if (rightInput.right().Is(32) && leftInput.right().Is(32)) { ++ // Combine both shifted operands with Ddiv. ++ Emit(kLoong64Ddiv, g.DefineSameAsFirst(node), ++ g.UseRegister(leftInput.left().node()), ++ g.UseRegister(rightInput.left().node())); ++ return; ++ } ++ } ++ } ++ Emit(kLoong64Div, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitUint32Div(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ Emit(kLoong64DivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitInt32Mod(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ if (CanCover(node, left) && CanCover(node, right)) { ++ if (left->opcode() == IrOpcode::kWord64Sar && ++ right->opcode() == IrOpcode::kWord64Sar) { ++ Int64BinopMatcher rightInput(right), leftInput(left); ++ if (rightInput.right().Is(32) && leftInput.right().Is(32)) { ++ // Combine both shifted operands with Dmod. ++ Emit(kLoong64Dmod, g.DefineSameAsFirst(node), ++ g.UseRegister(leftInput.left().node()), ++ g.UseRegister(rightInput.left().node())); ++ return; ++ } ++ } ++ } ++ Emit(kLoong64Mod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitUint32Mod(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int32BinopMatcher m(node); ++ Emit(kLoong64ModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitInt64Div(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ Emit(kLoong64Ddiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitUint64Div(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ Emit(kLoong64DdivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitInt64Mod(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ Emit(kLoong64Dmod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitUint64Mod(Node* node) { ++ Loong64OperandGenerator g(this); ++ Int64BinopMatcher m(node); ++ Emit(kLoong64DmodU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), ++ g.UseRegister(m.right().node())); ++} ++ ++ ++void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { ++ VisitRR(this, kLoong64CvtDS, node); ++} ++ ++ ++void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { ++ VisitRR(this, kLoong64CvtSW, node); ++} ++ ++ ++void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { ++ VisitRR(this, kLoong64CvtSUw, node); ++} ++ ++ ++void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { ++ VisitRR(this, kLoong64CvtDW, node); ++} ++ ++ ++void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { ++ VisitRR(this, kLoong64CvtDUw, node); ++} ++ ++ ++void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { ++ VisitRR(this, kLoong64TruncWS, node); ++} ++ ++ ++void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { ++ VisitRR(this, kLoong64TruncUwS, node); ++} ++ ++ ++void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* value = node->InputAt(0); ++ // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction ++ // which does rounding and conversion to integer format. ++ if (CanCover(node, value)) { ++ switch (value->opcode()) { ++ case IrOpcode::kFloat64RoundDown: ++ Emit(kLoong64FloorWD, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ case IrOpcode::kFloat64RoundUp: ++ Emit(kLoong64CeilWD, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ case IrOpcode::kFloat64RoundTiesEven: ++ Emit(kLoong64RoundWD, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ case IrOpcode::kFloat64RoundTruncate: ++ Emit(kLoong64TruncWD, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ default: ++ break; ++ } ++ if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) { ++ Node* next = value->InputAt(0); ++ if (CanCover(value, next)) { ++ // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP)) ++ switch (next->opcode()) { ++ case IrOpcode::kFloat32RoundDown: ++ Emit(kLoong64FloorWS, g.DefineAsRegister(node), ++ g.UseRegister(next->InputAt(0))); ++ return; ++ case IrOpcode::kFloat32RoundUp: ++ Emit(kLoong64CeilWS, g.DefineAsRegister(node), ++ g.UseRegister(next->InputAt(0))); ++ return; ++ case IrOpcode::kFloat32RoundTiesEven: ++ Emit(kLoong64RoundWS, g.DefineAsRegister(node), ++ g.UseRegister(next->InputAt(0))); ++ return; ++ case IrOpcode::kFloat32RoundTruncate: ++ Emit(kLoong64TruncWS, g.DefineAsRegister(node), ++ g.UseRegister(next->InputAt(0))); ++ return; ++ default: ++ Emit(kLoong64TruncWS, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ } ++ } else { ++ // Match float32 -> float64 -> int32 representation change path. ++ Emit(kLoong64TruncWS, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ } ++ } ++ } ++ VisitRR(this, kLoong64TruncWD, node); ++} ++ ++ ++void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { ++ VisitRR(this, kLoong64TruncUwD, node); ++} ++ ++void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { ++ VisitRR(this, kLoong64TruncUlD, node); ++} ++ ++void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { ++ VisitRR(this, kLoong64TruncUwD, node); ++} ++ ++void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { ++ Loong64OperandGenerator g(this); ++ InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; ++ InstructionOperand outputs[2]; ++ size_t output_count = 0; ++ outputs[output_count++] = g.DefineAsRegister(node); ++ ++ Node* success_output = NodeProperties::FindProjection(node, 1); ++ if (success_output) { ++ outputs[output_count++] = g.DefineAsRegister(success_output); ++ } ++ ++ this->Emit(kLoong64TruncLS, output_count, outputs, 1, inputs); ++} ++ ++ ++void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { ++ Loong64OperandGenerator g(this); ++ InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; ++ InstructionOperand outputs[2]; ++ size_t output_count = 0; ++ outputs[output_count++] = g.DefineAsRegister(node); ++ ++ Node* success_output = NodeProperties::FindProjection(node, 1); ++ if (success_output) { ++ outputs[output_count++] = g.DefineAsRegister(success_output); ++ } ++ ++ Emit(kLoong64TruncLD, output_count, outputs, 1, inputs); ++} ++ ++ ++void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { ++ Loong64OperandGenerator g(this); ++ InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; ++ InstructionOperand outputs[2]; ++ size_t output_count = 0; ++ outputs[output_count++] = g.DefineAsRegister(node); ++ ++ Node* success_output = NodeProperties::FindProjection(node, 1); ++ if (success_output) { ++ outputs[output_count++] = g.DefineAsRegister(success_output); ++ } ++ ++ Emit(kLoong64TruncUlS, output_count, outputs, 1, inputs); ++} ++ ++ ++void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { ++ Loong64OperandGenerator g(this); ++ ++ InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; ++ InstructionOperand outputs[2]; ++ size_t output_count = 0; ++ outputs[output_count++] = g.DefineAsRegister(node); ++ ++ Node* success_output = NodeProperties::FindProjection(node, 1); ++ if (success_output) { ++ outputs[output_count++] = g.DefineAsRegister(success_output); ++ } ++ ++ Emit(kLoong64TruncUlD, output_count, outputs, 1, inputs); ++} ++ ++ ++void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { ++ Node* value = node->InputAt(0); ++ if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { ++ // Generate sign-extending load. ++ LoadRepresentation load_rep = LoadRepresentationOf(value->op()); ++ InstructionCode opcode = kArchNop; ++ switch (load_rep.representation()) { ++ case MachineRepresentation::kBit: // Fall through. ++ case MachineRepresentation::kWord8: ++ opcode = load_rep.IsUnsigned() ? kLoong64Lbu : kLoong64Lb; ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = load_rep.IsUnsigned() ? kLoong64Lhu : kLoong64Lh; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = kLoong64Lw; ++ break; ++ default: ++ UNREACHABLE(); ++ return; ++ } ++ EmitLoad(this, value, opcode, node); ++ } else { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(0)); ++ } ++} ++ ++ ++void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* value = node->InputAt(0); ++ switch (value->opcode()) { ++ // 32-bit operations will write their result in a 64 bit register, ++ // clearing the top 32 bits of the destination register. ++ case IrOpcode::kUint32Div: ++ case IrOpcode::kUint32Mod: ++ case IrOpcode::kUint32MulHigh: { ++ Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); ++ return; ++ } ++ case IrOpcode::kLoad: { ++ LoadRepresentation load_rep = LoadRepresentationOf(value->op()); ++ if (load_rep.IsUnsigned()) { ++ switch (load_rep.representation()) { ++ case MachineRepresentation::kWord8: ++ case MachineRepresentation::kWord16: ++ case MachineRepresentation::kWord32: ++ Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); ++ return; ++ default: ++ break; ++ } ++ } ++ break; ++ } ++ default: ++ break; ++ } ++ Emit(kLoong64Dext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(0), g.TempImmediate(32)); ++} ++ ++ ++void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* value = node->InputAt(0); ++ if (CanCover(node, value)) { ++ switch (value->opcode()) { ++ case IrOpcode::kWord64Sar: { ++ if (TryEmitExtendingLoad(this, value, node)) { ++ return; ++ } else { ++ Int64BinopMatcher m(value); ++ if (m.right().IsInRange(32, 63)) { ++ // After smi untagging no need for truncate. Combine sequence. ++ Emit(kLoong64Dsar, g.DefineSameAsFirst(node), ++ g.UseRegister(m.left().node()), ++ g.UseImmediate(m.right().node())); ++ return; ++ } ++ } ++ break; ++ } ++ default: ++ break; ++ } ++ } ++ Emit(kLoong64Ext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(0), g.TempImmediate(32)); ++} ++ ++ ++void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* value = node->InputAt(0); ++ // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding ++ // instruction. ++ if (CanCover(node, value) && ++ value->opcode() == IrOpcode::kChangeInt32ToFloat64) { ++ Emit(kLoong64CvtSW, g.DefineAsRegister(node), ++ g.UseRegister(value->InputAt(0))); ++ return; ++ } ++ VisitRR(this, kLoong64CvtSD, node); ++} ++ ++void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { ++ VisitRR(this, kArchTruncateDoubleToI, node); ++} ++ ++void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { ++ VisitRR(this, kLoong64TruncWD, node); ++} ++ ++void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { ++ VisitRR(this, kLoong64CvtSL, node); ++} ++ ++ ++void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { ++ VisitRR(this, kLoong64CvtDL, node); ++} ++ ++ ++void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { ++ VisitRR(this, kLoong64CvtSUl, node); ++} ++ ++ ++void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { ++ VisitRR(this, kLoong64CvtDUl, node); ++} ++ ++ ++void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { ++ VisitRR(this, kLoong64Float64ExtractLowWord32, node); ++} ++ ++ ++void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { ++ VisitRR(this, kLoong64BitcastDL, node); ++} ++ ++ ++void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Float64InsertLowWord32, g.DefineAsRegister(node), ++ ImmediateOperand(ImmediateOperand::INLINE, 0), ++ g.UseRegister(node->InputAt(0))); ++} ++ ++ ++void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { ++ VisitRR(this, kLoong64BitcastLD, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32Add(Node* node) { ++ // Optimization with Madd.S(z, x, y) is intentionally removed. ++ // See explanation for madd_s in assembler-mips64.cc. ++ VisitRRR(this, kLoong64AddS, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Add(Node* node) { ++ // Optimization with Madd.D(z, x, y) is intentionally removed. ++ // See explanation for madd_d in assembler-mips64.cc. ++ VisitRRR(this, kLoong64AddD, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32Sub(Node* node) { ++ // Optimization with Msub.S(z, x, y) is intentionally removed. ++ // See explanation for madd_s in assembler-mips64.cc. ++ VisitRRR(this, kLoong64SubS, node); ++} ++ ++void InstructionSelector::VisitFloat64Sub(Node* node) { ++ // Optimization with Msub.D(z, x, y) is intentionally removed. ++ // See explanation for madd_d in assembler-mips64.cc. ++ VisitRRR(this, kLoong64SubD, node); ++} ++ ++void InstructionSelector::VisitFloat32Mul(Node* node) { ++ VisitRRR(this, kLoong64MulS, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Mul(Node* node) { ++ VisitRRR(this, kLoong64MulD, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32Div(Node* node) { ++ VisitRRR(this, kLoong64DivS, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Div(Node* node) { ++ VisitRRR(this, kLoong64DivD, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Mod(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64ModD, g.DefineAsFixed(node, f0), ++ g.UseFixed(node->InputAt(0), f12), ++ g.UseFixed(node->InputAt(1), f14))->MarkAsCall(); ++} ++ ++void InstructionSelector::VisitFloat32Max(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Float32Max, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); ++} ++ ++void InstructionSelector::VisitFloat64Max(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Float64Max, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); ++} ++ ++void InstructionSelector::VisitFloat32Min(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Float32Min, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); ++} ++ ++void InstructionSelector::VisitFloat64Min(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Float64Min, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); ++} ++ ++ ++void InstructionSelector::VisitFloat32Abs(Node* node) { ++ VisitRR(this, kLoong64AbsS, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Abs(Node* node) { ++ VisitRR(this, kLoong64AbsD, node); ++} ++ ++void InstructionSelector::VisitFloat32Sqrt(Node* node) { ++ VisitRR(this, kLoong64SqrtS, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64Sqrt(Node* node) { ++ VisitRR(this, kLoong64SqrtD, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32RoundDown(Node* node) { ++ VisitRR(this, kLoong64Float32RoundDown, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64RoundDown(Node* node) { ++ VisitRR(this, kLoong64Float64RoundDown, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32RoundUp(Node* node) { ++ VisitRR(this, kLoong64Float32RoundUp, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64RoundUp(Node* node) { ++ VisitRR(this, kLoong64Float64RoundUp, node); ++} ++ ++ ++void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { ++ VisitRR(this, kLoong64Float32RoundTruncate, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { ++ VisitRR(this, kLoong64Float64RoundTruncate, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { ++ UNREACHABLE(); ++} ++ ++ ++void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { ++ VisitRR(this, kLoong64Float32RoundTiesEven, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { ++ VisitRR(this, kLoong64Float64RoundTiesEven, node); ++} ++ ++void InstructionSelector::VisitFloat32Neg(Node* node) { ++ VisitRR(this, kLoong64NegS, node); ++} ++ ++void InstructionSelector::VisitFloat64Neg(Node* node) { ++ VisitRR(this, kLoong64NegD, node); ++} ++ ++void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, ++ InstructionCode opcode) { ++ Loong64OperandGenerator g(this); ++ Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2), ++ g.UseFixed(node->InputAt(1), f4)) ++ ->MarkAsCall(); ++} ++ ++void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, ++ InstructionCode opcode) { ++ Loong64OperandGenerator g(this); ++ Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12)) ++ ->MarkAsCall(); ++} ++ ++void InstructionSelector::EmitPrepareArguments( ++ ZoneVector* arguments, const CallDescriptor* call_descriptor, ++ Node* node) { ++ Loong64OperandGenerator g(this); ++ ++ // Prepare for C function call. ++ if (call_descriptor->IsCFunctionCall()) { ++ Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast( ++ call_descriptor->ParameterCount())), ++ 0, nullptr, 0, nullptr); ++ ++ // Poke any stack arguments. ++ int slot = kCArgSlotCount; ++ for (PushParameter input : (*arguments)) { ++ Emit(kLoong64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), ++ g.TempImmediate(slot << kPointerSizeLog2)); ++ ++slot; ++ } ++ } else { ++ int push_count = static_cast(call_descriptor->StackParameterCount()); ++ if (push_count > 0) { ++ // Calculate needed space ++ int stack_size = 0; ++ for (PushParameter input : (*arguments)) { ++ if (input.node) { ++ stack_size += input.location.GetSizeInPointers(); ++ } ++ } ++ Emit(kLoong64StackClaim, g.NoOutput(), ++ g.TempImmediate(stack_size << kPointerSizeLog2)); ++ } ++ for (size_t n = 0; n < arguments->size(); ++n) { ++ PushParameter input = (*arguments)[n]; ++ if (input.node) { ++ Emit(kLoong64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), ++ g.TempImmediate(static_cast(n << kPointerSizeLog2))); ++ } ++ } ++ } ++} ++ ++void InstructionSelector::EmitPrepareResults( ++ ZoneVector* results, const CallDescriptor* call_descriptor, ++ Node* node) { ++ Loong64OperandGenerator g(this); ++ ++ int reverse_slot = 0; ++ for (PushParameter output : *results) { ++ if (!output.location.IsCallerFrameSlot()) continue; ++ // Skip any alignment holes in nodes. ++ if (output.node != nullptr) { ++ DCHECK(!call_descriptor->IsCFunctionCall()); ++ if (output.location.GetType() == MachineType::Float32()) { ++ MarkAsFloat32(output.node); ++ } else if (output.location.GetType() == MachineType::Float64()) { ++ MarkAsFloat64(output.node); ++ } ++ Emit(kLoong64Peek, g.DefineAsRegister(output.node), ++ g.UseImmediate(reverse_slot)); ++ } ++ reverse_slot += output.location.GetSizeInPointers(); ++ } ++} ++ ++bool InstructionSelector::IsTailCallAddressImmediate() { return false; } ++ ++int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } ++ ++void InstructionSelector::VisitUnalignedLoad(Node* node) { ++ LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ ++ ArchOpcode opcode = kArchNop; ++ switch (load_rep.representation()) { ++ case MachineRepresentation::kFloat32: ++ opcode = kLoong64Ulwc1; ++ break; ++ case MachineRepresentation::kFloat64: ++ opcode = kLoong64Uldc1; ++ break; ++ case MachineRepresentation::kBit: // Fall through. ++ case MachineRepresentation::kWord8: ++ UNREACHABLE(); ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = load_rep.IsUnsigned() ? kLoong64Ulhu : kLoong64Ulh; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = load_rep.IsUnsigned() ? kLoong64Ulwu : kLoong64Ulw; ++ break; ++ case MachineRepresentation::kTaggedSigned: // Fall through. ++ case MachineRepresentation::kTaggedPointer: // Fall through. ++ case MachineRepresentation::kTagged: // Fall through. ++ case MachineRepresentation::kWord64: ++ opcode = kLoong64Uld; ++ break; ++ case MachineRepresentation::kSimd128: ++ opcode = kLoong64MsaLd; ++ break; ++ case MachineRepresentation::kNone: ++ UNREACHABLE(); ++ return; ++ } ++ ++ if (g.CanBeImmediate(index, opcode)) { ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), addr_reg, ++ g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired load opcode, using temp addr_reg. ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); ++ } ++} ++ ++void InstructionSelector::VisitUnalignedStore(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* value = node->InputAt(2); ++ ++ UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op()); ++ ArchOpcode opcode = kArchNop; ++ switch (rep) { ++ case MachineRepresentation::kFloat32: ++ opcode = kLoong64Uswc1; ++ break; ++ case MachineRepresentation::kFloat64: ++ opcode = kLoong64Usdc1; ++ break; ++ case MachineRepresentation::kBit: // Fall through. ++ case MachineRepresentation::kWord8: ++ UNREACHABLE(); ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = kLoong64Ush; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = kLoong64Usw; ++ break; ++ case MachineRepresentation::kTaggedSigned: // Fall through. ++ case MachineRepresentation::kTaggedPointer: // Fall through. ++ case MachineRepresentation::kTagged: // Fall through. ++ case MachineRepresentation::kWord64: ++ opcode = kLoong64Usd; ++ break; ++ case MachineRepresentation::kSimd128: ++ opcode = kLoong64MsaSt; ++ break; ++ case MachineRepresentation::kNone: ++ UNREACHABLE(); ++ return; ++ } ++ ++ if (g.CanBeImmediate(index, opcode)) { ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ g.UseRegister(base), g.UseImmediate(index), ++ g.UseRegisterOrImmediateZero(value)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), addr_reg, ++ g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired store opcode, using temp addr_reg. ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); ++ } ++} ++ ++namespace { ++ ++// Shared routine for multiple compare operations. ++static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, ++ InstructionOperand left, InstructionOperand right, ++ FlagsContinuation* cont) { ++ selector->EmitWithContinuation(opcode, left, right, cont); ++} ++ ++ ++// Shared routine for multiple float32 compare operations. ++void VisitFloat32Compare(InstructionSelector* selector, Node* node, ++ FlagsContinuation* cont) { ++ Loong64OperandGenerator g(selector); ++ Float32BinopMatcher m(node); ++ InstructionOperand lhs, rhs; ++ ++ lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) ++ : g.UseRegister(m.left().node()); ++ rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) ++ : g.UseRegister(m.right().node()); ++ VisitCompare(selector, kLoong64CmpS, lhs, rhs, cont); ++} ++ ++ ++// Shared routine for multiple float64 compare operations. ++void VisitFloat64Compare(InstructionSelector* selector, Node* node, ++ FlagsContinuation* cont) { ++ Loong64OperandGenerator g(selector); ++ Float64BinopMatcher m(node); ++ InstructionOperand lhs, rhs; ++ ++ lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) ++ : g.UseRegister(m.left().node()); ++ rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) ++ : g.UseRegister(m.right().node()); ++ VisitCompare(selector, kLoong64CmpD, lhs, rhs, cont); ++} ++ ++ ++// Shared routine for multiple word compare operations. ++void VisitWordCompare(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, FlagsContinuation* cont, ++ bool commutative) { ++ Loong64OperandGenerator g(selector); ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ ++ // Match immediates on left or right side of comparison. ++ if (g.CanBeImmediate(right, opcode)) { ++ if (opcode == kLoong64Tst) { ++ VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), ++ cont); ++ } else { ++ switch (cont->condition()) { ++ case kEqual: ++ case kNotEqual: ++ if (cont->IsSet()) { ++ VisitCompare(selector, opcode, g.UseRegister(left), ++ g.UseImmediate(right), cont); ++ } else { ++ VisitCompare(selector, opcode, g.UseRegister(left), ++ g.UseRegister(right), cont); ++ } ++ break; ++ case kSignedLessThan: ++ case kSignedGreaterThanOrEqual: ++ case kUnsignedLessThan: ++ case kUnsignedGreaterThanOrEqual: ++ VisitCompare(selector, opcode, g.UseRegister(left), ++ g.UseImmediate(right), cont); ++ break; ++ default: ++ VisitCompare(selector, opcode, g.UseRegister(left), ++ g.UseRegister(right), cont); ++ } ++ } ++ } else if (g.CanBeImmediate(left, opcode)) { ++ if (!commutative) cont->Commute(); ++ if (opcode == kLoong64Tst) { ++ VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), ++ cont); ++ } else { ++ switch (cont->condition()) { ++ case kEqual: ++ case kNotEqual: ++ if (cont->IsSet()) { ++ VisitCompare(selector, opcode, g.UseRegister(right), ++ g.UseImmediate(left), cont); ++ } else { ++ VisitCompare(selector, opcode, g.UseRegister(right), ++ g.UseRegister(left), cont); ++ } ++ break; ++ case kSignedLessThan: ++ case kSignedGreaterThanOrEqual: ++ case kUnsignedLessThan: ++ case kUnsignedGreaterThanOrEqual: ++ VisitCompare(selector, opcode, g.UseRegister(right), ++ g.UseImmediate(left), cont); ++ break; ++ default: ++ VisitCompare(selector, opcode, g.UseRegister(right), ++ g.UseRegister(left), cont); ++ } ++ } ++ } else { ++ VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), ++ cont); ++ } ++} ++ ++bool IsNodeUnsigned(Node* n) { ++ NodeMatcher m(n); ++ ++ if (m.IsLoad()) { ++ LoadRepresentation load_rep = LoadRepresentationOf(n->op()); ++ return load_rep.IsUnsigned(); ++ } else if (m.IsUnalignedLoad()) { ++ LoadRepresentation load_rep = LoadRepresentationOf(n->op()); ++ return load_rep.IsUnsigned(); ++ } else { ++ return m.IsUint32Div() || m.IsUint32LessThan() || ++ m.IsUint32LessThanOrEqual() || m.IsUint32Mod() || ++ m.IsUint32MulHigh() || m.IsChangeFloat64ToUint32() || ++ m.IsTruncateFloat64ToUint32() || m.IsTruncateFloat32ToUint32(); ++ } ++} ++ ++// Shared routine for multiple word compare operations. ++void VisitFullWord32Compare(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, FlagsContinuation* cont) { ++ Loong64OperandGenerator g(selector); ++ InstructionOperand leftOp = g.TempRegister(); ++ InstructionOperand rightOp = g.TempRegister(); ++ ++ selector->Emit(kLoong64Dshl, leftOp, g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(32)); ++ selector->Emit(kLoong64Dshl, rightOp, g.UseRegister(node->InputAt(1)), ++ g.TempImmediate(32)); ++ ++ VisitCompare(selector, opcode, leftOp, rightOp, cont); ++} ++ ++void VisitOptimizedWord32Compare(InstructionSelector* selector, Node* node, ++ InstructionCode opcode, ++ FlagsContinuation* cont) { ++ if (FLAG_debug_code) { ++ Loong64OperandGenerator g(selector); ++ InstructionOperand leftOp = g.TempRegister(); ++ InstructionOperand rightOp = g.TempRegister(); ++ InstructionOperand optimizedResult = g.TempRegister(); ++ InstructionOperand fullResult = g.TempRegister(); ++ FlagsCondition condition = cont->condition(); ++ InstructionCode testOpcode = opcode | ++ FlagsConditionField::encode(condition) | ++ FlagsModeField::encode(kFlags_set); ++ ++ selector->Emit(testOpcode, optimizedResult, g.UseRegister(node->InputAt(0)), ++ g.UseRegister(node->InputAt(1))); ++ ++ selector->Emit(kLoong64Dshl, leftOp, g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(32)); ++ selector->Emit(kLoong64Dshl, rightOp, g.UseRegister(node->InputAt(1)), ++ g.TempImmediate(32)); ++ selector->Emit(testOpcode, fullResult, leftOp, rightOp); ++ ++ selector->Emit( ++ kLoong64AssertEqual, g.NoOutput(), optimizedResult, fullResult, ++ g.TempImmediate( ++ static_cast(AbortReason::kUnsupportedNonPrimitiveCompare))); ++ } ++ ++ VisitWordCompare(selector, node, opcode, cont, false); ++} ++ ++void VisitWord32Compare(InstructionSelector* selector, Node* node, ++ FlagsContinuation* cont) { ++ // MIPS64 doesn't support Word32 compare instructions. Instead it relies ++ // that the values in registers are correctly sign-extended and uses ++ // Word64 comparison instead. This behavior is correct in most cases, ++ // but doesn't work when comparing signed with unsigned operands. ++ // We could simulate full Word32 compare in all cases but this would ++ // create an unnecessary overhead since unsigned integers are rarely ++ // used in JavaScript. ++ // The solution proposed here tries to match a comparison of signed ++ // with unsigned operand, and perform full Word32Compare only ++ // in those cases. Unfortunately, the solution is not complete because ++ // it might skip cases where Word32 full compare is needed, so ++ // basically it is a hack. ++ if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1))) { ++ VisitFullWord32Compare(selector, node, kLoong64Cmp, cont); ++ } else { ++ VisitOptimizedWord32Compare(selector, node, kLoong64Cmp, cont); ++ } ++} ++ ++ ++void VisitWord64Compare(InstructionSelector* selector, Node* node, ++ FlagsContinuation* cont) { ++ VisitWordCompare(selector, node, kLoong64Cmp, cont, false); ++} ++ ++ ++ ++void EmitWordCompareZero(InstructionSelector* selector, Node* value, ++ FlagsContinuation* cont) { ++ Loong64OperandGenerator g(selector); ++ selector->EmitWithContinuation(kLoong64Cmp, g.UseRegister(value), ++ g.TempImmediate(0), cont); ++} ++ ++} // namespace ++ ++// Shared routine for word comparisons against zero. ++void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, ++ FlagsContinuation* cont) { ++ // Try to combine with comparisons against 0 by simply inverting the branch. ++ while (CanCover(user, value)) { ++ if (value->opcode() == IrOpcode::kWord32Equal) { ++ Int32BinopMatcher m(value); ++ if (!m.right().Is(0)) break; ++ user = value; ++ value = m.left().node(); ++ } else if (value->opcode() == IrOpcode::kWord64Equal) { ++ Int64BinopMatcher m(value); ++ if (!m.right().Is(0)) break; ++ user = value; ++ value = m.left().node(); ++ } else { ++ break; ++ } ++ ++ cont->Negate(); ++ } ++ ++ if (CanCover(user, value)) { ++ switch (value->opcode()) { ++ case IrOpcode::kWord32Equal: ++ cont->OverwriteAndNegateIfEqual(kEqual); ++ return VisitWord32Compare(this, value, cont); ++ case IrOpcode::kInt32LessThan: ++ cont->OverwriteAndNegateIfEqual(kSignedLessThan); ++ return VisitWord32Compare(this, value, cont); ++ case IrOpcode::kInt32LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); ++ return VisitWord32Compare(this, value, cont); ++ case IrOpcode::kUint32LessThan: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); ++ return VisitWord32Compare(this, value, cont); ++ case IrOpcode::kUint32LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); ++ return VisitWord32Compare(this, value, cont); ++ case IrOpcode::kWord64Equal: ++ cont->OverwriteAndNegateIfEqual(kEqual); ++ return VisitWord64Compare(this, value, cont); ++ case IrOpcode::kInt64LessThan: ++ cont->OverwriteAndNegateIfEqual(kSignedLessThan); ++ return VisitWord64Compare(this, value, cont); ++ case IrOpcode::kInt64LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); ++ return VisitWord64Compare(this, value, cont); ++ case IrOpcode::kUint64LessThan: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); ++ return VisitWord64Compare(this, value, cont); ++ case IrOpcode::kUint64LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); ++ return VisitWord64Compare(this, value, cont); ++ case IrOpcode::kFloat32Equal: ++ cont->OverwriteAndNegateIfEqual(kEqual); ++ return VisitFloat32Compare(this, value, cont); ++ case IrOpcode::kFloat32LessThan: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); ++ return VisitFloat32Compare(this, value, cont); ++ case IrOpcode::kFloat32LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); ++ return VisitFloat32Compare(this, value, cont); ++ case IrOpcode::kFloat64Equal: ++ cont->OverwriteAndNegateIfEqual(kEqual); ++ return VisitFloat64Compare(this, value, cont); ++ case IrOpcode::kFloat64LessThan: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); ++ return VisitFloat64Compare(this, value, cont); ++ case IrOpcode::kFloat64LessThanOrEqual: ++ cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); ++ return VisitFloat64Compare(this, value, cont); ++ case IrOpcode::kProjection: ++ // Check if this is the overflow output projection of an ++ // WithOverflow node. ++ if (ProjectionIndexOf(value->op()) == 1u) { ++ // We cannot combine the WithOverflow with this branch ++ // unless the 0th projection (the use of the actual value of the ++ // is either nullptr, which means there's no use of the ++ // actual value, or was already defined, which means it is scheduled ++ // *AFTER* this branch). ++ Node* const node = value->InputAt(0); ++ Node* const result = NodeProperties::FindProjection(node, 0); ++ if (result == nullptr || IsDefined(result)) { ++ switch (node->opcode()) { ++ case IrOpcode::kInt32AddWithOverflow: ++ cont->OverwriteAndNegateIfEqual(kOverflow); ++ return VisitBinop(this, node, kLoong64Dadd, cont); ++ case IrOpcode::kInt32SubWithOverflow: ++ cont->OverwriteAndNegateIfEqual(kOverflow); ++ return VisitBinop(this, node, kLoong64Dsub, cont); ++ case IrOpcode::kInt32MulWithOverflow: ++ cont->OverwriteAndNegateIfEqual(kOverflow); ++ return VisitBinop(this, node, kLoong64MulOvf, cont); ++ case IrOpcode::kInt64AddWithOverflow: ++ cont->OverwriteAndNegateIfEqual(kOverflow); ++ return VisitBinop(this, node, kLoong64DaddOvf, cont); ++ case IrOpcode::kInt64SubWithOverflow: ++ cont->OverwriteAndNegateIfEqual(kOverflow); ++ return VisitBinop(this, node, kLoong64DsubOvf, cont); ++ default: ++ break; ++ } ++ } ++ } ++ break; ++ case IrOpcode::kWord32And: ++ case IrOpcode::kWord64And: ++ return VisitWordCompare(this, value, kLoong64Tst, cont, true); ++ default: ++ break; ++ } ++ } ++ ++ // Continuation could not be combined with a compare, emit compare against 0. ++ EmitWordCompareZero(this, value, cont); ++} ++ ++void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { ++ Loong64OperandGenerator g(this); ++ InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); ++ ++ // Emit either ArchTableSwitch or ArchLookupSwitch. ++ if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { ++ static const size_t kMaxTableSwitchValueRange = 2 << 16; ++ size_t table_space_cost = 10 + 2 * sw.value_range(); ++ size_t table_time_cost = 3; ++ size_t lookup_space_cost = 2 + 2 * sw.case_count(); ++ size_t lookup_time_cost = sw.case_count(); ++ if (sw.case_count() > 0 && ++ table_space_cost + 3 * table_time_cost <= ++ lookup_space_cost + 3 * lookup_time_cost && ++ sw.min_value() > std::numeric_limits::min() && ++ sw.value_range() <= kMaxTableSwitchValueRange) { ++ InstructionOperand index_operand = value_operand; ++ if (sw.min_value()) { ++ index_operand = g.TempRegister(); ++ Emit(kLoong64Sub, index_operand, value_operand, ++ g.TempImmediate(sw.min_value())); ++ } ++ // Generate a table lookup. ++ return EmitTableSwitch(sw, index_operand); ++ } ++ } ++ ++ // Generate a sequence of conditional jumps. ++ return EmitLookupSwitch(sw, value_operand); ++} ++ ++ ++void InstructionSelector::VisitWord32Equal(Node* const node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); ++ Int32BinopMatcher m(node); ++ if (m.right().Is(0)) { ++ return VisitWordCompareZero(m.node(), m.left().node(), &cont); ++ } ++ ++ VisitWord32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt32LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); ++ VisitWord32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); ++ VisitWord32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitUint32LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); ++ VisitWord32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); ++ VisitWord32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { ++ if (Node* ovf = NodeProperties::FindProjection(node, 1)) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); ++ return VisitBinop(this, node, kLoong64Dadd, &cont); ++ } ++ FlagsContinuation cont; ++ VisitBinop(this, node, kLoong64Dadd, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { ++ if (Node* ovf = NodeProperties::FindProjection(node, 1)) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); ++ return VisitBinop(this, node, kLoong64Dsub, &cont); ++ } ++ FlagsContinuation cont; ++ VisitBinop(this, node, kLoong64Dsub, &cont); ++} ++ ++void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { ++ if (Node* ovf = NodeProperties::FindProjection(node, 1)) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); ++ return VisitBinop(this, node, kLoong64MulOvf, &cont); ++ } ++ FlagsContinuation cont; ++ VisitBinop(this, node, kLoong64MulOvf, &cont); ++} ++ ++void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { ++ if (Node* ovf = NodeProperties::FindProjection(node, 1)) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); ++ return VisitBinop(this, node, kLoong64DaddOvf, &cont); ++ } ++ FlagsContinuation cont; ++ VisitBinop(this, node, kLoong64DaddOvf, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { ++ if (Node* ovf = NodeProperties::FindProjection(node, 1)) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); ++ return VisitBinop(this, node, kLoong64DsubOvf, &cont); ++ } ++ FlagsContinuation cont; ++ VisitBinop(this, node, kLoong64DsubOvf, &cont); ++} ++ ++ ++void InstructionSelector::VisitWord64Equal(Node* const node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); ++ Int64BinopMatcher m(node); ++ if (m.right().Is(0)) { ++ return VisitWordCompareZero(m.node(), m.left().node(), &cont); ++ } ++ ++ VisitWord64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt64LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); ++ VisitWord64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); ++ VisitWord64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitUint64LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); ++ VisitWord64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); ++ VisitWord64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat32Equal(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); ++ VisitFloat32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat32LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); ++ VisitFloat32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); ++ VisitFloat32Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat64Equal(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); ++ VisitFloat64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat64LessThan(Node* node) { ++ FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); ++ VisitFloat64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { ++ FlagsContinuation cont = ++ FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); ++ VisitFloat64Compare(this, node, &cont); ++} ++ ++ ++void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { ++ VisitRR(this, kLoong64Float64ExtractLowWord32, node); ++} ++ ++ ++void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { ++ VisitRR(this, kLoong64Float64ExtractHighWord32, node); ++} ++ ++void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { ++ VisitRR(this, kLoong64Float64SilenceNaN, node); ++} ++ ++void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ Emit(kLoong64Float64InsertLowWord32, g.DefineSameAsFirst(node), ++ g.UseRegister(left), g.UseRegister(right)); ++} ++ ++ ++void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* left = node->InputAt(0); ++ Node* right = node->InputAt(1); ++ Emit(kLoong64Float64InsertHighWord32, g.DefineSameAsFirst(node), ++ g.UseRegister(left), g.UseRegister(right)); ++} ++ ++void InstructionSelector::VisitWord32AtomicLoad(Node* node) { ++ LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ ArchOpcode opcode = kArchNop; ++ switch (load_rep.representation()) { ++ case MachineRepresentation::kWord8: ++ opcode = ++ load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 ++ : kWord32AtomicLoadUint16; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = kWord32AtomicLoadWord32; ++ break; ++ default: ++ UNREACHABLE(); ++ return; ++ } ++ if (g.CanBeImmediate(index, opcode)) { ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), addr_reg, ++ g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired load opcode, using temp addr_reg. ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), ++ g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); ++ } ++} ++ ++void InstructionSelector::VisitWord32AtomicStore(Node* node) { ++ MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* value = node->InputAt(2); ++ ArchOpcode opcode = kArchNop; ++ switch (rep) { ++ case MachineRepresentation::kWord8: ++ opcode = kWord32AtomicStoreWord8; ++ break; ++ case MachineRepresentation::kWord16: ++ opcode = kWord32AtomicStoreWord16; ++ break; ++ case MachineRepresentation::kWord32: ++ opcode = kWord32AtomicStoreWord32; ++ break; ++ default: ++ UNREACHABLE(); ++ return; ++ } ++ ++ if (g.CanBeImmediate(index, opcode)) { ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ g.UseRegister(base), g.UseImmediate(index), ++ g.UseRegisterOrImmediateZero(value)); ++ } else { ++ InstructionOperand addr_reg = g.TempRegister(); ++ Emit(kLoong64Dadd | AddressingModeField::encode(kMode_None), addr_reg, ++ g.UseRegister(index), g.UseRegister(base)); ++ // Emit desired store opcode, using temp addr_reg. ++ Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), ++ addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); ++ } ++} ++ ++void InstructionSelector::VisitWord32AtomicExchange(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* value = node->InputAt(2); ++ ArchOpcode opcode = kArchNop; ++ MachineType type = AtomicOpRepresentationOf(node->op()); ++ if (type == MachineType::Int8()) { ++ opcode = kWord32AtomicExchangeInt8; ++ } else if (type == MachineType::Uint8()) { ++ opcode = kWord32AtomicExchangeUint8; ++ } else if (type == MachineType::Int16()) { ++ opcode = kWord32AtomicExchangeInt16; ++ } else if (type == MachineType::Uint16()) { ++ opcode = kWord32AtomicExchangeUint16; ++ } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { ++ opcode = kWord32AtomicExchangeWord32; ++ } else { ++ UNREACHABLE(); ++ return; ++ } ++ ++ AddressingMode addressing_mode = kMode_MRI; ++ InstructionOperand inputs[3]; ++ size_t input_count = 0; ++ inputs[input_count++] = g.UseUniqueRegister(base); ++ inputs[input_count++] = g.UseUniqueRegister(index); ++ inputs[input_count++] = g.UseUniqueRegister(value); ++ InstructionOperand outputs[1]; ++ outputs[0] = g.UseUniqueRegister(node); ++ InstructionOperand temp[3]; ++ temp[0] = g.TempRegister(); ++ temp[1] = g.TempRegister(); ++ temp[2] = g.TempRegister(); ++ InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); ++ Emit(code, 1, outputs, input_count, inputs, 3, temp); ++} ++ ++void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* old_value = node->InputAt(2); ++ Node* new_value = node->InputAt(3); ++ ArchOpcode opcode = kArchNop; ++ MachineType type = AtomicOpRepresentationOf(node->op()); ++ if (type == MachineType::Int8()) { ++ opcode = kWord32AtomicCompareExchangeInt8; ++ } else if (type == MachineType::Uint8()) { ++ opcode = kWord32AtomicCompareExchangeUint8; ++ } else if (type == MachineType::Int16()) { ++ opcode = kWord32AtomicCompareExchangeInt16; ++ } else if (type == MachineType::Uint16()) { ++ opcode = kWord32AtomicCompareExchangeUint16; ++ } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { ++ opcode = kWord32AtomicCompareExchangeWord32; ++ } else { ++ UNREACHABLE(); ++ return; ++ } ++ ++ AddressingMode addressing_mode = kMode_MRI; ++ InstructionOperand inputs[4]; ++ size_t input_count = 0; ++ inputs[input_count++] = g.UseUniqueRegister(base); ++ inputs[input_count++] = g.UseUniqueRegister(index); ++ inputs[input_count++] = g.UseUniqueRegister(old_value); ++ inputs[input_count++] = g.UseUniqueRegister(new_value); ++ InstructionOperand outputs[1]; ++ outputs[0] = g.UseUniqueRegister(node); ++ InstructionOperand temp[3]; ++ temp[0] = g.TempRegister(); ++ temp[1] = g.TempRegister(); ++ temp[2] = g.TempRegister(); ++ InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); ++ Emit(code, 1, outputs, input_count, inputs, 3, temp); ++} ++ ++void InstructionSelector::VisitWord32AtomicBinaryOperation( ++ Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ++ ArchOpcode uint16_op, ArchOpcode word32_op) { ++ Loong64OperandGenerator g(this); ++ Node* base = node->InputAt(0); ++ Node* index = node->InputAt(1); ++ Node* value = node->InputAt(2); ++ ArchOpcode opcode = kArchNop; ++ MachineType type = AtomicOpRepresentationOf(node->op()); ++ if (type == MachineType::Int8()) { ++ opcode = int8_op; ++ } else if (type == MachineType::Uint8()) { ++ opcode = uint8_op; ++ } else if (type == MachineType::Int16()) { ++ opcode = int16_op; ++ } else if (type == MachineType::Uint16()) { ++ opcode = uint16_op; ++ } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { ++ opcode = word32_op; ++ } else { ++ UNREACHABLE(); ++ return; ++ } ++ ++ AddressingMode addressing_mode = kMode_MRI; ++ InstructionOperand inputs[3]; ++ size_t input_count = 0; ++ inputs[input_count++] = g.UseUniqueRegister(base); ++ inputs[input_count++] = g.UseUniqueRegister(index); ++ inputs[input_count++] = g.UseUniqueRegister(value); ++ InstructionOperand outputs[1]; ++ outputs[0] = g.UseUniqueRegister(node); ++ InstructionOperand temps[4]; ++ temps[0] = g.TempRegister(); ++ temps[1] = g.TempRegister(); ++ temps[2] = g.TempRegister(); ++ temps[3] = g.TempRegister(); ++ InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); ++ Emit(code, 1, outputs, input_count, inputs, 4, temps); ++} ++ ++#define VISIT_ATOMIC_BINOP(op) \ ++ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ ++ VisitWord32AtomicBinaryOperation( \ ++ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ ++ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ ++ kWord32Atomic##op##Word32); \ ++ } ++VISIT_ATOMIC_BINOP(Add) ++VISIT_ATOMIC_BINOP(Sub) ++VISIT_ATOMIC_BINOP(And) ++VISIT_ATOMIC_BINOP(Or) ++VISIT_ATOMIC_BINOP(Xor) ++#undef VISIT_ATOMIC_BINOP ++ ++void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { ++ UNREACHABLE(); ++} ++ ++void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { ++ UNREACHABLE(); ++} ++ ++void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } ++ ++#define SIMD_TYPE_LIST(V) \ ++ V(F32x4) \ ++ V(I32x4) \ ++ V(I16x8) \ ++ V(I8x16) ++ ++#define SIMD_UNOP_LIST(V) \ ++ V(F32x4SConvertI32x4, kLoong64F32x4SConvertI32x4) \ ++ V(F32x4UConvertI32x4, kLoong64F32x4UConvertI32x4) \ ++ V(F32x4Abs, kLoong64F32x4Abs) \ ++ V(F32x4Neg, kLoong64F32x4Neg) \ ++ V(F32x4RecipApprox, kLoong64F32x4RecipApprox) \ ++ V(F32x4RecipSqrtApprox, kLoong64F32x4RecipSqrtApprox) \ ++ V(I32x4SConvertF32x4, kLoong64I32x4SConvertF32x4) \ ++ V(I32x4UConvertF32x4, kLoong64I32x4UConvertF32x4) \ ++ V(I32x4Neg, kLoong64I32x4Neg) \ ++ V(I32x4SConvertI16x8Low, kLoong64I32x4SConvertI16x8Low) \ ++ V(I32x4SConvertI16x8High, kLoong64I32x4SConvertI16x8High) \ ++ V(I32x4UConvertI16x8Low, kLoong64I32x4UConvertI16x8Low) \ ++ V(I32x4UConvertI16x8High, kLoong64I32x4UConvertI16x8High) \ ++ V(I16x8Neg, kLoong64I16x8Neg) \ ++ V(I16x8SConvertI8x16Low, kLoong64I16x8SConvertI8x16Low) \ ++ V(I16x8SConvertI8x16High, kLoong64I16x8SConvertI8x16High) \ ++ V(I16x8UConvertI8x16Low, kLoong64I16x8UConvertI8x16Low) \ ++ V(I16x8UConvertI8x16High, kLoong64I16x8UConvertI8x16High) \ ++ V(I8x16Neg, kLoong64I8x16Neg) \ ++ V(S128Not, kLoong64S128Not) \ ++ V(S1x4AnyTrue, kLoong64S1x4AnyTrue) \ ++ V(S1x4AllTrue, kLoong64S1x4AllTrue) \ ++ V(S1x8AnyTrue, kLoong64S1x8AnyTrue) \ ++ V(S1x8AllTrue, kLoong64S1x8AllTrue) \ ++ V(S1x16AnyTrue, kLoong64S1x16AnyTrue) \ ++ V(S1x16AllTrue, kLoong64S1x16AllTrue) ++ ++#define SIMD_SHIFT_OP_LIST(V) \ ++ V(I32x4Shl) \ ++ V(I32x4ShrS) \ ++ V(I32x4ShrU) \ ++ V(I16x8Shl) \ ++ V(I16x8ShrS) \ ++ V(I16x8ShrU) \ ++ V(I8x16Shl) \ ++ V(I8x16ShrS) \ ++ V(I8x16ShrU) ++ ++#define SIMD_BINOP_LIST(V) \ ++ V(F32x4Add, kLoong64F32x4Add) \ ++ V(F32x4AddHoriz, kLoong64F32x4AddHoriz) \ ++ V(F32x4Sub, kLoong64F32x4Sub) \ ++ V(F32x4Mul, kLoong64F32x4Mul) \ ++ V(F32x4Max, kLoong64F32x4Max) \ ++ V(F32x4Min, kLoong64F32x4Min) \ ++ V(F32x4Eq, kLoong64F32x4Eq) \ ++ V(F32x4Ne, kLoong64F32x4Ne) \ ++ V(F32x4Lt, kLoong64F32x4Lt) \ ++ V(F32x4Le, kLoong64F32x4Le) \ ++ V(I32x4Add, kLoong64I32x4Add) \ ++ V(I32x4AddHoriz, kLoong64I32x4AddHoriz) \ ++ V(I32x4Sub, kLoong64I32x4Sub) \ ++ V(I32x4Mul, kLoong64I32x4Mul) \ ++ V(I32x4MaxS, kLoong64I32x4MaxS) \ ++ V(I32x4MinS, kLoong64I32x4MinS) \ ++ V(I32x4MaxU, kLoong64I32x4MaxU) \ ++ V(I32x4MinU, kLoong64I32x4MinU) \ ++ V(I32x4Eq, kLoong64I32x4Eq) \ ++ V(I32x4Ne, kLoong64I32x4Ne) \ ++ V(I32x4GtS, kLoong64I32x4GtS) \ ++ V(I32x4GeS, kLoong64I32x4GeS) \ ++ V(I32x4GtU, kLoong64I32x4GtU) \ ++ V(I32x4GeU, kLoong64I32x4GeU) \ ++ V(I16x8Add, kLoong64I16x8Add) \ ++ V(I16x8AddSaturateS, kLoong64I16x8AddSaturateS) \ ++ V(I16x8AddSaturateU, kLoong64I16x8AddSaturateU) \ ++ V(I16x8AddHoriz, kLoong64I16x8AddHoriz) \ ++ V(I16x8Sub, kLoong64I16x8Sub) \ ++ V(I16x8SubSaturateS, kLoong64I16x8SubSaturateS) \ ++ V(I16x8SubSaturateU, kLoong64I16x8SubSaturateU) \ ++ V(I16x8Mul, kLoong64I16x8Mul) \ ++ V(I16x8MaxS, kLoong64I16x8MaxS) \ ++ V(I16x8MinS, kLoong64I16x8MinS) \ ++ V(I16x8MaxU, kLoong64I16x8MaxU) \ ++ V(I16x8MinU, kLoong64I16x8MinU) \ ++ V(I16x8Eq, kLoong64I16x8Eq) \ ++ V(I16x8Ne, kLoong64I16x8Ne) \ ++ V(I16x8GtS, kLoong64I16x8GtS) \ ++ V(I16x8GeS, kLoong64I16x8GeS) \ ++ V(I16x8GtU, kLoong64I16x8GtU) \ ++ V(I16x8GeU, kLoong64I16x8GeU) \ ++ V(I16x8SConvertI32x4, kLoong64I16x8SConvertI32x4) \ ++ V(I16x8UConvertI32x4, kLoong64I16x8UConvertI32x4) \ ++ V(I8x16Add, kLoong64I8x16Add) \ ++ V(I8x16AddSaturateS, kLoong64I8x16AddSaturateS) \ ++ V(I8x16AddSaturateU, kLoong64I8x16AddSaturateU) \ ++ V(I8x16Sub, kLoong64I8x16Sub) \ ++ V(I8x16SubSaturateS, kLoong64I8x16SubSaturateS) \ ++ V(I8x16SubSaturateU, kLoong64I8x16SubSaturateU) \ ++ V(I8x16Mul, kLoong64I8x16Mul) \ ++ V(I8x16MaxS, kLoong64I8x16MaxS) \ ++ V(I8x16MinS, kLoong64I8x16MinS) \ ++ V(I8x16MaxU, kLoong64I8x16MaxU) \ ++ V(I8x16MinU, kLoong64I8x16MinU) \ ++ V(I8x16Eq, kLoong64I8x16Eq) \ ++ V(I8x16Ne, kLoong64I8x16Ne) \ ++ V(I8x16GtS, kLoong64I8x16GtS) \ ++ V(I8x16GeS, kLoong64I8x16GeS) \ ++ V(I8x16GtU, kLoong64I8x16GtU) \ ++ V(I8x16GeU, kLoong64I8x16GeU) \ ++ V(I8x16SConvertI16x8, kLoong64I8x16SConvertI16x8) \ ++ V(I8x16UConvertI16x8, kLoong64I8x16UConvertI16x8) \ ++ V(S128And, kLoong64S128And) \ ++ V(S128Or, kLoong64S128Or) \ ++ V(S128Xor, kLoong64S128Xor) ++ ++void InstructionSelector::VisitS128Zero(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64S128Zero, g.DefineSameAsFirst(node)); ++} ++ ++#define SIMD_VISIT_SPLAT(Type) \ ++ void InstructionSelector::Visit##Type##Splat(Node* node) { \ ++ VisitRR(this, kLoong64##Type##Splat, node); \ ++ } ++SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) ++#undef SIMD_VISIT_SPLAT ++ ++#define SIMD_VISIT_EXTRACT_LANE(Type) \ ++ void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \ ++ VisitRRI(this, kLoong64##Type##ExtractLane, node); \ ++ } ++SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE) ++#undef SIMD_VISIT_EXTRACT_LANE ++ ++#define SIMD_VISIT_REPLACE_LANE(Type) \ ++ void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ ++ VisitRRIR(this, kLoong64##Type##ReplaceLane, node); \ ++ } ++SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) ++#undef SIMD_VISIT_REPLACE_LANE ++ ++#define SIMD_VISIT_UNOP(Name, instruction) \ ++ void InstructionSelector::Visit##Name(Node* node) { \ ++ VisitRR(this, instruction, node); \ ++ } ++SIMD_UNOP_LIST(SIMD_VISIT_UNOP) ++#undef SIMD_VISIT_UNOP ++ ++#define SIMD_VISIT_SHIFT_OP(Name) \ ++ void InstructionSelector::Visit##Name(Node* node) { \ ++ VisitRRI(this, kLoong64##Name, node); \ ++ } ++SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) ++#undef SIMD_VISIT_SHIFT_OP ++ ++#define SIMD_VISIT_BINOP(Name, instruction) \ ++ void InstructionSelector::Visit##Name(Node* node) { \ ++ VisitRRR(this, instruction, node); \ ++ } ++SIMD_BINOP_LIST(SIMD_VISIT_BINOP) ++#undef SIMD_VISIT_BINOP ++ ++void InstructionSelector::VisitS128Select(Node* node) { ++ VisitRRRR(this, kLoong64S128Select, node); ++} ++ ++namespace { ++ ++struct ShuffleEntry { ++ uint8_t shuffle[kSimd128Size]; ++ ArchOpcode opcode; ++}; ++ ++static const ShuffleEntry arch_shuffles[] = { ++ {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, ++ kLoong64S32x4InterleaveRight}, ++ {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, ++ kLoong64S32x4InterleaveLeft}, ++ {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, ++ kLoong64S32x4PackEven}, ++ {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, ++ kLoong64S32x4PackOdd}, ++ {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, ++ kLoong64S32x4InterleaveEven}, ++ {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}, ++ kLoong64S32x4InterleaveOdd}, ++ ++ {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, ++ kLoong64S16x8InterleaveRight}, ++ {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, ++ kLoong64S16x8InterleaveLeft}, ++ {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, ++ kLoong64S16x8PackEven}, ++ {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, ++ kLoong64S16x8PackOdd}, ++ {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, ++ kLoong64S16x8InterleaveEven}, ++ {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, ++ kLoong64S16x8InterleaveOdd}, ++ {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, ++ kLoong64S16x4Reverse}, ++ {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, ++ kLoong64S16x2Reverse}, ++ ++ {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, ++ kLoong64S8x16InterleaveRight}, ++ {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, ++ kLoong64S8x16InterleaveLeft}, ++ {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, ++ kLoong64S8x16PackEven}, ++ {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, ++ kLoong64S8x16PackOdd}, ++ {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, ++ kLoong64S8x16InterleaveEven}, ++ {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, ++ kLoong64S8x16InterleaveOdd}, ++ {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, ++ kLoong64S8x8Reverse}, ++ {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, ++ kLoong64S8x4Reverse}, ++ {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, ++ kLoong64S8x2Reverse}}; ++ ++bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, ++ size_t num_entries, uint8_t mask, ArchOpcode* opcode) { ++ for (size_t i = 0; i < num_entries; ++i) { ++ const ShuffleEntry& entry = table[i]; ++ int j = 0; ++ for (; j < kSimd128Size; ++j) { ++ if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { ++ break; ++ } ++ } ++ if (j == kSimd128Size) { ++ *opcode = entry.opcode; ++ return true; ++ } ++ } ++ return false; ++} ++ ++} // namespace ++ ++void InstructionSelector::VisitS8x16Shuffle(Node* node) { ++ const uint8_t* shuffle = OpParameter(node->op()); ++ uint8_t mask = CanonicalizeShuffle(node); ++ uint8_t shuffle32x4[4]; ++ ArchOpcode opcode; ++ if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), ++ mask, &opcode)) { ++ VisitRRR(this, opcode, node); ++ return; ++ } ++ uint8_t offset; ++ Loong64OperandGenerator g(this); ++ if (TryMatchConcat(shuffle, mask, &offset)) { ++ Emit(kLoong64S8x16Concat, g.DefineSameAsFirst(node), ++ g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)), ++ g.UseImmediate(offset)); ++ return; ++ } ++ if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) { ++ Emit(kLoong64S32x4Shuffle, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), ++ g.UseImmediate(Pack4Lanes(shuffle32x4, mask))); ++ return; ++ } ++ Emit(kLoong64S8x16Shuffle, g.DefineAsRegister(node), ++ g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), ++ g.UseImmediate(Pack4Lanes(shuffle, mask)), ++ g.UseImmediate(Pack4Lanes(shuffle + 4, mask)), ++ g.UseImmediate(Pack4Lanes(shuffle + 8, mask)), ++ g.UseImmediate(Pack4Lanes(shuffle + 12, mask))); ++} ++ ++void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Seb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Seh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Seb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Seh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); ++} ++ ++void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { ++ Loong64OperandGenerator g(this); ++ Emit(kLoong64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), ++ g.TempImmediate(0)); ++} ++ ++// static ++MachineOperatorBuilder::Flags ++InstructionSelector::SupportedMachineOperatorFlags() { ++ MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags; ++ return flags | MachineOperatorBuilder::kWord32Ctz | ++ MachineOperatorBuilder::kWord64Ctz | ++ MachineOperatorBuilder::kWord32Popcnt | ++ MachineOperatorBuilder::kWord64Popcnt | ++ MachineOperatorBuilder::kWord32ShiftIsSafe | ++ MachineOperatorBuilder::kInt32DivIsSafe | ++ MachineOperatorBuilder::kUint32DivIsSafe | ++ MachineOperatorBuilder::kFloat64RoundDown | ++ MachineOperatorBuilder::kFloat32RoundDown | ++ MachineOperatorBuilder::kFloat64RoundUp | ++ MachineOperatorBuilder::kFloat32RoundUp | ++ MachineOperatorBuilder::kFloat64RoundTruncate | ++ MachineOperatorBuilder::kFloat32RoundTruncate | ++ MachineOperatorBuilder::kFloat64RoundTiesEven | ++ MachineOperatorBuilder::kFloat32RoundTiesEven | ++ MachineOperatorBuilder::kWord32ReverseBytes | ++ MachineOperatorBuilder::kWord64ReverseBytes; ++} ++ ++// static ++MachineOperatorBuilder::AlignmentRequirements ++InstructionSelector::AlignmentRequirements() { ++ return MachineOperatorBuilder::AlignmentRequirements:: ++ FullUnalignedAccessSupport(); ++} ++ ++#undef SIMD_BINOP_LIST ++#undef SIMD_SHIFT_OP_LIST ++#undef SIMD_UNOP_LIST ++#undef SIMD_TYPE_LIST ++#undef TRACE_UNIMPL ++#undef TRACE ++ ++} // namespace compiler ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/src/debug/loong64/debug-loong64.cc b/deps/v8/src/debug/loong64/debug-loong64.cc +new file mode 100644 +index 0000000..01a32df +--- /dev/null ++++ b/deps/v8/src/debug/loong64/debug-loong64.cc +@@ -0,0 +1,59 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/debug/debug.h" ++ ++#include "src/macro-assembler.h" ++#include "src/debug/liveedit.h" ++#include "src/frames-inl.h" ++ ++namespace v8 { ++namespace internal { ++ ++#define __ ACCESS_MASM(masm) ++ ++void DebugCodegen::GenerateHandleDebuggerStatement(MacroAssembler* masm) { ++ { ++ FrameScope scope(masm, StackFrame::INTERNAL); ++ __ CallRuntime(Runtime::kHandleDebuggerStatement, 0); ++ } ++ __ MaybeDropFrames(); ++ ++ // Return to caller. ++ __ Ret(); ++} ++ ++void DebugCodegen::GenerateFrameDropperTrampoline(MacroAssembler* masm) { ++ // Frame is being dropped: ++ // - Drop to the target frame specified by a1. ++ // - Look up current function on the frame. ++ // - Leave the frame. ++ // - Restart the frame by calling the function. ++ __ mov(fp, a1); ++ __ Ld_d(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); ++ ++ // Pop return address and frame. ++ __ LeaveFrame(StackFrame::INTERNAL); ++ ++ __ Ld_d(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ __ Ld_w(a0, ++ FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset)); ++ __ mov(a2, a0); ++ ++ ParameterCount dummy1(a2); ++ ParameterCount dummy2(a0); ++ __ InvokeFunction(a1, dummy1, dummy2, JUMP_FUNCTION); ++} ++ ++ ++const bool LiveEdit::kFrameDropperSupported = true; ++ ++#undef __ ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/external-reference.cc b/deps/v8/src/external-reference.cc +index 856ff6d..dd30330 100644 +--- a/deps/v8/src/external-reference.cc ++++ b/deps/v8/src/external-reference.cc +@@ -40,6 +40,8 @@ + #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT + #elif V8_TARGET_ARCH_S390 + #include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/regexp/loong64/regexp-macro-assembler-loong64.h" // NOLINT + #else // Unknown architecture. + #error "Unknown architecture." + #endif // Target architecture. +@@ -556,6 +558,8 @@ ExternalReference ExternalReference::re_check_stack_guard_state( + function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); + #elif V8_TARGET_ARCH_S390 + function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState); ++#elif V8_TARGET_ARCH_LOONG64 ++ function = FUNCTION_ADDR(RegExpMacroAssemblerLOONG64::CheckStackGuardState); + #else + UNREACHABLE(); + #endif +diff --git a/deps/v8/src/flag-definitions.h b/deps/v8/src/flag-definitions.h +index 980362a..bfcf8f2 100644 +--- a/deps/v8/src/flag-definitions.h ++++ b/deps/v8/src/flag-definitions.h +@@ -987,7 +987,7 @@ DEFINE_BOOL(check_icache, false, + "Check icache flushes in ARM and MIPS simulator") + DEFINE_INT(stop_sim_at, 0, "Simulator stop after x number of instructions") + #if defined(V8_TARGET_ARCH_ARM64) || defined(V8_TARGET_ARCH_MIPS64) || \ +- defined(V8_TARGET_ARCH_PPC64) ++ defined(V8_TARGET_ARCH_PPC64) || defined(V8_TARGET_ARCH_LOONG64) + DEFINE_INT(sim_stack_alignment, 16, + "Stack alignment in bytes in simulator. This must be a power of two " + "and it must be at least 16. 16 is default.") +@@ -996,7 +996,7 @@ DEFINE_INT(sim_stack_alignment, 8, + "Stack alingment in bytes in simulator (4 or 8, 8 is default)") + #endif + DEFINE_INT(sim_stack_size, 2 * MB / KB, +- "Stack size of the ARM64, MIPS64 and PPC64 simulator " ++ "Stack size of the ARM64, MIPS64, LOONG64 and PPC64 simulator " + "in kBytes (default is 2 MB)") + DEFINE_BOOL(log_colour, ENABLE_LOG_COLOUR, + "When logging, try to use coloured output.") +diff --git a/deps/v8/src/frame-constants.h b/deps/v8/src/frame-constants.h +index abc0c84..b78d466 100644 +--- a/deps/v8/src/frame-constants.h ++++ b/deps/v8/src/frame-constants.h +@@ -360,6 +360,8 @@ inline static int FrameSlotToFPOffset(int slot) { + #include "src/mips64/frame-constants-mips64.h" // NOLINT + #elif V8_TARGET_ARCH_S390 + #include "src/s390/frame-constants-s390.h" // NOLINT ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/frame-constants-loong64.h" // NOLINT + #else + #error Unsupported target architecture. + #endif +diff --git a/deps/v8/src/gdb-jit.cc b/deps/v8/src/gdb-jit.cc +index 48a0228..409e7fb 100644 +--- a/deps/v8/src/gdb-jit.cc ++++ b/deps/v8/src/gdb-jit.cc +@@ -1161,6 +1161,8 @@ class DebugInfoSection : public DebugSection { + UNIMPLEMENTED(); + #elif V8_TARGET_ARCH_MIPS64 + UNIMPLEMENTED(); ++#elif V8_TARGET_ARCH_LOONG64 ++ UNIMPLEMENTED(); + #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX + w->Write(DW_OP_reg31); // The frame pointer is here on PPC64. + #elif V8_TARGET_ARCH_S390 +diff --git a/deps/v8/src/globals.h b/deps/v8/src/globals.h +index 2a79d32..a066dd0 100644 +--- a/deps/v8/src/globals.h ++++ b/deps/v8/src/globals.h +@@ -76,6 +76,9 @@ namespace internal { + #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390) + #define USE_SIMULATOR 1 + #endif ++#if (V8_TARGET_ARCH_LOONG64 && !V8_HOST_ARCH_LOONG64) ++#define USE_SIMULATOR 1 ++#endif + #endif + + // Determine whether the architecture uses an embedded constant pool +@@ -204,6 +207,9 @@ constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux + #elif V8_TARGET_ARCH_ARM64 + constexpr size_t kMaximalCodeRangeSize = 128 * MB; + constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. ++#elif V8_TARGET_ARCH_LOONG64 ++constexpr size_t kMaximalCodeRangeSize = 128 * MB; ++constexpr size_t kCodeRangeAreaAlignment = 16 * KB; // OS page. + #else + constexpr size_t kMaximalCodeRangeSize = 128 * MB; + constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. +diff --git a/deps/v8/src/heap/spaces.cc b/deps/v8/src/heap/spaces.cc +index f23323c..ccbf994 100644 +--- a/deps/v8/src/heap/spaces.cc ++++ b/deps/v8/src/heap/spaces.cc +@@ -846,7 +846,7 @@ MemoryChunk* MemoryAllocator::AllocateChunk(size_t reserve_area_size, + size_t commit_size = ::RoundUp( + CodePageGuardStartOffset() + commit_area_size, GetCommitPageSize()); + // Allocate executable memory either from code range or from the OS. +-#ifdef V8_TARGET_ARCH_MIPS64 ++#if defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_LOONG64) + // Use code range only for large object space on mips64 to keep address + // range within 256-MB memory region. + if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) { +diff --git a/deps/v8/src/interpreter/interpreter-assembler.cc b/deps/v8/src/interpreter/interpreter-assembler.cc +index e79cb00..2a36303 100644 +--- a/deps/v8/src/interpreter/interpreter-assembler.cc ++++ b/deps/v8/src/interpreter/interpreter-assembler.cc +@@ -1572,7 +1572,7 @@ void InterpreterAssembler::TraceBytecodeDispatch(Node* target_bytecode) { + + // static + bool InterpreterAssembler::TargetSupportsUnalignedAccess() { +-#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ++#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64 + return false; + #elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \ + V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC +diff --git a/deps/v8/src/libsampler/sampler.cc b/deps/v8/src/libsampler/sampler.cc +index 4926064..ad1fd54 100644 +--- a/deps/v8/src/libsampler/sampler.cc ++++ b/deps/v8/src/libsampler/sampler.cc +@@ -493,6 +493,10 @@ void SignalHandler::FillRegisterState(void* context, RegisterState* state) { + state->pc = reinterpret_cast(mcontext.pc); + state->sp = reinterpret_cast(mcontext.gregs[29]); + state->fp = reinterpret_cast(mcontext.gregs[30]); ++#elif V8_HOST_ARCH_LOONG64 ++ state->pc = reinterpret_cast(mcontext.__pc); ++ state->sp = reinterpret_cast(mcontext.__gregs[3]); ++ state->fp = reinterpret_cast(mcontext.__gregs[22]); + #elif V8_HOST_ARCH_PPC + #if V8_LIBC_GLIBC + state->pc = reinterpret_cast(ucontext->uc_mcontext.regs->nip); +diff --git a/deps/v8/src/loong64/OWNERS b/deps/v8/src/loong64/OWNERS +new file mode 100644 +index 0000000..cda25c2 +--- /dev/null ++++ b/deps/v8/src/loong64/OWNERS +@@ -0,0 +1,3 @@ ++liuyu@loongson.cn ++yuyin-hf@loongson.cn ++zhaojiazhong-hf@loongson.cn +diff --git a/deps/v8/src/loong64/assembler-loong64-inl.h b/deps/v8/src/loong64/assembler-loong64-inl.h +new file mode 100644 +index 0000000..4eeff4e +--- /dev/null ++++ b/deps/v8/src/loong64/assembler-loong64-inl.h +@@ -0,0 +1,304 @@ ++// Copyright (c) 1994-2006 Sun Microsystems Inc. ++// All Rights Reserved. ++// ++// Redistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// - Redistributions of source code must retain the above copyright notice, ++// this list of conditions and the following disclaimer. ++// ++// - Redistribution in binary form must reproduce the above copyright ++// notice, this list of conditions and the following disclaimer in the ++// documentation and/or other materials provided with the distribution. ++// ++// - Neither the name of Sun Microsystems or the names of contributors may ++// be used to endorse or promote products derived from this software without ++// specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ++// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ++// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ++// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ++// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ++// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ++// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ++// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ++// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ++// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ++// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++// The original source code covered by the above license above has been ++// modified significantly by Google Inc. ++// Copyright 2012 the V8 project authors. All rights reserved. ++ ++#ifndef V8_LOONG64_ASSEMBLER_LOONG64_INL_H_ ++#define V8_LOONG64_ASSEMBLER_LOONG64_INL_H_ ++ ++#include "src/loong64/assembler-loong64.h" ++ ++#include "src/assembler.h" ++#include "src/debug/debug.h" ++#include "src/objects-inl.h" ++ ++namespace v8 { ++namespace internal { ++ ++bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } ++ ++bool CpuFeatures::SupportsWasmSimd128() { return false; } ++ ++// ----------------------------------------------------------------------------- ++// Operand and MemOperand. ++ ++bool Operand::is_reg() const { return rm_.is_valid(); } ++ ++int64_t Operand::immediate() const { ++ DCHECK(!is_reg()); ++ DCHECK(!IsHeapObjectRequest()); ++ return value_.immediate; ++} ++ ++// ----------------------------------------------------------------------------- ++// RelocInfo. ++ ++void RelocInfo::apply(intptr_t delta) { ++ if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { ++ // Absolute code pointer inside code object moves with the code object. ++ Assembler::RelocateInternalReference(rmode_, pc_, delta); ++ } ++} ++ ++Address RelocInfo::target_address() { ++ DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); ++ return Assembler::target_address_at(pc_, constant_pool_); ++} ++ ++Address RelocInfo::target_address_address() { ++ DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || ++ IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) || ++ IsOffHeapTarget(rmode_)); ++ // Read the address of the word containing the target_address in an ++ // instruction stream. ++ // The only architecture-independent user of this function is the serializer. ++ // The serializer uses it to find out how many raw bytes of instruction to ++ // output before the next target. ++ // For an instruction like LUI/ORI where the target bits are mixed into the ++ // instruction bits, the size of the target will be zero, indicating that the ++ // serializer should not step forward in memory after a target is resolved ++ // and written. In this case the target_address_address function should ++ // return the end of the instructions to be patched, allowing the ++ // deserializer to deserialize the instructions as raw bytes and put them in ++ // place, ready to be patched with the target. After jump optimization, ++ // that is the address of the instruction that follows J/JAL/JR/JALR ++ // instruction. ++ return pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize; ++} ++ ++Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } ++ ++int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } ++ ++Address Assembler::target_address_from_return_address(Address pc) { ++ return pc - kCallTargetAddressOffset; ++} ++ ++void Assembler::deserialization_set_special_target_at( ++ Address instruction_payload, Code* code, Address target) { ++ set_target_address_at( ++ instruction_payload - kInstructionsFor64BitConstant * kInstrSize, ++ code ? code->constant_pool() : kNullAddress, target); ++} ++ ++int Assembler::deserialization_special_target_size( ++ Address instruction_payload) { ++ return kSpecialTargetSize; ++} ++ ++void Assembler::set_target_internal_reference_encoded_at(Address pc, ++ Address target) { ++ // TODO, see AssembleJumpTable, loong64 does not generate internal reference? ++ abort(); ++} ++ ++void Assembler::deserialization_set_target_internal_reference_at( ++ Address pc, Address target, RelocInfo::Mode mode) { ++ if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { ++ DCHECK(IsJ(instr_at(pc))); ++ set_target_internal_reference_encoded_at(pc, target); ++ } else { ++ DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); ++ Memory::Address_at(pc) = target; ++ } ++} ++ ++HeapObject* RelocInfo::target_object() { ++ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); ++ return HeapObject::cast(reinterpret_cast( ++ Assembler::target_address_at(pc_, constant_pool_))); ++} ++ ++Handle RelocInfo::target_object_handle(Assembler* origin) { ++ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); ++ return Handle(reinterpret_cast( ++ Assembler::target_address_at(pc_, constant_pool_))); ++} ++ ++void RelocInfo::set_target_object(HeapObject* target, ++ WriteBarrierMode write_barrier_mode, ++ ICacheFlushMode icache_flush_mode) { ++ DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); ++ Assembler::set_target_address_at(pc_, constant_pool_, ++ reinterpret_cast
(target), ++ icache_flush_mode); ++ if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr && ++ target->IsHeapObject()) { ++ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( ++ host(), this, HeapObject::cast(target)); ++ host()->GetHeap()->RecordWriteIntoCode(host(), this, target); ++ } ++} ++ ++Address RelocInfo::target_external_reference() { ++ DCHECK(rmode_ == EXTERNAL_REFERENCE); ++ return Assembler::target_address_at(pc_, constant_pool_); ++} ++ ++void RelocInfo::set_target_external_reference( ++ Address target, ICacheFlushMode icache_flush_mode) { ++ DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); ++ Assembler::set_target_address_at(pc_, constant_pool_, target, ++ icache_flush_mode); ++} ++ ++Address RelocInfo::target_internal_reference() { ++ if (rmode_ == INTERNAL_REFERENCE) { ++ return Memory::Address_at(pc_); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++Address RelocInfo::target_internal_reference_address() { ++ DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); ++ return pc_; ++} ++ ++void RelocInfo::set_wasm_code_table_entry(Address target, ++ ICacheFlushMode icache_flush_mode) { ++ DCHECK(rmode_ == RelocInfo::WASM_CODE_TABLE_ENTRY); ++ Assembler::set_target_address_at(pc_, constant_pool_, target, ++ icache_flush_mode); ++} ++ ++Address RelocInfo::target_runtime_entry(Assembler* origin) { ++ DCHECK(IsRuntimeEntry(rmode_)); ++ return target_address(); ++} ++ ++void RelocInfo::set_target_runtime_entry(Address target, ++ WriteBarrierMode write_barrier_mode, ++ ICacheFlushMode icache_flush_mode) { ++ DCHECK(IsRuntimeEntry(rmode_)); ++ if (target_address() != target) ++ set_target_address(target, write_barrier_mode, icache_flush_mode); ++} ++ ++Address RelocInfo::target_off_heap_target() { ++ DCHECK(IsOffHeapTarget(rmode_)); ++ return Assembler::target_address_at(pc_, constant_pool_); ++} ++ ++void RelocInfo::WipeOut() { ++ DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || ++ IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || ++ IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); ++ if (IsInternalReference(rmode_)) { ++ Memory::Address_at(pc_) = kNullAddress; ++ } else if (IsInternalReferenceEncoded(rmode_)) { ++ Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress); ++ } else { ++ Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); ++ } ++} ++ ++template ++void RelocInfo::Visit(ObjectVisitor* visitor) { ++ RelocInfo::Mode mode = rmode(); ++ if (mode == RelocInfo::EMBEDDED_OBJECT) { ++ visitor->VisitEmbeddedPointer(host(), this); ++ } else if (RelocInfo::IsCodeTarget(mode)) { ++ visitor->VisitCodeTarget(host(), this); ++ } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { ++ visitor->VisitExternalReference(host(), this); ++ } else if (mode == RelocInfo::INTERNAL_REFERENCE || ++ mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { ++ visitor->VisitInternalReference(host(), this); ++ } else if (RelocInfo::IsRuntimeEntry(mode)) { ++ visitor->VisitRuntimeEntry(host(), this); ++ } else if (RelocInfo::IsOffHeapTarget(mode)) { ++ visitor->VisitOffHeapTarget(host(), this); ++ } ++} ++ ++// ----------------------------------------------------------------------------- ++// Assembler. ++ ++void Assembler::CheckBuffer() { ++ if (buffer_space() <= kGap) { ++ GrowBuffer(); ++ } ++} ++ ++void Assembler::CheckTrampolinePoolQuick(int extra_instructions) { ++ if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { ++ CheckTrampolinePool(); ++ } ++} ++ ++void Assembler::EmitHelper(Instr x) { ++ *reinterpret_cast(pc_) = x; ++ pc_ += kInstrSize; ++ CheckTrampolinePoolQuick(); ++} ++ ++template <> ++inline void Assembler::EmitHelper(uint8_t x); ++ ++template ++void Assembler::EmitHelper(T x) { ++ *reinterpret_cast(pc_) = x; ++ pc_ += sizeof(x); ++ CheckTrampolinePoolQuick(); ++} ++ ++template <> ++void Assembler::EmitHelper(uint8_t x) { ++ *reinterpret_cast(pc_) = x; ++ pc_ += sizeof(x); ++ if (reinterpret_cast(pc_) % kInstrSize == 0) { ++ CheckTrampolinePoolQuick(); ++ } ++} ++ ++void Assembler::emit(Instr x) { ++ if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++ } ++ EmitHelper(x); ++} ++ ++void Assembler::emit(uint64_t data) { ++// CheckForEmitInForbiddenSlot(); ++if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++} ++ EmitHelper(data); ++} ++ ++EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_LOONG64_ASSEMBLER_LOONG64_INL_H_ +diff --git a/deps/v8/src/loong64/assembler-loong64.cc b/deps/v8/src/loong64/assembler-loong64.cc +new file mode 100644 +index 0000000..d34a802 +--- /dev/null ++++ b/deps/v8/src/loong64/assembler-loong64.cc +@@ -0,0 +1,2658 @@ ++// - Redistribution in binary form must reproduce the above copyright ++// notice, this list of conditions and the following disclaimer in the ++// documentation and/or other materials provided with the distribution. ++// ++// - Neither the name of Sun Microsystems or the names of contributors may ++// be used to endorse or promote products derived from this software without ++// specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ++// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ++// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ++// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ++// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ++// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ++// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ++// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ++// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ++// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ++// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++// The original source code covered by the above license above has been ++// modified significantly by Google Inc. ++// Copyright 2012 the V8 project authors. All rights reserved. ++ ++#include "src/loong64/assembler-loong64.h" ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/base/cpu.h" ++#include "src/code-stubs.h" ++#include "src/loong64/assembler-loong64-inl.h" ++ ++namespace v8 { ++namespace internal { ++ ++void CpuFeatures::ProbeImpl(bool cross_compile) { ++ supported_ |= 1u << FPU; ++ ++ // Only use statically determined features for cross compile (snapshot). ++ if (cross_compile) return; ++ ++#if defined(_loongisa_vec) ++ supported_ |= 0u; ++#endif ++ // If the compiler is allowed to use fpu then we can use fpu too in our ++ // code generation. ++#ifdef __loongarch__ ++ // Probe for additional features at runtime. ++ base::CPU cpu; ++ supported_ |= 0u; ++#endif ++} ++ ++void CpuFeatures::PrintTarget() {} ++void CpuFeatures::PrintFeatures() {} ++ ++int ToNumber(Register reg) { ++ DCHECK(reg.is_valid()); ++ const int kNumbers[] = { ++ 0, // zero_reg ++ 1, // r1 ra ++ 2, // r2 gp ++ 3, // r3 sp ++ 4, // a0 v0 ++ 5, // a1 v1 ++ 6, // a2 ++ 7, // a3 ++ 8, // a4 ++ 9, // a5 ++ 10, // a6 ++ 11, // a7 ++ 12, // t0 ++ 13, // t1 ++ 14, // t2 ++ 15, // t3 ++ 16, // t4 ++ 17, // t5 ++ 18, // t6 ++ 19, // t7 ++ 20, // t8 ++ 21, // tp ++ 22, // fp ++ 23, // s0 ++ 24, // s1 ++ 25, // s2 ++ 26, // s3 ++ 27, // s4 ++ 28, // s5 ++ 29, // s6 ++ 30, // s7 ++ 31, // s8 ++ }; ++ return kNumbers[reg.code()]; ++} ++ ++Register ToRegister(int num) { ++ DCHECK(num >= 0 && num < kNumRegisters); ++ const Register kRegisters[] = { ++ zero_reg, ++ ra, ++ gp, ++ sp, ++ a0, a1, a2, a3, a4, a5, a6, a7, ++ t0, t1, t2, t3, t4, t5, t6, t7, t8, ++ tp, ++ fp, ++ s0, s1, s2, s3, s4, s5, s6, s7, s8 ++ }; ++ return kRegisters[num]; ++} ++ ++// ----------------------------------------------------------------------------- ++// Implementation of RelocInfo. ++ ++const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE | ++ 1 << RelocInfo::INTERNAL_REFERENCE_ENCODED; ++ ++bool RelocInfo::IsCodedSpecially() { ++ // The deserializer needs to know whether a pointer is specially coded. Being ++ // specially coded on loongisa means that it is a lui/ori instruction, and ++ // that is always the case inside code objects. ++ return true; ++} ++ ++bool RelocInfo::IsInConstantPool() { ++ return false; ++} ++ ++Address RelocInfo::embedded_address() const { ++ return Assembler::target_address_at(pc_, constant_pool_); ++} ++ ++uint32_t RelocInfo::embedded_size() const { ++ return static_cast( ++ (Assembler::target_address_at(pc_, constant_pool_))); ++} ++ ++void RelocInfo::set_embedded_address(Address address, ++ ICacheFlushMode flush_mode) { ++ Assembler::set_target_address_at(pc_, constant_pool_, address, flush_mode); ++} ++ ++void RelocInfo::set_embedded_size(uint32_t size, ICacheFlushMode flush_mode) { ++ Assembler::set_target_address_at(pc_, constant_pool_, ++ static_cast
(size), flush_mode); ++} ++ ++void RelocInfo::set_js_to_wasm_address(Address address, ++ ICacheFlushMode icache_flush_mode) { ++ DCHECK_EQ(rmode_, JS_TO_WASM_CALL); ++ set_embedded_address(address, icache_flush_mode); ++} ++ ++Address RelocInfo::js_to_wasm_address() const { ++ DCHECK_EQ(rmode_, JS_TO_WASM_CALL); ++ return embedded_address(); ++} ++ ++// ----------------------------------------------------------------------------- ++// Implementation of Operand and MemOperand. ++// See assembler-loong64-inl.h for inlined constructors. ++ ++Operand::Operand(Handle handle) ++ : rm_(no_reg), rmode_(RelocInfo::EMBEDDED_OBJECT) { ++ value_.immediate = static_cast(handle.address()); ++} ++ ++Operand Operand::EmbeddedNumber(double value) { ++ int32_t smi; ++ if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); ++ Operand result(0, RelocInfo::EMBEDDED_OBJECT); ++ result.is_heap_object_request_ = true; ++ result.value_.heap_object_request = HeapObjectRequest(value); ++ return result; ++} ++ ++Operand Operand::EmbeddedCode(CodeStub* stub) { ++ Operand result(0, RelocInfo::CODE_TARGET); ++ result.is_heap_object_request_ = true; ++ result.value_.heap_object_request = HeapObjectRequest(stub); ++ return result; ++} ++ ++MemOperand::MemOperand(Register base, int32_t offset) ++ :base_(base), index_(no_reg), offset_(offset) {} ++ ++MemOperand::MemOperand(Register base, Register index) ++ :base_(base), index_(index), offset_(0) {} ++ ++void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { ++ for (auto& request : heap_object_requests_) { ++ Handle object; ++ switch (request.kind()) { ++ case HeapObjectRequest::kHeapNumber: ++ object = isolate->factory()->NewHeapNumber(request.heap_number(), ++ IMMUTABLE, TENURED); ++ break; ++ case HeapObjectRequest::kCodeStub: ++ request.code_stub()->set_isolate(isolate); ++ object = request.code_stub()->GetCode(); ++ break; ++ } ++ Address pc = reinterpret_cast
(buffer_) + request.offset(); ++ set_target_value_at(pc, reinterpret_cast(object.location())); ++ } ++} ++ ++// ----------------------------------------------------------------------------- ++// Specific instructions, constants, and masks. ++ ++// addi_d(sp, sp, 8) aka Pop() operation or part of Pop(r) ++// operations as post-increment of sp. ++const Instr kPopInstruction = ADDI_D | ++ (kPointerSize & kImm12Mask ) << kRkShift | ++ (sp.code() << kRjShift) | sp.code(); // NOLINT ++// addi_d(sp, sp, -8) part of Push(r) operation as pre-decrement of sp. ++const Instr kPushInstruction = ADDI_D | ++ (-kPointerSize & kImm12Mask ) << kRkShift | ++ (sp.code() << kRjShift) | sp.code(); // NOLINT ++// St_d(r, MemOperand(sp, 0)) ++const Instr kPushRegPattern = ++ ST_D | (sp.code() << kRjShift); // NOLINT ++// Ld_d(r, MemOperand(sp, 0)) ++const Instr kPopRegPattern = ++ LD_D | (sp.code() << kRjShift); // NOLINT ++ ++Assembler::Assembler(IsolateData isolate_data, void* buffer, int buffer_size) ++ : AssemblerBase(isolate_data, buffer, buffer_size), ++ scratch_register_list_(t7.bit() | t6.bit()) { ++ reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); ++ ++ last_trampoline_pool_end_ = 0; ++ no_trampoline_pool_before_ = 0; ++ trampoline_pool_blocked_nesting_ = 0; ++ // We leave space (16 * kTrampolineSlotsSize) ++ // for BlockTrampolinePoolScope buffer. ++ next_buffer_check_ = FLAG_force_long_branches ++ ? kMaxInt ++ : kMax16BranchOffset - kTrampolineSlotsSize * 16; ++ internal_trampoline_exception_ = false; ++ last_bound_pos_ = 0; ++ ++ trampoline_emitted_ = FLAG_force_long_branches; // TODO remove this ++ unbound_labels_count_ = 0; ++ block_buffer_growth_ = false; ++} ++ ++void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) { ++ // EmitForbiddenSlotInstruction(); // TODO why? ++ ++ DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. ++ ++ AllocateAndInstallRequestedHeapObjects(isolate); ++ ++ // Set up code descriptor. ++ desc->buffer = buffer_; ++ desc->buffer_size = buffer_size_; ++ desc->instr_size = pc_offset(); ++ desc->reloc_size = ++ static_cast((buffer_ + buffer_size_) - reloc_info_writer.pos()); ++ desc->origin = this; ++ desc->constant_pool_size = 0; ++ desc->unwinding_info_size = 0; ++ desc->unwinding_info = nullptr; ++} ++ ++void Assembler::Align(int m) { ++ DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); ++ while ((pc_offset() & (m - 1)) != 0) { ++ nop(); ++ } ++} ++ ++void Assembler::CodeTargetAlign() { ++ // No advantage to aligning branch/call targets to more than ++ // single instruction, that I am aware of. ++ Align(4); ++} ++ ++Register Assembler::GetRkReg(Instr instr) { ++ return Register::from_code((instr & kRkFieldMask) >> kRkShift); ++} ++ ++Register Assembler::GetRjReg(Instr instr) { ++ return Register::from_code((instr & kRjFieldMask) >> kRjShift); ++} ++ ++Register Assembler::GetRdReg(Instr instr) { ++ return Register::from_code((instr & kRdFieldMask) >> kRdShift); ++} ++ ++uint32_t Assembler::GetRk(Instr instr) { ++ return (instr & kRkFieldMask) >> kRkShift; ++} ++ ++uint32_t Assembler::GetRkField(Instr instr) { return instr & kRkFieldMask; } ++ ++uint32_t Assembler::GetRj(Instr instr) { ++ return (instr & kRjFieldMask) >> kRjShift; ++} ++ ++uint32_t Assembler::GetRjField(Instr instr) { return instr & kRjFieldMask; } ++ ++uint32_t Assembler::GetRd(Instr instr) { ++ return (instr & kRdFieldMask) >> kRdShift; ++} ++ ++uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; } ++ ++uint32_t Assembler::GetSa2(Instr instr) { ++ return (instr & kSa2FieldMask) >> kSaShift; ++} ++ ++uint32_t Assembler::GetSa2Field(Instr instr) { return instr & kSa2FieldMask; } ++ ++uint32_t Assembler::GetSa3(Instr instr) { ++ return (instr & kSa3FieldMask) >> kSaShift; ++} ++ ++uint32_t Assembler::GetSa3Field(Instr instr) { return instr & kSa3FieldMask; } ++ ++bool Assembler::IsPop(Instr instr) { ++ return (instr & 0xffc003e0L) == kPopRegPattern; ++} ++ ++bool Assembler::IsPush(Instr instr) { ++ return (instr & 0xffc003e0L) == kPushRegPattern; ++} ++ ++// Labels refer to positions in the (to be) generated code. ++// There are bound, linked, and unused labels. ++// ++// Bound labels refer to known positions in the already ++// generated code. pos() is the position the label refers to. ++// ++// Linked labels refer to unknown positions in the code ++// to be generated; pos() is the position of the last ++// instruction using the label. ++ ++// The link chain is terminated by a value in the instruction of -1, ++// which is an otherwise illegal value (branch -1 is inf loop). ++// The instruction 16-bit offset field addresses 32-bit words, but in ++// code is conv to an 18-bit value addressing bytes, hence the -4 value. ++ ++const int kEndOfChain = 0; ++// Determines the end of the Jump chain (a subset of the label link chain). ++const int kEndOfJumpChain = 0; ++ ++bool Assembler::IsBranch(Instr instr) { ++ uint32_t opcode = (instr >> 26) << 26 ; ++ // Checks if the instruction is a branch. ++ bool isBranch = ++ opcode == BEQZ || opcode == BNEZ || opcode == BCZ || ++ opcode == B || opcode == BL || opcode == BEQ || opcode == BNE || ++ opcode == BLT || opcode == BGE || opcode == BLTU || opcode == BGEU; ++ return isBranch; ++} ++ ++bool Assembler::IsB(Instr instr) { ++ uint32_t opcode = (instr >> 26) << 26 ; ++ // Checks if the instruction is a b. ++ bool isBranch = opcode == B || opcode == BL; ++ return isBranch; ++} ++ ++bool Assembler::IsBz(Instr instr) { ++ uint32_t opcode = (instr >> 26) << 26 ; ++ // Checks if the instruction is a branch. ++ bool isBranch = opcode == BEQZ || opcode == BNEZ || ++ opcode == BCZ; ++ return isBranch; ++} ++ ++bool Assembler::IsEmittedConstant(Instr instr) { ++ // Add GetLabelConst function? ++ uint32_t label_constant = instr & ~kImm16Mask; ++ return label_constant == 0; // Emitted label const in reg-exp engine. ++} ++ ++bool Assembler::IsJ(Instr instr) { ++ uint32_t opcode = (instr >> 26) << 26 ; ++ // Checks if the instruction is a jump. ++ return opcode == JIRL; ++} ++ ++bool Assembler::IsLu12i_w(Instr instr) { ++ uint32_t opcode = (instr >> 25) << 25 ; ++ return opcode == LU12I_W; ++} ++ ++bool Assembler::IsOri(Instr instr) { ++ uint32_t opcode = (instr >> 22) << 22 ; ++ return opcode == ORI; ++} ++ ++bool Assembler::IsLu32i_d(Instr instr) { ++ uint32_t opcode = (instr >> 25) << 25 ; ++ return opcode == LU32I_D; ++} ++ ++bool Assembler::IsLu52i_d(Instr instr) { ++ uint32_t opcode = (instr >> 22) << 22 ; ++ return opcode == LU52I_D; ++} ++ ++bool Assembler::IsPcAddi(Instr instr, Register rd, int32_t si20) { ++ DCHECK(is_int20(si20)); ++ Instr instr1 = PCADDI | (si20 & 0xfffff) << kRjShift | rd.code(); ++ return instr == instr1; ++} ++ ++bool Assembler::IsNop(Instr instr, unsigned int type) { ++ // See Assembler::nop(type). ++ DCHECK_LT(type, 32); ++ // Traditional loongisa nop == andi(zero_reg, zero_reg, 0) ++ // When marking non-zero type, use andi(zero_reg, t7, type) ++ // to avoid use of ssnop and ehb special encodings of the ++ // andi instruction. ++ ++ Register nop_rt_reg = (type == 0) ? zero_reg : t7; ++ Instr instr1 = ANDI | ((type & kImm12Mask) << kRkShift) | ++ (nop_rt_reg.code() << kRjShift); ++ ++ return instr == instr1; ++} ++ ++static inline int32_t GetOffsetOfBranch(Instr instr, Assembler::OffsetSize bits) { ++ int32_t result = 0; ++ if(bits == 16) { ++ result = (instr << 6) >> 16; ++ } else if (bits == 21) { ++ uint32_t low16 = instr << 6; ++ low16 = low16 >> 16; ++ low16 &= 0xffff; ++ int32_t hi5 = (instr << 27) >> 11; ++ result = hi5 | low16; ++ } else { ++ uint32_t low16 = instr << 6; ++ low16 = low16 >> 16; ++ low16 &= 0xffff; ++ int32_t hi10 = (instr << 22) >> 6; ++ result = hi10 | low16; ++ DCHECK_EQ(bits, 26); ++ } ++ return result << 2; ++} ++ ++static Assembler::OffsetSize OffsetSizeInBits(Instr instr) { ++ if (Assembler::IsB(instr)) { ++ return Assembler::OffsetSize::kOffset26; ++ } else if (Assembler::IsBz(instr)) { ++ return Assembler::OffsetSize::kOffset21; ++ } else { ++ DCHECK(Assembler::IsBranch(instr)); ++ return Assembler::OffsetSize::kOffset16; ++ } ++} ++ ++static inline int32_t AddBranchOffset(int pos, Instr instr) { ++ Assembler::OffsetSize bits = OffsetSizeInBits(instr); ++ ++ int32_t imm = GetOffsetOfBranch(instr, bits); ++ ++ if (imm == kEndOfChain) { ++ // EndOfChain sentinel is returned directly, not relative to pc or pos. ++ return kEndOfChain; ++ } else { ++ // Handle the case that next branch position is 0. ++ // TODO: Define -4 as a constant ++ int32_t offset = pos + Assembler::kBranchPCOffset + imm; ++ return offset == 0 ? -4 : offset; ++ } ++} ++ ++int Assembler::target_at(int pos, bool is_internal) { ++ if (is_internal) { ++ int64_t* p = reinterpret_cast(buffer_ + pos); ++ int64_t address = *p; ++ if (address == kEndOfJumpChain) { ++ return kEndOfChain; ++ } else { ++ int64_t instr_address = reinterpret_cast(p); ++ DCHECK(instr_address - address < INT_MAX); ++ int delta = static_cast(instr_address - address); ++ DCHECK(pos > delta); ++ return pos - delta; ++ } ++ } ++ Instr instr = instr_at(pos); ++ ++ // TODO remove after remove label_at_put? ++ if ((instr & ~kImm16Mask) == 0) { ++ // Emitted label constant, not part of a branch. ++ if (instr == 0) { ++ return kEndOfChain; ++ } else { ++ int32_t imm18 = ((instr & static_cast(kImm16Mask)) << 16) >> 14; ++ return (imm18 + pos); ++ } ++ } ++ ++ // Check we have a branch or jump instruction. ++ DCHECK(IsBranch(instr) || IsJ(instr) || IsLu12i_w(instr)); ++ // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming ++ // the compiler uses arithmetic shifts for signed integers. ++ if (IsBranch(instr)) { ++ return AddBranchOffset(pos, instr); ++ } else if (IsLu12i_w(instr)) { ++/* ++ Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); ++ Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); ++ Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize); ++ DCHECK(IsOri(instr_ori)); ++ DCHECK(IsOri(instr_ori2)); ++ ++ // TODO(plind) create named constants for shift values. ++ int64_t imm = static_cast(instr_lui & kImm16Mask) << 48; ++ imm |= static_cast(instr_ori & kImm16Mask) << 32; ++ imm |= static_cast(instr_ori2 & kImm16Mask) << 16; ++ // Sign extend address; ++ imm >>= 16; ++ ++ if (imm == kEndOfJumpChain) { ++ // EndOfChain sentinel is returned directly, not relative to pc or pos. ++ return kEndOfChain; ++ } else { ++ uint64_t instr_address = reinterpret_cast(buffer_ + pos); ++ DCHECK(instr_address - imm < INT_MAX); ++ int delta = static_cast(instr_address - imm); ++ DCHECK(pos > delta); ++ return pos - delta; ++ }*/ ++ } else { ++ DCHECK(IsJ(instr)); ++ // TODO not used??? ++ abort(); ++ } ++} ++ ++static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos, ++ Instr instr) { ++ int32_t bits = OffsetSizeInBits(instr); ++ int32_t imm = target_pos - pos; ++ DCHECK_EQ(imm & 3, 0); ++ imm >>= 2; ++ ++ DCHECK(is_intn(imm, bits)); ++ ++ if(bits == 16) { ++ const int32_t mask = ((1 << 16) - 1) << 10; ++ instr &= ~mask; ++ return instr | ((imm << 10) & mask); ++ } else if (bits == 21) { ++ const int32_t mask = 0x3fffc1f; ++ instr &= ~mask; ++ uint32_t low16 = (imm & kImm16Mask) << 10; ++ int32_t hi5 = (imm >> 16) & 0x1f; ++ return instr | low16 | hi5; ++ } else { ++ DCHECK_EQ(bits, 26); ++ const int32_t mask = 0x3ffffff; ++ instr &= ~mask; ++ uint32_t low16 = (imm & kImm16Mask) << 10; ++ int32_t hi10 = (imm >> 16) & 0x3ff; ++ return instr | low16 | hi10; ++ } ++} ++ ++void Assembler::target_at_put(int pos, int target_pos, bool is_internal) { ++ if (is_internal) { ++ uint64_t imm = reinterpret_cast(buffer_) + target_pos; ++ *reinterpret_cast(buffer_ + pos) = imm; ++ return; ++ } ++ Instr instr = instr_at(pos); ++ if ((instr & ~kImm16Mask) == 0) { ++ DCHECK(target_pos == kEndOfChain || target_pos >= 0); ++ // Emitted label constant, not part of a branch. ++ // Make label relative to Code* of generated Code object. ++ instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); ++ return; ++ } ++ ++ if (IsBranch(instr)) { ++ instr = SetBranchOffset(pos, target_pos, instr); ++ instr_at_put(pos, instr); ++ } else if (0 == 1/*IsLui(instr)*/) { ++/* Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); ++ Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); ++ Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize); ++ DCHECK(IsOri(instr_ori)); ++ DCHECK(IsOri(instr_ori2)); ++ uint64_t imm = reinterpret_cast(buffer_) + target_pos; ++ DCHECK_EQ(imm & 3, 0); ++ instr_lui &= ~kImm16Mask; ++ instr_ori &= ~kImm16Mask; ++ instr_ori2 &= ~kImm16Mask; ++ instr_at_put(pos + 0 * Assembler::kInstrSize, ++ instr_lui | ((imm >> 32) & kImm16Mask)); ++ instr_at_put(pos + 1 * Assembler::kInstrSize, ++ instr_ori | ((imm >> 16) & kImm16Mask)); ++ instr_at_put(pos + 3 * Assembler::kInstrSize, ++ instr_ori2 | (imm & kImm16Mask));*/ ++ } else if (IsJ(instr)) { ++ /* ++ int32_t imm28 = target_pos - pos; ++ DCHECK_EQ(imm28 & 3, 0); ++ ++ uint32_t imm26 = static_cast(imm28 >> 2); ++ DCHECK(is_uint26(imm26)); ++ // Place 26-bit signed offset with markings. ++ // When code is committed it will be resolved to j/jal. ++ int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark; ++ instr_at_put(pos, mark | (imm26 & kImm26Mask));*/ ++ abort(); ++ } else { ++/* int32_t imm28 = target_pos - pos; ++ DCHECK_EQ(imm28 & 3, 0); ++ ++ uint32_t imm26 = static_cast(imm28 >> 2); ++ DCHECK(is_uint26(imm26)); ++ // Place raw 26-bit signed offset. ++ // When code is committed it will be resolved to j/jal. ++ instr &= ~kImm26Mask; ++ instr_at_put(pos, instr | (imm26 & kImm26Mask));*/ ++ abort(); ++ } ++} ++ ++void Assembler::print(const Label* L) { ++ if (L->is_unused()) { ++ PrintF("unused label\n"); ++ } else if (L->is_bound()) { ++ PrintF("bound label to %d\n", L->pos()); ++ } else if (L->is_linked()) { ++ Label l; ++ l.link_to(L->pos()); ++ PrintF("unbound label"); ++ while (l.is_linked()) { ++ PrintF("@ %d ", l.pos()); ++ Instr instr = instr_at(l.pos()); ++ if ((instr & ~kImm16Mask) == 0) { ++ PrintF("value\n"); ++ } else { ++ PrintF("%d\n", instr); ++ } ++ next(&l, is_internal_reference(&l)); ++ } ++ } else { ++ PrintF("label in inconsistent state (pos = %d)\n", L->pos_); ++ } ++} ++ ++void Assembler::bind_to(Label* L, int pos) { ++ DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position. ++ int trampoline_pos = kInvalidSlotPos; ++ bool is_internal = false; ++ if (L->is_linked() && !trampoline_emitted_) { ++ unbound_labels_count_--; ++ if (!is_internal_reference(L)) { ++ next_buffer_check_ += kTrampolineSlotsSize; ++ } ++ } ++ ++ while (L->is_linked()) { ++ int fixup_pos = L->pos(); ++ int dist = pos - fixup_pos; ++ is_internal = is_internal_reference(L); ++ next(L, is_internal); // Call next before overwriting link with target at ++ // fixup_pos. ++ Instr instr = instr_at(fixup_pos); ++ if (is_internal) { ++ target_at_put(fixup_pos, pos, is_internal); ++ } else { ++ if (IsBranch(instr)) { ++ int branch_offset = BranchOffset(instr); ++ if (dist > branch_offset) { ++ if (trampoline_pos == kInvalidSlotPos) { ++ trampoline_pos = get_trampoline_entry(fixup_pos); ++ CHECK_NE(trampoline_pos, kInvalidSlotPos); ++ } ++ CHECK((trampoline_pos - fixup_pos) <= branch_offset); ++ target_at_put(fixup_pos, trampoline_pos, false); ++ fixup_pos = trampoline_pos; ++ } ++ target_at_put(fixup_pos, pos, false); ++ } else { ++ DCHECK(IsJ(instr) || IsLu12i_w(instr) || IsEmittedConstant(instr)); ++ target_at_put(fixup_pos, pos, false); ++ } ++ } ++ } ++ L->bind_to(pos); ++ ++ // Keep track of the last bound label so we don't eliminate any instructions ++ // before a bound label. ++ if (pos > last_bound_pos_) ++ last_bound_pos_ = pos; ++} ++ ++void Assembler::bind(Label* L) { ++ DCHECK(!L->is_bound()); // Label can only be bound once. ++ bind_to(L, pc_offset()); ++} ++ ++void Assembler::next(Label* L, bool is_internal) { ++ DCHECK(L->is_linked()); ++ int link = target_at(L->pos(), is_internal); ++ if (link == kEndOfChain) { ++ L->Unuse(); ++ } else if (link == -4) { ++ // Next position is pc_offset == 0 ++ L->link_to(0); ++ } else { ++ DCHECK_GE(link, 0); ++ L->link_to(link); ++ } ++} ++ ++bool Assembler::is_near_c(Label* L) { ++ DCHECK(L->is_bound()); ++ return pc_offset() - L->pos() < kMax16BranchOffset - 4 * Assembler::kInstrSize; ++} ++ ++bool Assembler::is_near(Label* L, OffsetSize bits) { ++ DCHECK(L->is_bound()); ++ return ((pc_offset() - L->pos()) < ++ (1 << (bits + 2 - 1)) - 1 - 5 * Assembler::kInstrSize); ++} ++ ++bool Assembler::is_near_a(Label* L) { ++ DCHECK(L->is_bound()); ++ return pc_offset() - L->pos() <= kMax26BranchOffset - 4 * Assembler::kInstrSize; ++} ++ ++int Assembler::BranchOffset(Instr instr) { ++ int bits = OffsetSize::kOffset16; ++ ++ uint32_t opcode = (instr >> 26) << 26; ++ switch (opcode) { ++ case B: ++ case BL: ++ bits = OffsetSize::kOffset26; ++ break; ++ case BNEZ: ++ case BEQZ: ++ case BCZ: ++ bits = OffsetSize::kOffset21; ++ break; ++ case BNE: ++ case BEQ: ++ case BLT: ++ case BGE: ++ case BLTU: ++ case BGEU: ++ case JIRL: ++ bits = OffsetSize::kOffset16; ++ break; ++ default: ++ break; ++ } ++ return (1 << (bits + 2 - 1)) - 1; ++} ++ ++// We have to use a temporary register for things that can be relocated even ++// if they can be encoded in the LA's 16 bits of immediate-offset instruction ++// space. There is no guarantee that the relocated location can be similarly ++// encoded. ++bool Assembler::MustUseReg(RelocInfo::Mode rmode) { ++ return !RelocInfo::IsNone(rmode); ++} ++ ++void Assembler::GenB(Opcode opcode, Register rj, int32_t si21) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ DCHECK((BEQZ == opcode || BNEZ == opcode) && ++ is_int21(si21) && rj.is_valid()); ++ Instr instr = opcode | (si21 & kImm16Mask) << kRkShift | ++ (rj.code() << kRjShift) | ((si21 & 0x1fffff) >> 16); ++ emit(instr); ++} ++ ++void Assembler::GenB(Opcode opcode, CFRegister cj, int32_t si21, bool isEq) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ DCHECK(BCZ == opcode && is_int21(si21)); ++ DCHECK(cj>= 0 && cj <= 7); ++ int32_t sc = (isEq ? cj : cj + 8); ++ Instr instr = opcode | (si21 & kImm16Mask) << kRkShift | ++ (sc << kRjShift) | ((si21 & 0x1fffff) >> 16); ++ emit(instr); ++} ++ ++void Assembler::GenB(Opcode opcode, int32_t si26) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ DCHECK((B == opcode || BL == opcode) && is_int26(si26)); ++ Instr instr = opcode | ((si26 & kImm16Mask) << kRkShift) | ++ ((si26 & kImm26Mask) >> 16); ++ emit(instr); ++} ++ ++void Assembler::GenBJ(Opcode opcode, Register rj, Register rd, int32_t si16) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ DCHECK(is_int16(si16)); ++ Instr instr = opcode | ((si16 & kImm16Mask) << kRkShift) | ++ (rj.code() << kRjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenCmp(Opcode opcode, FPUCondition cond, FPURegister fk, ++ FPURegister fj, CFRegister cd) { ++ DCHECK(opcode == FCMP_COND_S || opcode == FCMP_COND_D); ++ Instr instr = opcode | cond << kCondShift | (fk.code() << kFkShift) | ++ (fj.code() << kFjShift) | cd; ++ emit(instr); ++} ++ ++void Assembler::GenSel(Opcode opcode, CFRegister ca, FPURegister fk, ++ FPURegister fj, FPURegister rd) { ++ DCHECK((opcode == FSEL)); ++ Instr instr = opcode | ca << kCondShift | (fk.code() << kFkShift) | ++ (fj.code() << kFjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rj, ++ Register rd, bool rjrd) { ++ Instr instr = 0; ++ if (rjrd) { ++ instr = opcode | (rj.code() << kRjShift) | rd.code(); ++ } else { ++ DCHECK(opcode == ASRTLE_D || opcode == ASRTGT_D); ++ instr = opcode | (rj.code() << kRkShift) | rd.code() << kRjShift; ++ } ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPURegister fj, FPURegister fd) { ++ Instr instr = opcode | (fj.code() << kFjShift) | fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rj, FPURegister fd) { ++ DCHECK((opcode == MOVGR2FR_W) || (opcode == MOVGR2FR_D) || ++ (opcode == MOVGR2FRH_W)); ++ Instr instr = opcode | (rj.code() << kRjShift) | fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPURegister fj, Register rd) { ++ DCHECK((opcode == MOVFR2GR_S) || (opcode == MOVFR2GR_D) || ++ (opcode == MOVFRH2GR_S)); ++ Instr instr = opcode | (fj.code() << kFjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rj, FPUControlRegister fd) { ++ DCHECK((opcode == MOVGR2FCSR)); ++ Instr instr = opcode | (rj.code() << kRjShift) | fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPUControlRegister fj, Register rd) { ++ DCHECK((opcode == MOVFCSR2GR)); ++ Instr instr = opcode | (fj.code() << kFjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPURegister fj, CFRegister cd) { ++ DCHECK((opcode == MOVFR2CF)); ++ Instr instr = opcode | (fj.code() << kFjShift) | cd; ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, CFRegister cj, FPURegister fd) { ++ DCHECK((opcode == MOVCF2FR)); ++ Instr instr = opcode | cj << kFjShift | fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rj, CFRegister cd) { ++ DCHECK((opcode == MOVGR2CF)); ++ Instr instr = opcode | (rj.code() << kRjShift) | cd; ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, CFRegister cj, Register rd) { ++ DCHECK((opcode == MOVCF2GR)); ++ Instr instr = opcode | cj << kFjShift | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rk, ++ Register rj, Register rd) { ++ Instr instr = opcode | (rk.code() << kRkShift) | (rj.code() << kRjShift) | ++ rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPURegister fk, ++ FPURegister fj, FPURegister fd) { ++ Instr instr = opcode | (fk.code() << kFkShift) | (fj.code() << kFjShift) | ++ fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, FPURegister fa, FPURegister fk, ++ FPURegister fj, FPURegister fd) { ++ Instr instr = opcode |(fa.code() << kFaShift) | (fk.code() << kFkShift) | ++ (fj.code() << kFjShift) | fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenRegister(Opcode opcode, Register rk, ++ Register rj, FPURegister fd) { ++ Instr instr = opcode | (rk.code() << kRkShift) | (rj.code() << kRjShift) | ++ fd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t bit3, Register rk, ++ Register rj, Register rd) { ++ DCHECK(is_uint3(bit3)); ++ Instr instr = opcode | (bit3 & 0x7) << kSaShift | ++ (rk.code() << kRkShift) | (rj.code() << kRjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t bit6m, int32_t bit6l, ++ Register rj, Register rd) { ++ DCHECK(is_uint6(bit6m) && is_uint6(bit6l)); ++ Instr instr = opcode | (bit6m & 0x3f) << 16 | ++ (bit6l & 0x3f) << kRkShift | ++ (rj.code() << kRjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t bit20, Register rd) { ++// DCHECK(is_uint20(bit20) || is_int20(bit20)); ++ Instr instr = opcode | (bit20 & 0xfffff) << kRjShift | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t bit15) { ++ DCHECK(is_uint15(bit15)); ++ Instr instr = opcode | (bit15 & 0x7fff); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t value, Register rj, ++ Register rd, int32_t value_bits) { ++ DCHECK(value_bits == 6 || value_bits == 12 || ++ value_bits == 14 || value_bits == 16); ++ uint32_t imm = value & 0x3f; ++ if (value_bits == 12) { ++ imm = value & kImm12Mask; ++ } else if (value_bits == 14) { ++ imm = value & 0x3fff; ++ } else if (value_bits == 16) { ++ imm = value & kImm16Mask; ++ } ++ Instr instr = opcode | imm << kRkShift | (rj.code() << kRjShift) | rd.code(); ++ emit(instr); ++} ++ ++void Assembler::GenImm(Opcode opcode, int32_t bit12, ++ Register rj, FPURegister fd) { ++ DCHECK(is_int12(bit12)); ++ Instr instr = opcode | ((bit12 & kImm12Mask) << kRkShift) | ++ (rj.code() << kRjShift) | fd.code(); ++ emit(instr); ++} ++ ++// Returns the next free trampoline entry. ++int32_t Assembler::get_trampoline_entry(int32_t pos) { ++ int32_t trampoline_entry = kInvalidSlotPos; ++ if (!internal_trampoline_exception_) { ++ if (trampoline_.start() > pos) { ++ trampoline_entry = trampoline_.take_slot(); ++ } ++ ++ if (kInvalidSlotPos == trampoline_entry) { ++ internal_trampoline_exception_ = true; ++ } ++ } ++ return trampoline_entry; ++} ++ ++uint64_t Assembler::jump_address(Label* L) { ++ int64_t target_pos; ++ if (L->is_bound()) { ++ target_pos = L->pos(); ++ } else { ++ if (L->is_linked()) { ++ target_pos = L->pos(); // L's link. ++ L->link_to(pc_offset()); ++ } else { ++ L->link_to(pc_offset()); ++ return kEndOfJumpChain; ++ } ++ } ++ uint64_t imm = reinterpret_cast(buffer_) + target_pos; ++ DCHECK_EQ(imm & 3, 0); ++ ++ return imm; ++} ++ ++int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) { ++ int32_t target_pos; ++ ++ if (L->is_bound()) { ++ target_pos = L->pos(); ++ } else { ++ if (L->is_linked()) { ++ target_pos = L->pos(); ++ L->link_to(pc_offset()); ++ } else { ++ L->link_to(pc_offset()); ++ if (!trampoline_emitted_) { ++ unbound_labels_count_++; ++ next_buffer_check_ -= kTrampolineSlotsSize; ++ } ++ return kEndOfChain; ++ } ++ } ++ ++ int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); ++ DCHECK(is_intn(offset, bits + 2)); ++ DCHECK_EQ(offset & 3, 0); ++ ++ return offset; ++} ++ ++void Assembler::label_at_put(Label* L, int at_offset) { ++ int target_pos; ++ if (L->is_bound()) { ++ target_pos = L->pos(); ++ instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); ++ } else { ++ if (L->is_linked()) { ++ target_pos = L->pos(); // L's link. ++ int32_t imm18 = target_pos - at_offset; ++ DCHECK_EQ(imm18 & 3, 0); ++ int32_t imm16 = imm18 >> 2; ++ DCHECK(is_int16(imm16)); ++ instr_at_put(at_offset, (imm16 & kImm16Mask)); ++ } else { ++ target_pos = kEndOfChain; ++ instr_at_put(at_offset, 0); ++ if (!trampoline_emitted_) { ++ unbound_labels_count_++; ++ next_buffer_check_ -= kTrampolineSlotsSize; ++ } ++ } ++ L->link_to(at_offset); ++ } ++ // TODO PushBackTrack() ++} ++ ++//------- Branch and jump instructions -------- ++ ++void Assembler::b(int32_t offset) { ++ GenB(B, offset); ++} ++ ++void Assembler::bl(int32_t offset) { ++ GenB(BL, offset); ++} ++ ++void Assembler::beq(Register rj, Register rd, int32_t offset) { ++ GenBJ(BEQ, rj, rd, offset); ++} ++ ++void Assembler::bne(Register rj, Register rd, int32_t offset) { ++ GenBJ(BNE, rj, rd, offset); ++} ++ ++void Assembler::blt(Register rj, Register rd, int32_t offset) { ++ GenBJ(BLT, rj, rd, offset); ++} ++ ++void Assembler::bge(Register rj, Register rd, int32_t offset) { ++ GenBJ(BGE, rj, rd, offset); ++} ++ ++void Assembler::bltu(Register rj, Register rd, int32_t offset) { ++ GenBJ(BLTU, rj, rd, offset); ++} ++ ++void Assembler::bgeu(Register rj, Register rd, int32_t offset) { ++ GenBJ(BGEU, rj, rd, offset); ++} ++ ++void Assembler::beqz(Register rj, int32_t offset) { ++ GenB(BEQZ, rj, offset); ++} ++ ++void Assembler::bnez(Register rj, int32_t offset) { ++ GenB(BNEZ, rj, offset); ++} ++ ++void Assembler::jirl(Register rd, Register rj, int32_t offset) { ++ GenBJ(JIRL, rj, rd, offset); ++} ++ ++void Assembler::bceqz(CFRegister cj, int32_t si21) { ++ GenB(BCZ, cj, si21, true); ++} ++ ++void Assembler::bcnez(CFRegister cj, int32_t si21) { ++ GenB(BCZ, cj, si21, false); ++} ++ ++// -------Data-processing-instructions--------- ++ ++// Arithmetic. ++void Assembler::add_w(Register rd, Register rj, Register rk) { ++ GenRegister(ADD_W, rk, rj, rd); ++} ++ ++void Assembler::add_d(Register rd, Register rj, Register rk) { ++ GenRegister(ADD_D, rk, rj, rd); ++} ++ ++void Assembler::sub_w(Register rd, Register rj, Register rk) { ++ GenRegister(SUB_W, rk, rj, rd); ++} ++ ++void Assembler::sub_d(Register rd, Register rj, Register rk) { ++ GenRegister(SUB_D, rk, rj, rd); ++} ++ ++void Assembler::addi_w(Register rd, Register rj, int32_t si12) { ++ GenImm(ADDI_W, si12, rj, rd, 12); ++} ++ ++void Assembler::addi_d(Register rd, Register rj, int32_t si12) { ++ GenImm(ADDI_D, si12, rj, rd, 12); ++} ++ ++void Assembler::addu16i_d(Register rd, Register rj, int32_t si16) { ++ GenImm(ADDU16I_D, si16, rj, rd, 16); ++} ++ ++void Assembler::alsl_w(Register rd, Register rj, Register rk, int32_t sa2) { ++ DCHECK(is_uint2(sa2-1)); ++ GenImm(ALSL_W, sa2-1, rk, rj, rd); ++} ++ ++void Assembler::alsl_wu(Register rd, Register rj, Register rk, int32_t sa2) { ++ DCHECK(is_uint2(sa2-1)); ++ GenImm(ALSL_WU, sa2+3, rk, rj, rd); ++} ++ ++void Assembler::alsl_d(Register rd, Register rj, Register rk, int32_t sa2) { ++ DCHECK(is_uint2(sa2-1)); ++ GenImm(ALSL_D, sa2-1, rk, rj, rd); ++} ++ ++void Assembler::lu12i_w(Register rd, int32_t si20) { ++ GenImm(LU12I_W, si20, rd); ++} ++ ++void Assembler::lu32i_d(Register rd, int32_t si20) { ++ GenImm(LU32I_D, si20, rd); ++} ++ ++void Assembler::lu52i_d(Register rd, Register rj, int32_t si12) { ++ GenImm(LU52I_D, si12, rj, rd, 12); ++} ++ ++void Assembler::slt(Register rd, Register rj, Register rk) { ++ GenRegister(SLT, rk, rj, rd); ++} ++ ++void Assembler::sltu(Register rd, Register rj, Register rk) { ++ GenRegister(SLTU, rk, rj, rd); ++} ++ ++void Assembler::slti(Register rd, Register rj, int32_t si12) { ++ GenImm(SLTI, si12, rj, rd, 12); ++} ++ ++void Assembler::sltui(Register rd, Register rj, int32_t si12) { ++ GenImm(SLTUI, si12, rj, rd, 12); ++} ++ ++void Assembler::pcaddi(Register rd, int32_t si20) { ++ GenImm(PCADDI, si20, rd); ++} ++ ++void Assembler::pcaddu12i(Register rd, int32_t si20) { ++ GenImm(PCADDU12I, si20, rd); ++} ++ ++void Assembler::pcaddu18i(Register rd, int32_t si20) { ++ GenImm(PCADDU18I, si20, rd); ++} ++ ++void Assembler::pcalau12i(Register rd, int32_t si20) { ++ GenImm(PCALAU12I, si20, rd); ++} ++ ++void Assembler::and_(Register rd, Register rj, Register rk) { ++ GenRegister(AND, rk, rj, rd); ++} ++ ++void Assembler::or_(Register rd, Register rj, Register rk) { ++ GenRegister(OR, rk, rj, rd); ++} ++ ++void Assembler::xor_(Register rd, Register rj, Register rk) { ++ GenRegister(XOR, rk, rj, rd); ++} ++ ++void Assembler::nor(Register rd, Register rj, Register rk) { ++ GenRegister(NOR, rk, rj, rd); ++} ++ ++void Assembler::andn(Register rd, Register rj, Register rk) { ++ GenRegister(ANDN, rk, rj, rd); ++} ++ ++void Assembler::orn(Register rd, Register rj, Register rk) { ++ GenRegister(ORN, rk, rj, rd); ++} ++ ++void Assembler::andi(Register rd, Register rj, int32_t ui12) { ++ GenImm(ANDI, ui12, rj, rd, 12); ++} ++ ++void Assembler::ori(Register rd, Register rj, int32_t ui12) { ++ GenImm(ORI, ui12, rj, rd, 12); ++} ++ ++void Assembler::xori(Register rd, Register rj, int32_t ui12) { ++ GenImm(XORI, ui12, rj, rd, 12); ++} ++ ++void Assembler::mul_w(Register rd, Register rj, Register rk) { ++ GenRegister(MUL_W, rk, rj, rd); ++} ++ ++void Assembler::mulh_w(Register rd, Register rj, Register rk) { ++ GenRegister(MULH_W, rk, rj, rd); ++} ++ ++void Assembler::mulh_wu(Register rd, Register rj, Register rk) { ++ GenRegister(MULH_WU, rk, rj, rd); ++} ++ ++void Assembler::mul_d(Register rd, Register rj, Register rk) { ++ GenRegister(MUL_D, rk, rj, rd); ++} ++ ++void Assembler::mulh_d(Register rd, Register rj, Register rk) { ++ GenRegister(MULH_D, rk, rj, rd); ++} ++ ++void Assembler::mulh_du(Register rd, Register rj, Register rk) { ++ GenRegister(MULH_DU, rk, rj, rd); ++} ++ ++void Assembler::mulw_d_w(Register rd, Register rj, Register rk) { ++ GenRegister(MULW_D_W, rk, rj, rd); ++} ++ ++void Assembler::mulw_d_wu(Register rd, Register rj, Register rk) { ++ GenRegister(MULW_D_WU, rk, rj, rd); ++} ++ ++void Assembler::div_w(Register rd, Register rj, Register rk) { ++ GenRegister(DIV_W, rk, rj, rd); ++} ++ ++void Assembler::mod_w(Register rd, Register rj, Register rk) { ++ GenRegister(MOD_W, rk, rj, rd); ++} ++ ++void Assembler::div_wu(Register rd, Register rj, Register rk) { ++ GenRegister(DIV_WU, rk, rj, rd); ++} ++ ++void Assembler::mod_wu(Register rd, Register rj, Register rk) { ++ GenRegister(MOD_WU, rk, rj, rd); ++} ++ ++void Assembler::div_d(Register rd, Register rj, Register rk) { ++ GenRegister(DIV_D, rk, rj, rd); ++} ++ ++void Assembler::mod_d(Register rd, Register rj, Register rk) { ++ GenRegister(MOD_D, rk, rj, rd); ++} ++ ++void Assembler::div_du(Register rd, Register rj, Register rk) { ++ GenRegister(DIV_DU, rk, rj, rd); ++} ++ ++void Assembler::mod_du(Register rd, Register rj, Register rk) { ++ GenRegister(MOD_DU, rk, rj, rd); ++} ++ ++// Shifts. ++void Assembler::sll_w(Register rd, Register rj, Register rk) { ++ GenRegister(SLL_W, rk, rj, rd); ++} ++ ++void Assembler::srl_w(Register rd, Register rj, Register rk) { ++ GenRegister(SRL_W, rk, rj, rd); ++} ++ ++void Assembler::sra_w(Register rd, Register rj, Register rk) { ++ GenRegister(SRA_W, rk, rj, rd); ++} ++ ++void Assembler::rotr_w(Register rd, Register rj, Register rk) { ++ GenRegister(ROTR_W, rk, rj, rd); ++} ++ ++void Assembler::slli_w(Register rd, Register rj, int32_t ui5) { ++ DCHECK(is_uint5(ui5)); ++ GenImm(SLLI_W, ui5+0x20, rj, rd, 6); ++} ++ ++void Assembler::srli_w(Register rd, Register rj, int32_t ui5) { ++ DCHECK(is_uint5(ui5)); ++ GenImm(SRLI_W, ui5+0x20, rj, rd, 6); ++} ++ ++void Assembler::srai_w(Register rd, Register rj, int32_t ui5) { ++ DCHECK(is_uint5(ui5)); ++ GenImm(SRAI_W, ui5+0x20, rj, rd, 6); ++} ++ ++void Assembler::rotri_w(Register rd, Register rj, int32_t ui5) { ++ DCHECK(is_uint5(ui5)); ++ GenImm(ROTRI_W, ui5+0x20, rj, rd, 6); ++} ++ ++void Assembler::sll_d(Register rd, Register rj, Register rk) { ++ GenRegister(SLL_D, rk, rj, rd); ++} ++ ++void Assembler::srl_d(Register rd, Register rj, Register rk) { ++ GenRegister(SRL_D, rk, rj, rd); ++} ++ ++void Assembler::sra_d(Register rd, Register rj, Register rk) { ++ GenRegister(SRA_D, rk, rj, rd); ++} ++ ++void Assembler::rotr_d(Register rd, Register rj, Register rk) { ++ GenRegister(ROTR_D, rk, rj, rd); ++} ++ ++void Assembler::slli_d(Register rd, Register rj, int32_t ui6) { ++ GenImm(SLLI_D, ui6, rj, rd, 6); ++} ++ ++void Assembler::srli_d(Register rd, Register rj, int32_t ui6) { ++ GenImm(SRLI_D, ui6, rj, rd, 6); ++} ++ ++void Assembler::srai_d(Register rd, Register rj, int32_t ui6) { ++ GenImm(SRAI_D, ui6, rj, rd, 6); ++} ++ ++void Assembler::rotri_d(Register rd, Register rj, int32_t ui6) { ++ GenImm(ROTRI_D, ui6, rj, rd, 6); ++} ++ ++// Bit twiddling. ++void Assembler::ext_w_b(Register rd, Register rj) { ++ GenRegister(EXT_W_B, rj, rd); ++} ++ ++void Assembler::ext_w_h(Register rd, Register rj) { ++ GenRegister(EXT_W_H, rj, rd); ++} ++ ++void Assembler::clo_w(Register rd, Register rj) { ++ GenRegister(CLO_W, rj, rd); ++} ++ ++void Assembler::clz_w(Register rd, Register rj) { ++ GenRegister(CLZ_W, rj, rd); ++} ++ ++void Assembler::cto_w(Register rd, Register rj) { ++ GenRegister(CTO_W, rj, rd); ++} ++ ++void Assembler::ctz_w(Register rd, Register rj) { ++ GenRegister(CTZ_W, rj, rd); ++} ++ ++void Assembler::clo_d(Register rd, Register rj) { ++ GenRegister(CLO_D, rj, rd); ++} ++ ++void Assembler::clz_d(Register rd, Register rj) { ++ GenRegister(CLZ_D, rj, rd); ++} ++ ++void Assembler::cto_d(Register rd, Register rj) { ++ GenRegister(CTO_D, rj, rd); ++} ++ ++void Assembler::ctz_d(Register rd, Register rj) { ++ GenRegister(CTZ_D, rj, rd); ++} ++ ++void Assembler::bytepick_w(Register rd, Register rj, Register rk, int32_t sa2) { ++ DCHECK(is_uint2(sa2)); ++ GenImm(BYTEPICK_W, sa2, rk, rj, rd); ++} ++ ++void Assembler::bytepick_d(Register rd, Register rj, Register rk, int32_t sa3) { ++ GenImm(BYTEPICK_D, sa3, rk, rj, rd); ++} ++ ++void Assembler::revb_2h(Register rd, Register rj) { ++ GenRegister(REVB_2H, rj, rd); ++} ++ ++void Assembler::revb_4h(Register rd, Register rj) { ++ GenRegister(REVB_4H, rj, rd); ++} ++ ++void Assembler::revb_2w(Register rd, Register rj) { ++ GenRegister(REVB_2W, rj, rd); ++} ++ ++void Assembler::revb_d(Register rd, Register rj) { ++ GenRegister(REVB_D, rj, rd); ++} ++ ++void Assembler::revh_2w(Register rd, Register rj) { ++ GenRegister(REVH_2W, rj, rd); ++} ++ ++void Assembler::revh_d(Register rd, Register rj) { ++ GenRegister(REVH_D, rj, rd); ++} ++ ++void Assembler::bitrev_4b(Register rd, Register rj) { ++ GenRegister(BITREV_4B, rj, rd); ++} ++ ++void Assembler::bitrev_8b(Register rd, Register rj) { ++ GenRegister(BITREV_8B, rj, rd); ++} ++ ++void Assembler::bitrev_w(Register rd, Register rj) { ++ GenRegister(BITREV_W, rj, rd); ++} ++ ++void Assembler::bitrev_d(Register rd, Register rj) { ++ GenRegister(BITREV_D, rj, rd); ++} ++ ++void Assembler::bstrins_w(Register rd, Register rj, int32_t msbw, int32_t lsbw) { ++ DCHECK(is_uint5(msbw) && is_uint5(lsbw)); ++ GenImm(BSTR_W, msbw+0x20, lsbw, rj, rd); ++} ++ ++void Assembler::bstrins_d(Register rd, Register rj, int32_t msbd, int32_t lsbd) { ++ GenImm(BSTRINS_D, msbd, lsbd, rj, rd); ++} ++ ++void Assembler::bstrpick_w(Register rd, Register rj, int32_t msbw, int32_t lsbw) { ++ DCHECK(is_uint5(msbw) && is_uint5(lsbw)); ++ GenImm(BSTR_W, msbw+0x20, lsbw+0x20, rj, rd); ++} ++ ++void Assembler::bstrpick_d(Register rd, Register rj, int32_t msbd, int32_t lsbd) { ++ GenImm(BSTRPICK_D, msbd, lsbd, rj, rd); ++} ++ ++void Assembler::maskeqz(Register rd, Register rj, Register rk) { ++ GenRegister(MASKEQZ, rk, rj, rd); ++} ++ ++void Assembler::masknez(Register rd, Register rj, Register rk) { ++ GenRegister(MASKNEZ, rk, rj, rd); ++} ++ ++// Memory-instructions ++void Assembler::ld_b(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_B, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_h(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_H, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_w(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_W, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_d(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_D, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_bu(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_BU, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_hu(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_HU, si12, rj, rd, 12); ++} ++ ++void Assembler::ld_wu(Register rd, Register rj, int32_t si12) { ++ GenImm(LD_WU, si12, rj, rd, 12); ++} ++ ++void Assembler::st_b(Register rd, Register rj, int32_t si12) { ++ GenImm(ST_B, si12, rj, rd, 12); ++} ++ ++void Assembler::st_h(Register rd, Register rj, int32_t si12) { ++ GenImm(ST_H, si12, rj, rd, 12); ++} ++ ++void Assembler::st_w(Register rd, Register rj, int32_t si12) { ++ GenImm(ST_W, si12, rj, rd, 12); ++} ++ ++void Assembler::st_d(Register rd, Register rj, int32_t si12) { ++ GenImm(ST_D, si12, rj, rd, 12); ++} ++ ++void Assembler::ldx_b(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_B, rk, rj, rd); ++} ++ ++void Assembler::ldx_h(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_H, rk, rj, rd); ++} ++ ++void Assembler::ldx_w(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_W, rk, rj, rd); ++} ++ ++void Assembler::ldx_d(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_D, rk, rj, rd); ++} ++ ++void Assembler::ldx_bu(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_BU, rk, rj, rd); ++} ++ ++void Assembler::ldx_hu(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_HU, rk, rj, rd); ++} ++ ++void Assembler::ldx_wu(Register rd, Register rj, Register rk) { ++ GenRegister(LDX_WU, rk, rj, rd); ++} ++ ++void Assembler::stx_b(Register rd, Register rj, Register rk) { ++ GenRegister(STX_B, rk, rj, rd); ++} ++ ++void Assembler::stx_h(Register rd, Register rj, Register rk) { ++ GenRegister(STX_H, rk, rj, rd); ++} ++ ++void Assembler::stx_w(Register rd, Register rj, Register rk) { ++ GenRegister(STX_W, rk, rj, rd); ++} ++ ++void Assembler::stx_d(Register rd, Register rj, Register rk) { ++ GenRegister(STX_D, rk, rj, rd); ++} ++ ++void Assembler::ldptr_w(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(LDPTR_W, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::ldptr_d(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(LDPTR_D, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::stptr_w(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(STPTR_W, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::stptr_d(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(STPTR_D, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::preld(int32_t hint, Register rj, int32_t si12) { ++ DCHECK(is_uint5(hint)); ++ GenImm(PRELD, si12, rj, Register::from_code(hint), 12); ++} ++ ++void Assembler::amswap_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMSWAP_W, rk, rj, rd); ++} ++ ++void Assembler::amswap_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMSWAP_D, rk, rj, rd); ++} ++ ++void Assembler::amadd_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMADD_W, rk, rj, rd); ++} ++ ++void Assembler::amadd_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMADD_D, rk, rj, rd); ++} ++ ++void Assembler::amand_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMAND_W, rk, rj, rd); ++} ++ ++void Assembler::amand_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMAND_D, rk, rj, rd); ++} ++ ++void Assembler::amor_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMOR_W, rk, rj, rd); ++} ++ ++void Assembler::amor_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMOR_D, rk, rj, rd); ++} ++ ++void Assembler::amxor_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMXOR_W, rk, rj, rd); ++} ++ ++void Assembler::amxor_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMXOR_D, rk, rj, rd); ++} ++ ++void Assembler::ammax_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_W, rk, rj, rd); ++} ++ ++void Assembler::ammax_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_D, rk, rj, rd); ++} ++ ++void Assembler::ammin_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_W, rk, rj, rd); ++} ++ ++void Assembler::ammin_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_D, rk, rj, rd); ++} ++ ++void Assembler::ammax_wu(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_WU, rk, rj, rd); ++} ++ ++void Assembler::ammax_du(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_DU, rk, rj, rd); ++} ++ ++void Assembler::ammin_wu(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_WU, rk, rj, rd); ++} ++ ++void Assembler::ammin_du(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_DU, rk, rj, rd); ++} ++ ++void Assembler::amswap_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMSWAP_DB_W, rk, rj, rd); ++} ++ ++void Assembler::amswap_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMSWAP_DB_D, rk, rj, rd); ++} ++ ++void Assembler::amadd_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMADD_DB_W, rk, rj, rd); ++} ++ ++void Assembler::amadd_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMADD_DB_D, rk, rj, rd); ++} ++ ++void Assembler::amand_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMAND_DB_W, rk, rj, rd); ++} ++ ++void Assembler::amand_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMAND_DB_D, rk, rj, rd); ++} ++ ++void Assembler::amor_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMOR_DB_W, rk, rj, rd); ++} ++ ++void Assembler::amor_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMOR_DB_D, rk, rj, rd); ++} ++ ++void Assembler::amxor_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMXOR_DB_W, rk, rj, rd); ++} ++ ++void Assembler::amxor_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMXOR_DB_D, rk, rj, rd); ++} ++ ++void Assembler::ammax_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_DB_W, rk, rj, rd); ++} ++ ++void Assembler::ammax_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_DB_D, rk, rj, rd); ++} ++ ++void Assembler::ammin_db_w(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_DB_W, rk, rj, rd); ++} ++ ++void Assembler::ammin_db_d(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_DB_D, rk, rj, rd); ++} ++ ++void Assembler::ammax_db_wu(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_DB_WU, rk, rj, rd); ++} ++ ++void Assembler::ammax_db_du(Register rd, Register rk, Register rj) { ++ GenRegister(AMMAX_DB_DU, rk, rj, rd); ++} ++ ++void Assembler::ammin_db_wu(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_DB_WU, rk, rj, rd); ++} ++ ++void Assembler::ammin_db_du(Register rd, Register rk, Register rj) { ++ GenRegister(AMMIN_DB_DU, rk, rj, rd); ++} ++ ++void Assembler::ll_w(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(LL_W, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::ll_d(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(LL_D, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::sc_w(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(SC_W, si14 >> 2, rj, rd, 14); ++} ++ ++void Assembler::sc_d(Register rd, Register rj, int32_t si14) { ++ DCHECK(is_int16(si14) && ((si14 & 0x3) == 0)); ++ GenImm(SC_D, si14>> 2, rj, rd, 14); ++} ++ ++void Assembler::dbar(int32_t hint) { ++ GenImm(DBAR, hint); ++} ++ ++void Assembler::ibar(int32_t hint) { ++ GenImm(IBAR, hint); ++} ++ ++void Assembler::syscall(int32_t code) { ++ GenImm(SYSCALL, code); ++} ++ ++// Break / Trap instructions. ++void Assembler::break_(uint32_t code, bool break_as_stop) { ++ DCHECK( ++ (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || ++ (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); ++ GenImm(BREAK, code); ++} ++ ++void Assembler::stop(const char* msg, uint32_t code) { ++ DCHECK_GT(code, kMaxWatchpointCode); ++ DCHECK_LE(code, kMaxStopCode); ++#if defined(V8_HOST_ARCH_LOONG64) ++ break_(0x4321); ++#else // V8_HOST_ARCH_LOONG64 ++ break_(code, true); ++#endif ++} ++ ++void Assembler::fadd_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FADD_S, fk, fj, fd); ++} ++ ++void Assembler::fadd_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FADD_D, fk, fj, fd); ++} ++ ++void Assembler::fsub_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FSUB_S, fk, fj, fd); ++} ++ ++void Assembler::fsub_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FSUB_D, fk, fj, fd); ++} ++ ++void Assembler::fmul_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMUL_S, fk, fj, fd); ++} ++ ++void Assembler::fmul_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMUL_D, fk, fj, fd); ++} ++ ++void Assembler::fdiv_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FDIV_S, fk, fj, fd); ++} ++ ++void Assembler::fdiv_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FDIV_D, fk, fj, fd); ++} ++ ++void Assembler::fmadd_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FMADD_S, fa, fk, fj, fd); ++} ++ ++void Assembler::fmadd_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FMADD_D, fa, fk, fj, fd); ++} ++ ++void Assembler::fmsub_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FMSUB_S, fa, fk, fj, fd); ++} ++ ++void Assembler::fmsub_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FMSUB_D, fa, fk, fj, fd); ++} ++ ++void Assembler::fnmadd_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FNMADD_S, fa, fk, fj, fd); ++} ++ ++void Assembler::fnmadd_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FNMADD_D, fa, fk, fj, fd); ++} ++ ++void Assembler::fnmsub_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FNMSUB_S, fa, fk, fj, fd); ++} ++ ++void Assembler::fnmsub_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa) { ++ GenRegister(FNMSUB_D, fa, fk, fj, fd); ++} ++ ++void Assembler::fmax_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMAX_S, fk, fj, fd); ++} ++ ++void Assembler::fmax_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMAX_D, fk, fj, fd); ++} ++ ++void Assembler::fmin_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMIN_S, fk, fj, fd); ++} ++ ++void Assembler::fmin_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMIN_D, fk, fj, fd); ++} ++ ++void Assembler::fmaxa_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMAXA_S, fk, fj, fd); ++} ++ ++void Assembler::fmaxa_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMAXA_D, fk, fj, fd); ++} ++ ++void Assembler::fmina_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMINA_S, fk, fj, fd); ++} ++ ++void Assembler::fmina_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FMINA_D, fk, fj, fd); ++} ++ ++void Assembler::fabs_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FABS_S, fj, fd); ++} ++ ++void Assembler::fabs_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FABS_D, fj, fd); ++} ++ ++void Assembler::fneg_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FNEG_S, fj, fd); ++} ++ ++void Assembler::fneg_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FNEG_D, fj, fd); ++} ++ ++void Assembler::fsqrt_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FSQRT_S, fj, fd); ++} ++ ++void Assembler::fsqrt_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FSQRT_D, fj, fd); ++} ++ ++void Assembler::frecip_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FRECIP_S, fj, fd); ++} ++ ++void Assembler::frecip_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FRECIP_D, fj, fd); ++} ++ ++void Assembler::frsqrt_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FRSQRT_S, fj, fd); ++} ++ ++void Assembler::frsqrt_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FRSQRT_D, fj, fd); ++} ++ ++void Assembler::fscaleb_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FSCALEB_S, fk, fj, fd); ++} ++ ++void Assembler::fscaleb_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FSCALEB_D, fk, fj, fd); ++} ++ ++void Assembler::flogb_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FLOGB_S, fj, fd); ++} ++ ++void Assembler::flogb_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FLOGB_D, fj, fd); ++} ++ ++void Assembler::fcopysign_s(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FCOPYSIGN_S, fk, fj, fd); ++} ++ ++void Assembler::fcopysign_d(FPURegister fd, FPURegister fj, FPURegister fk) { ++ GenRegister(FCOPYSIGN_D, fk, fj, fd); ++} ++ ++void Assembler::fclass_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FCLASS_S, fj, fd); ++} ++ ++void Assembler::fclass_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FCLASS_D, fj, fd); ++} ++ ++void Assembler::fcmp_cond_s(FPUCondition cc, FPURegister fj, ++ FPURegister fk, CFRegister cd) { ++ GenCmp(FCMP_COND_S, cc, fk, fj, cd); ++} ++ ++void Assembler::fcmp_cond_d(FPUCondition cc, FPURegister fj, ++ FPURegister fk, CFRegister cd) { ++ GenCmp(FCMP_COND_D, cc, fk, fj, cd); ++} ++ ++void Assembler::fcvt_s_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FCVT_S_D, fj, fd); ++} ++ ++void Assembler::fcvt_d_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FCVT_D_S, fj, fd); ++} ++ ++void Assembler::ffint_s_w(FPURegister fd, FPURegister fj) { ++ GenRegister(FFINT_S_W, fj, fd); ++} ++ ++void Assembler::ffint_s_l(FPURegister fd, FPURegister fj) { ++ GenRegister(FFINT_S_L, fj, fd); ++} ++ ++void Assembler::ffint_d_w(FPURegister fd, FPURegister fj) { ++ GenRegister(FFINT_D_W, fj, fd); ++} ++ ++void Assembler::ffint_d_l(FPURegister fd, FPURegister fj) { ++ GenRegister(FFINT_D_L, fj, fd); ++} ++ ++void Assembler::ftint_w_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINT_W_S, fj, fd); ++} ++ ++void Assembler::ftint_w_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINT_W_D, fj, fd); ++} ++ ++void Assembler::ftint_l_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINT_L_S, fj, fd); ++} ++ ++void Assembler::ftint_l_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINT_L_D, fj, fd); ++} ++ ++void Assembler::ftintrm_w_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRM_W_S, fj, fd); ++} ++ ++void Assembler::ftintrm_w_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRM_W_D, fj, fd); ++} ++ ++void Assembler::ftintrm_l_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRM_L_S, fj, fd); ++} ++ ++void Assembler::ftintrm_l_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRM_L_D, fj, fd); ++} ++ ++void Assembler::ftintrp_w_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRP_W_S, fj, fd); ++} ++ ++void Assembler::ftintrp_w_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRP_W_D, fj, fd); ++} ++ ++void Assembler::ftintrp_l_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRP_L_S, fj, fd); ++} ++ ++void Assembler::ftintrp_l_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRP_L_D, fj, fd); ++} ++ ++void Assembler::ftintrz_w_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRZ_W_S, fj, fd); ++} ++ ++void Assembler::ftintrz_w_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRZ_W_D, fj, fd); ++} ++ ++void Assembler::ftintrz_l_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRZ_L_S, fj, fd); ++} ++ ++void Assembler::ftintrz_l_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRZ_L_D, fj, fd); ++} ++ ++void Assembler::ftintrne_w_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRNE_W_S, fj, fd); ++} ++ ++void Assembler::ftintrne_w_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRNE_W_D, fj, fd); ++} ++ ++void Assembler::ftintrne_l_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRNE_L_S, fj, fd); ++} ++ ++void Assembler::ftintrne_l_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FTINTRNE_L_D, fj, fd); ++} ++ ++void Assembler::frint_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FRINT_S, fj, fd); ++} ++ ++void Assembler::frint_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FRINT_D, fj, fd); ++} ++ ++void Assembler::fmov_s(FPURegister fd, FPURegister fj) { ++ GenRegister(FMOV_S, fj, fd); ++} ++ ++void Assembler::fmov_d(FPURegister fd, FPURegister fj) { ++ GenRegister(FMOV_D, fj, fd); ++} ++ ++void Assembler::fsel(CFRegister ca, FPURegister fd, ++ FPURegister fj, FPURegister fk) { ++ GenSel(FSEL, ca, fk, fj, fd); ++} ++ ++void Assembler::movgr2fr_w(FPURegister fd, Register rj) { ++ GenRegister(MOVGR2FR_W, rj, fd); ++} ++ ++void Assembler::movgr2fr_d(FPURegister fd, Register rj) { ++ GenRegister(MOVGR2FR_D, rj, fd); ++} ++ ++void Assembler::movgr2frh_w(FPURegister fd, Register rj) { ++ GenRegister(MOVGR2FRH_W, rj, fd); ++} ++ ++void Assembler::movfr2gr_s(Register rd, FPURegister fj) { ++ GenRegister(MOVFR2GR_S, fj, rd); ++} ++ ++void Assembler::movfr2gr_d(Register rd, FPURegister fj) { ++ GenRegister(MOVFR2GR_D, fj, rd); ++} ++ ++void Assembler::movfrh2gr_s(Register rd, FPURegister fj) { ++ GenRegister(MOVFRH2GR_S, fj, rd); ++} ++ ++void Assembler::movgr2fcsr(Register rj) { ++ GenRegister(MOVGR2FCSR, rj, FCSR); ++} ++ ++void Assembler::movfcsr2gr(Register rd) { ++ GenRegister(MOVFCSR2GR, FCSR, rd); ++} ++ ++void Assembler::movfr2cf(CFRegister cd, FPURegister fj) { ++ GenRegister(MOVFR2CF, fj, cd); ++} ++ ++void Assembler::movcf2fr(FPURegister fd, CFRegister cj) { ++ GenRegister(MOVCF2FR, cj, fd); ++} ++ ++void Assembler::movgr2cf(CFRegister cd, Register rj) { ++ GenRegister(MOVGR2CF, rj, cd); ++} ++ ++void Assembler::movcf2gr(Register rd, CFRegister cj) { ++ GenRegister(MOVCF2GR, cj, rd); ++} ++ ++void Assembler::fld_s(FPURegister fd, Register rj, int32_t si12) { ++ GenImm(FLD_S, si12, rj, fd); ++} ++ ++void Assembler::fld_d(FPURegister fd, Register rj, int32_t si12) { ++ GenImm(FLD_D, si12, rj, fd); ++} ++ ++void Assembler::fst_s(FPURegister fd, Register rj, int32_t si12) { ++ GenImm(FST_S, si12, rj, fd); ++} ++ ++void Assembler::fst_d(FPURegister fd, Register rj, int32_t si12) { ++ GenImm(FST_D, si12, rj, fd); ++} ++ ++void Assembler::fldx_s(FPURegister fd, Register rj, Register rk) { ++ GenRegister(FLDX_S, rk, rj, fd); ++} ++ ++void Assembler::fldx_d(FPURegister fd, Register rj, Register rk) { ++ GenRegister(FLDX_D, rk, rj, fd); ++} ++ ++void Assembler::fstx_s(FPURegister fd, Register rj, Register rk) { ++ GenRegister(FSTX_S, rk, rj, fd); ++} ++ ++void Assembler::fstx_d(FPURegister fd, Register rj, Register rk) { ++ GenRegister(FSTX_D, rk, rj, fd); ++} ++ ++// ------------Memory-instructions------------- ++ ++/*void Assembler::AdjustBaseAndOffset(MemOperand* src, ++ OffsetAccessType access_type, ++ int second_access_add_to_offset) { ++ // TODO should be optimized. ++ // This method is used to adjust the base register and offset pair ++ // for a load/store when the offset doesn't fit into int12_t. ++ ++ bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0; ++ bool two_accesses = static_cast(access_type) || !doubleword_aligned; ++ DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7. ++ ++ // is_int12 must be passed a signed value, hence the static cast below. ++ if (is_int12(src->offset()) && ++ (!two_accesses || is_int12(static_cast( ++ src->offset() + second_access_add_to_offset)))) { ++ // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified ++ // value) fits into int16_t. ++ return; ++ } ++ ++ DCHECK(src->rm() != ++ at); // Must not overwrite the register 'base' while loading 'offset'. ++ ++#ifdef DEBUG ++ // Remember the "(mis)alignment" of 'offset', it will be checked at the end. ++ uint32_t misalignment = src->offset() & (kDoubleSize - 1); ++#endif ++ ++ // Do not load the whole 32-bit 'offset' if it can be represented as ++ // a sum of two 16-bit signed offsets. This can save an instruction or two. ++ // To simplify matters, only do this for a symmetric range of offsets from ++ // about -64KB to about +64KB, allowing further addition of 4 when accessing ++ // 64-bit variables with two 32-bit accesses. ++ constexpr int32_t kMinOffsetForSimpleAdjustment = ++ 0x7FF8; // Max int16_t that's a multiple of 8. ++ constexpr int32_t kMaxOffsetForSimpleAdjustment = ++ 2 * kMinOffsetForSimpleAdjustment; ++ ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) { ++ daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment); ++ src->offset_ -= kMinOffsetForSimpleAdjustment; ++ } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() && ++ src->offset() < 0) { ++ daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment); ++ src->offset_ += kMinOffsetForSimpleAdjustment; ++ } else if (kArchVariant == kMips64r6) { ++ // On r6 take advantage of the daui instruction, e.g.: ++ // daui at, base, offset_high ++ // [dahi at, 1] // When `offset` is close to +2GB. ++ // lw reg_lo, offset_low(at) ++ // [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load. ++ // or when offset_low+4 overflows int16_t: ++ // daui at, base, offset_high ++ // daddiu at, at, 8 ++ // lw reg_lo, (offset_low-8)(at) ++ // lw reg_hi, (offset_low-4)(at) ++ int16_t offset_low = static_cast(src->offset()); ++ int32_t offset_low32 = offset_low; ++ int16_t offset_high = static_cast(src->offset() >> 16); ++ bool increment_hi16 = offset_low < 0; ++ bool overflow_hi16 = false; ++ ++ if (increment_hi16) { ++ offset_high++; ++ overflow_hi16 = (offset_high == -32768); ++ } ++ daui(scratch, src->rm(), static_cast(offset_high)); ++ ++ if (overflow_hi16) { ++ dahi(scratch, 1); ++ } ++ ++ if (two_accesses && !is_int16(static_cast( ++ offset_low32 + second_access_add_to_offset))) { ++ // Avoid overflow in the 16-bit offset of the load/store instruction when ++ // adding 4. ++ daddiu(scratch, scratch, kDoubleSize); ++ offset_low32 -= kDoubleSize; ++ } ++ ++ src->offset_ = offset_low32; ++ } else { ++ // Do not load the whole 32-bit 'offset' if it can be represented as ++ // a sum of three 16-bit signed offsets. This can save an instruction. ++ // To simplify matters, only do this for a symmetric range of offsets from ++ // about -96KB to about +96KB, allowing further addition of 4 when accessing ++ // 64-bit variables with two 32-bit accesses. ++ constexpr int32_t kMinOffsetForMediumAdjustment = ++ 2 * kMinOffsetForSimpleAdjustment; ++ constexpr int32_t kMaxOffsetForMediumAdjustment = ++ 3 * kMinOffsetForSimpleAdjustment; ++ if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) { ++ daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2); ++ daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2); ++ src->offset_ -= kMinOffsetForMediumAdjustment; ++ } else if (-kMaxOffsetForMediumAdjustment <= src->offset() && ++ src->offset() < 0) { ++ daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2); ++ daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2); ++ src->offset_ += kMinOffsetForMediumAdjustment; ++ } else { ++ // Now that all shorter options have been exhausted, load the full 32-bit ++ // offset. ++ int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize); ++ lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask); ++ ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset. ++ daddu(scratch, scratch, src->rm()); ++ src->offset_ -= loaded_offset; ++ } ++ } ++ src->rm_ = scratch; ++ ++ DCHECK(is_int16(src->offset())); ++ if (two_accesses) { ++ DCHECK(is_int16( ++ static_cast(src->offset() + second_access_add_to_offset))); ++ } ++ DCHECK(misalignment == (src->offset() & (kDoubleSize - 1))); ++}*/ ++ ++void Assembler::AdjustBaseAndOffset(MemOperand* src) { ++ // is_int12 must be passed a signed value, hence the static cast below. ++ if ((!src->hasIndexReg() && is_int12(src->offset())) || src->hasIndexReg()) { ++ return; ++ } ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ if (is_uint12(static_cast(src->offset()))) { ++ ori(scratch, zero_reg, src->offset() & kImm12Mask); ++ } else { ++ lu12i_w(scratch, src->offset() >> 12 & 0xfffff); ++ if (src->offset() & kImm12Mask) { ++ ori(scratch, scratch, src->offset() & kImm12Mask); ++ } ++ } ++ src->index_ = scratch; ++ src->offset_ = 0; ++ // TODO can be optimized, for example 2 * [int12_min, int12_max] ++ // addi_d scratch base, offset/2 only on instr ++ // base = scratch ++ // offset = offset - offset / 2 ++} ++ ++int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc, ++ intptr_t pc_delta) { ++ ++ if (RelocInfo::IsInternalReference(rmode)) { ++ int64_t* p = reinterpret_cast(pc); ++ if (*p == kEndOfJumpChain) { ++ return 0; // Number of instructions patched. ++ } ++ *p += pc_delta; ++ return 2; // Number of instructions patched. ++ } ++ abort(); ++/* Instr instr = instr_at(pc); ++ DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode)); ++ if (IsLui(instr)) { ++ Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize); ++ Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize); ++ Instr instr_ori2 = instr_at(pc + 3 * Assembler::kInstrSize); ++ DCHECK(IsOri(instr_ori)); ++ DCHECK(IsOri(instr_ori2)); ++ // TODO(plind): symbolic names for the shifts. ++ int64_t imm = (instr_lui & static_cast(kImm16Mask)) << 48; ++ imm |= (instr_ori & static_cast(kImm16Mask)) << 32; ++ imm |= (instr_ori2 & static_cast(kImm16Mask)) << 16; ++ // Sign extend address. ++ imm >>= 16; ++ ++ if (imm == kEndOfJumpChain) { ++ return 0; // Number of instructions patched. ++ } ++ imm += pc_delta; ++ DCHECK_EQ(imm & 3, 0); ++ ++ instr_lui &= ~kImm16Mask; ++ instr_ori &= ~kImm16Mask; ++ instr_ori2 &= ~kImm16Mask; ++ ++ instr_at_put(pc + 0 * Assembler::kInstrSize, ++ instr_lui | ((imm >> 32) & kImm16Mask)); ++ instr_at_put(pc + 1 * Assembler::kInstrSize, ++ instr_ori | (imm >> 16 & kImm16Mask)); ++ instr_at_put(pc + 3 * Assembler::kInstrSize, ++ instr_ori2 | (imm & kImm16Mask)); ++ return 4; // Number of instructions patched. ++ } else if (IsJ(instr) || IsJal(instr)) { ++ // Regular j/jal relocation. ++ uint32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; ++ imm28 += pc_delta; ++ imm28 &= kImm28Mask; ++ instr &= ~kImm26Mask; ++ DCHECK_EQ(imm28 & 3, 0); ++ uint32_t imm26 = static_cast(imm28 >> 2); ++ instr_at_put(pc, instr | (imm26 & kImm26Mask)); ++ return 1; // Number of instructions patched. ++ } else { ++ DCHECK(((instr & kJumpRawMask) == kJRawMark) || ++ ((instr & kJumpRawMask) == kJalRawMark)); ++ // Unbox raw offset and emit j/jal. ++ int32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; ++ // Sign extend 28-bit offset to 32-bit. ++ imm28 = (imm28 << 4) >> 4; ++ uint64_t target = ++ static_cast(imm28) + reinterpret_cast(pc); ++ target &= kImm28Mask; ++ DCHECK_EQ(imm28 & 3, 0); ++ uint32_t imm26 = static_cast(target >> 2); ++ // Check markings whether to emit j or jal. ++ uint32_t unbox = (instr & kJRawMark) ? J : JAL; ++ instr_at_put(pc, unbox | (imm26 & kImm26Mask)); ++ return 1; // Number of instructions patched. ++ }*/ ++} ++ ++void Assembler::GrowBuffer() { ++ if (!own_buffer_) FATAL("external code buffer is too small"); ++ ++ // Compute new buffer size. ++ CodeDesc desc; // the new buffer ++ if (buffer_size_ < 1 * MB) { ++ desc.buffer_size = 2*buffer_size_; ++ } else { ++ desc.buffer_size = buffer_size_ + 1*MB; ++ } ++ ++ // Some internal data structures overflow for very large buffers, ++ // they must ensure that kMaximalBufferSize is not too large. ++ if (desc.buffer_size > kMaximalBufferSize) { ++ V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); ++ } ++ ++ // Set up new buffer. ++ desc.buffer = NewArray(desc.buffer_size); ++ desc.origin = this; ++ ++ desc.instr_size = pc_offset(); ++ desc.reloc_size = ++ static_cast((buffer_ + buffer_size_) - reloc_info_writer.pos()); ++ ++ // Copy the data. ++ intptr_t pc_delta = desc.buffer - buffer_; ++ intptr_t rc_delta = (desc.buffer + desc.buffer_size) - ++ (buffer_ + buffer_size_); ++ MemMove(desc.buffer, buffer_, desc.instr_size); ++ MemMove(reloc_info_writer.pos() + rc_delta, ++ reloc_info_writer.pos(), desc.reloc_size); ++ ++ // Switch buffers. ++ DeleteArray(buffer_); ++ buffer_ = desc.buffer; ++ buffer_size_ = desc.buffer_size; ++ pc_ += pc_delta; ++ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, ++ reloc_info_writer.last_pc() + pc_delta); ++ ++ // Relocate runtime entries. ++ for (RelocIterator it(desc); !it.done(); it.next()) { ++ RelocInfo::Mode rmode = it.rinfo()->rmode(); ++ if (rmode == RelocInfo::INTERNAL_REFERENCE) { ++ RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta); ++ } ++ } ++ DCHECK(!overflow()); ++} ++ ++void Assembler::db(uint8_t data) { ++ if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++ } ++ *reinterpret_cast(pc_) = data; ++ pc_ += sizeof(uint8_t); ++} ++ ++void Assembler::dd(uint32_t data) { ++ if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++ } ++ *reinterpret_cast(pc_) = data; ++ pc_ += sizeof(uint32_t); ++} ++ ++void Assembler::dq(uint64_t data) { ++ if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++ } ++ *reinterpret_cast(pc_) = data; ++ pc_ += sizeof(uint64_t); ++} ++ ++void Assembler::dd(Label* label) { ++ if (!is_buffer_growth_blocked()) { ++ CheckBuffer(); ++ } ++ uint64_t data; ++ if (label->is_bound()) { ++ data = reinterpret_cast(buffer_ + label->pos()); ++ } else { ++ data = jump_address(label); ++ unbound_labels_count_++; ++ internal_reference_positions_.insert(label->pos()); ++ } ++ RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); ++ EmitHelper(data); ++} ++ ++void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { ++ // We do not try to reuse pool constants. ++ RelocInfo rinfo(reinterpret_cast
(pc_), rmode, data, nullptr); ++ if (!RelocInfo::IsNone(rinfo.rmode())) { ++ // Don't record external references unless the heap will be serialized. ++ if (rmode == RelocInfo::EXTERNAL_REFERENCE && ++ !serializer_enabled() && !emit_debug_code()) { ++ return; ++ } ++ DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here. ++ reloc_info_writer.Write(&rinfo); ++ } ++} ++ ++void Assembler::BlockTrampolinePoolFor(int instructions) { ++ CheckTrampolinePoolQuick(instructions); ++ BlockTrampolinePoolBefore(pc_offset() + instructions * Assembler::kInstrSize); ++} ++ ++void Assembler::CheckTrampolinePool() { ++ // Some small sequences of instructions must not be broken up by the ++ // insertion of a trampoline pool; such sequences are protected by setting ++ // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, ++ // which are both checked here. Also, recursive calls to CheckTrampolinePool ++ // are blocked by trampoline_pool_blocked_nesting_. ++ if ((trampoline_pool_blocked_nesting_ > 0) || ++ (pc_offset() < no_trampoline_pool_before_)) { ++ // Emission is currently blocked; make sure we try again as soon as ++ // possible. ++ if (trampoline_pool_blocked_nesting_ > 0) { ++ next_buffer_check_ = pc_offset() + Assembler::kInstrSize; ++ } else { ++ next_buffer_check_ = no_trampoline_pool_before_; ++ } ++ return; ++ } ++ ++ DCHECK(!trampoline_emitted_); ++ DCHECK_GE(unbound_labels_count_, 0); ++ if (unbound_labels_count_ > 0) { ++ // First we emit jump (2 instructions), then we emit trampoline pool. ++ { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ Label after_pool; ++ b(&after_pool); ++ nop(); // TODO remove this ++ ++ int pool_start = pc_offset(); ++ for (int i = 0; i < unbound_labels_count_; i++) { ++ { ++ b(&after_pool); ++ } ++ nop(); ++ } ++ bind(&after_pool); ++ trampoline_ = Trampoline(pool_start, unbound_labels_count_); ++ ++ trampoline_emitted_ = true; ++ // As we are only going to emit trampoline once, we need to prevent any ++ // further emission. ++ next_buffer_check_ = kMaxInt; ++ } ++ } else { ++ // Number of branches to unbound label at this point is zero, so we can ++ // move next buffer check to maximum. ++ next_buffer_check_ = ++ pc_offset() + kMax16BranchOffset - kTrampolineSlotsSize * 16; ++ } ++ return; ++} ++ ++Address Assembler::target_address_at(Address pc) { ++ Instr instr0 = instr_at(pc); ++ Instr instr1 = instr_at(pc + 1 * Assembler::kInstrSize); ++ Instr instr2 = instr_at(pc + 2 * Assembler::kInstrSize); ++ ++ // Interpret 4 instructions for address generated by li: See listing in ++ // Assembler::set_target_address_at() just below. ++ DCHECK((IsLu12i_w(instr0) && (IsOri(instr1)) && (IsLu32i_d(instr2)))); ++ ++ // Assemble the 48 bit value. ++ uint64_t hi20 = ((uint64_t)(instr2 >> 5) & 0xfffff) << 32; ++ uint64_t mid20 = ((uint64_t)(instr0 >> 5) & 0xfffff) << 12; ++ uint64_t low12 = ((uint64_t)(instr1 >> 10) & 0xfff); ++ int64_t addr = static_cast(hi20 | mid20 | low12); ++ ++ // Sign extend to get canonical address. ++ addr = (addr << 16) >> 16; ++ return static_cast
(addr); ++} ++ ++// On loong64, a target address is stored in a 3-instruction sequence: ++// 0: lu12i_w(rd, (j.imm64_ >> 12) & kImm20Mask); ++// 1: ori(rd, rd, j.imm64_ & kImm12Mask); ++// 2: lu32i_d(rd, (j.imm64_ >> 32) & kImm20Mask); ++// ++// Patching the address must replace all the lui & ori instructions, ++// and flush the i-cache. ++// ++// There is an optimization below, which emits a nop when the address ++// fits in just 16 bits. This is unlikely to help, and should be benchmarked, ++// and possibly removed. ++void Assembler::set_target_value_at(Address pc, uint64_t target, ++ ICacheFlushMode icache_flush_mode) { ++ // There is an optimization where only 3 instructions are used to load address ++ // in code on LOONG64 because only 48-bits of address is effectively used. ++ // It relies on fact the upper [63:48] bits are not used for virtual address ++ // translation and they have to be set according to value of bit 47 in order ++ // get canonical address. ++#ifdef DEBUG ++ // Check we have the result from a li macro-instruction. ++ Instr instr0 = instr_at(pc); ++ Instr instr1 = instr_at(pc + Assembler::kInstrSize); ++ Instr instr2 = instr_at(pc + Assembler::kInstrSize * 2); ++ DCHECK(IsLu12i_w(instr0) && IsOri(instr1) && IsLu32i_d(instr2)); ++#endif ++ ++ Instr instr = instr_at(pc); ++ uint32_t rd_code = GetRd(instr); ++ uint32_t* p = reinterpret_cast(pc); ++ ++ // Must use 3 instructions to insure patchable code. ++ // lu12i_w rd, middle-20. ++ // ori rd, rd, low-12. ++ // li32i_d rd, high-20. ++ *p = LU12I_W | (((target >> 12) & 0xfffff) << kRjShift) | rd_code; ++ *(p + 1) = ORI | (target & 0xfff) << kRkShift | (rd_code << kRjShift) | ++ rd_code; ++ *(p + 2) = LU32I_D | (((target >> 32) & 0xfffff) << kRjShift) | rd_code; ++ ++ if (icache_flush_mode != SKIP_ICACHE_FLUSH) { ++ Assembler::FlushICache(pc, 3 * Assembler::kInstrSize); ++ } ++} ++ ++UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler) ++ : available_(assembler->GetScratchRegisterList()), ++ old_available_(*available_) {} ++ ++UseScratchRegisterScope::~UseScratchRegisterScope() { ++ *available_ = old_available_; ++} ++ ++Register UseScratchRegisterScope::Acquire() { ++ DCHECK_NOT_NULL(available_); ++ DCHECK_NE(*available_, 0); ++ int index = static_cast(base::bits::CountTrailingZeros32(*available_)); ++ *available_ &= ~(1UL << index); ++ ++ return Register::from_code(index); ++} ++ ++bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; } ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 ++ ++ ++ ++ +diff --git a/deps/v8/src/loong64/assembler-loong64.h b/deps/v8/src/loong64/assembler-loong64.h +new file mode 100644 +index 0000000..4f2f1f1 +--- /dev/null ++++ b/deps/v8/src/loong64/assembler-loong64.h +@@ -0,0 +1,1413 @@ ++// Copyright (c) 1994-2006 Sun Microsystems Inc. ++// All Rights Reserved. ++// ++// Redistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// - Redistributions of source code must retain the above copyright notice, ++// this list of conditions and the following disclaimer. ++// ++// - Redistribution in binary form must reproduce the above copyright ++// notice, this list of conditions and the following disclaimer in the ++// documentation and/or other materials provided with the distribution. ++// ++// - Neither the name of Sun Microsystems or the names of contributors may ++// be used to endorse or promote products derived from this software without ++// specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ++// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ++// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ++// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ++// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ++// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ++// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ++// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ++// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ++// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ++// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++// The original source code covered by the above license above has been ++// modified significantly by Google Inc. ++// Copyright 2012 the V8 project authors. All rights reserved. ++ ++#ifndef V8_LOONG64_ASSEMBLER_LOONG64_H_ ++#define V8_LOONG64_ASSEMBLER_LOONG64_H_ ++ ++#include ++ ++#include ++ ++#include "src/assembler.h" ++#include "src/loong64/constants-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++// clang-format off ++#define GENERAL_REGISTERS(V) \ ++ V(zero_reg) V(ra) V(gp) V(sp) \ ++ V(a0) V(a1) V(a2) V(a3) V(a4) V(a5) V(a6) V(a7) \ ++ V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) V(t8) \ ++ V(tp) V(fp) \ ++ V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(s8) \ ++ ++#define ALLOCATABLE_GENERAL_REGISTERS(V) \ ++ V(a0) V(a1) V(a2) V(a3) V(a4) V(a5) V(a6) V(a7) \ ++ V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(s7) ++ ++#define DOUBLE_REGISTERS(V) \ ++ V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ ++ V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ ++ V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ ++ V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) ++ ++#define FLOAT_REGISTERS DOUBLE_REGISTERS ++#define SIMD128_REGISTERS(V) \ ++ V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \ ++ V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \ ++ V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \ ++ V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31) ++ ++#define ALLOCATABLE_DOUBLE_REGISTERS(V) \ ++ V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ ++ V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) V(f16) \ ++ V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) ++// clang-format on ++ ++// Note that the bit values must match those used in actual instruction ++// encoding. ++const int kNumRegs = 32; ++ ++const RegList kJSCallerSaved = 1 << 4 | // a0 ++ 1 << 5 | // a1 ++ 1 << 6 | // a2 ++ 1 << 7 | // a3 ++ 1 << 8 | // a4 ++ 1 << 9 | // a5 ++ 1 << 10 | // a6 ++ 1 << 11 | // a7 ++ 1 << 12 | // t0 ++ 1 << 13 | // t1 ++ 1 << 14 | // t2 ++ 1 << 15 | // t3 ++ 1 << 16 | // t4 ++ 1 << 17 | // t5 ++ 1 << 20; // t8 ++ ++const int kNumJSCallerSaved = 15; ++ ++// Callee-saved registers preserved when switching from C to JavaScript. ++const RegList kCalleeSaved = 1 << 22 | // fp ++ 1 << 23 | // s0 ++ 1 << 24 | // s1 ++ 1 << 25 | // s2 ++ 1 << 26 | // s3 ++ 1 << 27 | // s4 ++ 1 << 28 | // s5 ++ 1 << 29 | // s6 (roots in Javascript code) ++ 1 << 30 | // s7 (cp in Javascript code) ++ 1 << 31; // s8 ++ ++const int kNumCalleeSaved = 10; ++ ++const RegList kCalleeSavedFPU = 1 << 24 | // f24 ++ 1 << 25 | // f25 ++ 1 << 26 | // f26 ++ 1 << 27 | // f27 ++ 1 << 28 | // f28 ++ 1 << 29 | // f29 ++ 1 << 30 | // f30 ++ 1 << 31; // f31 ++ ++const int kNumCalleeSavedFPU = 8; ++ ++const RegList kCallerSavedFPU = 1 << 0 | // f0 ++ 1 << 1 | // f1 ++ 1 << 2 | // f2 ++ 1 << 3 | // f3 ++ 1 << 4 | // f4 ++ 1 << 5 | // f5 ++ 1 << 6 | // f6 ++ 1 << 7 | // f7 ++ 1 << 8 | // f8 ++ 1 << 9 | // f9 ++ 1 << 10 | // f10 ++ 1 << 11 | // f11 ++ 1 << 12 | // f12 ++ 1 << 13 | // f13 ++ 1 << 14 | // f14 ++ 1 << 15 | // f15 ++ 1 << 16 | // f16 ++ 1 << 17 | // f17 ++ 1 << 18 | // f18 ++ 1 << 19 | // f19 ++ 1 << 20 | // f20 ++ 1 << 21 | // f21 ++ 1 << 22 | // f22 ++ 1 << 23; // f23 ++ ++// Number of registers for which space is reserved in safepoints. Must be a ++// multiple of 8. ++const int kNumSafepointRegisters = 32; ++ ++// Define the list of registers actually saved at safepoints. ++// Note that the number of saved registers may be smaller than the reserved ++// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters. ++const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved; ++const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved; ++ ++const int kUndefIndex = -1; ++// Map with indexes on stack that corresponds to codes of saved registers. ++const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg ++ kUndefIndex, // ra ++ kUndefIndex, // gp ++ kUndefIndex, // sp ++ 0, // a0 ++ 1, // a1 ++ 2, // a2 ++ 3, // a3 ++ 4, // a4 ++ 5, // a5 ++ 6, // a6 ++ 7, // a7 ++ 8, // t0 ++ 9, // t1 ++ 10, // t2 ++ 11, // t3 ++ 12, // t4 ++ 13, // t5 ++ kUndefIndex, // t6 ++ kUndefIndex, // t7 ++ 14, // t8 ++ kUndefIndex, // tp ++ 15, // fp ++ 16, // s0 ++ 17, // s1 ++ 28, // s2 ++ 29, // s3 ++ 20, // s4 ++ 21, // s5 ++ 22, // s6 ++ 23, // s7 ++ 24}; // s8 ++ ++// CPU Registers. ++// ++// 1) We would prefer to use an enum, but enum values are assignment- ++// compatible with int, which has caused code-generation bugs. ++// ++// 2) We would prefer to use a class instead of a struct but we don't like ++// the register initialization to depend on the particular initialization ++// order (which appears to be different on OS X, Linux, and Windows for the ++// installed versions of C++ we tried). Using a struct permits C-style ++// "initialization". Also, the Register objects cannot be const as this ++// forces initialization stubs in MSVC, making us dependent on initialization ++// order. ++// ++// 3) By not using an enum, we are possibly preventing the compiler from ++// doing certain constant folds, which may significantly reduce the ++// code generated for some assembly instructions (because they boil down ++// to a few constants). If this is a problem, we could change the code ++// such that we use an enum in optimized mode, and the struct in debug ++// mode. This way we get the compile-time error checking in debug mode ++// and best performance in optimized code. ++ ++// ----------------------------------------------------------------------------- ++// Implementation of Register and FPURegister. ++ ++enum RegisterCode { ++#define REGISTER_CODE(R) kRegCode_##R, ++ GENERAL_REGISTERS(REGISTER_CODE) ++#undef REGISTER_CODE ++ kRegAfterLast ++}; ++ ++class Register : public RegisterBase { ++ public: ++ static constexpr int kMantissaOffset = 0; ++ static constexpr int kExponentOffset = 4; ++ ++ private: ++ friend class RegisterBase; ++ explicit constexpr Register(int code) : RegisterBase(code) {} ++}; ++ ++// s7: context register ++// s3: scratch register ++// s4: scratch register 2 ++#define DECLARE_REGISTER(R) \ ++ constexpr Register R = Register::from_code(); ++GENERAL_REGISTERS(DECLARE_REGISTER) ++#undef DECLARE_REGISTER ++ ++constexpr Register no_reg = Register::no_reg(); ++ ++int ToNumber(Register reg); ++ ++Register ToRegister(int num); ++ ++constexpr bool kPadArguments = false; ++constexpr bool kSimpleFPAliasing = true; ++constexpr bool kSimdMaskRegisters = false; ++ ++enum DoubleRegisterCode { ++#define REGISTER_CODE(R) kDoubleCode_##R, ++ DOUBLE_REGISTERS(REGISTER_CODE) ++#undef REGISTER_CODE ++ kDoubleAfterLast ++}; ++ ++// Coprocessor register. ++class FPURegister : public RegisterBase { ++ public: ++ FPURegister low() const { ++ // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1. ++ // Find low reg of a Double-reg pair, which is the reg itself. ++ DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even. ++ return FPURegister::from_code(code()); ++ } ++ ++ private: ++ friend class RegisterBase; ++ explicit constexpr FPURegister(int code) : RegisterBase(code) {} ++}; ++ ++enum CFRegister { ++ FCC0, ++ FCC1, ++ FCC2, ++ FCC3, ++ FCC4, ++ FCC5, ++ FCC6, ++ FCC7 ++}; ++ ++using FloatRegister = FPURegister; ++ ++using DoubleRegister = FPURegister; ++ ++ // TODO here only for build success ++using Simd128Register = FPURegister; ++ ++#define DECLARE_DOUBLE_REGISTER(R) \ ++ constexpr DoubleRegister R = DoubleRegister::from_code(); ++DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER) ++#undef DECLARE_DOUBLE_REGISTER ++ ++constexpr DoubleRegister no_dreg = DoubleRegister::no_reg(); ++ ++// Register aliases. ++// cp is assumed to be a callee saved register. ++constexpr Register kRootRegister = s6; ++constexpr Register cp = s7; ++constexpr Register kScratchReg = s3; ++constexpr Register kScratchReg2 = s4; ++constexpr DoubleRegister kScratchDoubleReg = f30; ++// FPU zero reg is often used to hold 0.0, but it's not hardwired to 0.0. ++constexpr DoubleRegister kDoubleRegZero = f28; ++ ++// FPU (coprocessor 1) control registers. ++// Currently only FCSR0 is implemented. ++// TODO fscr0 fcsr1 fcsr2 fscsr3 ++struct FPUControlRegister { ++ bool is_valid() const { return reg_code == kFCSRRegister; } ++ bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } ++ int code() const { ++ DCHECK(is_valid()); ++ return reg_code; ++ } ++ int bit() const { ++ DCHECK(is_valid()); ++ return 1 << reg_code; ++ } ++ void setcode(int f) { ++ reg_code = f; ++ DCHECK(is_valid()); ++ } ++ int reg_code; ++}; ++ ++constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister}; ++constexpr FPUControlRegister FCSR = {kFCSRRegister}; ++ ++// ----------------------------------------------------------------------------- ++// Machine instruction Operands. ++constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize; ++constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1; ++// Class Operand represents a shifter operand in data processing instructions. ++class Operand BASE_EMBEDDED { ++ public: ++ // Immediate. ++ INLINE(explicit Operand(int64_t immediate, ++ RelocInfo::Mode rmode = RelocInfo::NONE)) ++ : rm_(no_reg), rmode_(rmode) { ++ value_.immediate = immediate; ++ } ++ INLINE(explicit Operand(const ExternalReference& f)) ++ : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) { ++ value_.immediate = static_cast(f.address()); ++ } ++ INLINE(explicit Operand(const char* s)); ++ INLINE(explicit Operand(Object** opp)); ++ INLINE(explicit Operand(Context** cpp)); ++ explicit Operand(Handle handle); ++ INLINE(explicit Operand(Smi* value)) : rm_(no_reg), rmode_(RelocInfo::NONE) { ++ value_.immediate = reinterpret_cast(value); ++ } ++ ++ static Operand EmbeddedNumber(double number); // Smi or HeapNumber. ++ static Operand EmbeddedCode(CodeStub* stub); ++ ++ // Register. ++ INLINE(explicit Operand(Register rm)) : rm_(rm) {} ++ ++ // Return true if this is a register operand. ++ INLINE(bool is_reg() const); ++ ++ inline int64_t immediate() const; ++ ++ bool IsImmediate() const { return !rm_.is_valid(); } ++ ++ HeapObjectRequest heap_object_request() const { ++ DCHECK(IsHeapObjectRequest()); ++ return value_.heap_object_request; ++ } ++ ++ bool IsHeapObjectRequest() const { ++ DCHECK_IMPLIES(is_heap_object_request_, IsImmediate()); ++ DCHECK_IMPLIES(is_heap_object_request_, ++ rmode_ == RelocInfo::EMBEDDED_OBJECT || ++ rmode_ == RelocInfo::CODE_TARGET); ++ return is_heap_object_request_; ++ } ++ ++ Register rm() const { return rm_; } ++ ++ RelocInfo::Mode rmode() const { return rmode_; } ++ ++ private: ++ Register rm_; ++ union Value { ++ Value() {} ++ HeapObjectRequest heap_object_request; // if is_heap_object_request_ ++ int64_t immediate; // otherwise ++ } value_; // valid if rm_ == no_reg ++ bool is_heap_object_request_ = false; ++ RelocInfo::Mode rmode_; ++ ++ friend class Assembler; ++ friend class MacroAssembler; ++}; ++ ++// Class MemOperand represents a memory operand in load and store instructions. ++// 1: base_reg + off_imm( si12 | si14<<2) ++// 2: base_reg + offset_reg ++class MemOperand { ++ public: ++ explicit MemOperand(Register rj, int32_t offset = 0); ++ explicit MemOperand(Register rj, Register offset); ++ Register base() const { return base_; } ++ Register index() const { return index_; } ++ int32_t offset() const { return offset_; } ++ ++ bool hasIndexReg() const { return index_ != no_reg ; } ++ ++ private: ++ Register base_; // base ++ Register index_; // index ++ int32_t offset_; // offset ++ ++ friend class Assembler; ++}; ++ ++class Assembler : public AssemblerBase { ++ public: ++ // Create an assembler. Instructions and relocation information are emitted ++ // into a buffer, with the instructions starting from the beginning and the ++ // relocation information starting from the end of the buffer. See CodeDesc ++ // for a detailed comment on the layout (globals.h). ++ // ++ // If the provided buffer is nullptr, the assembler allocates and grows its ++ // own buffer, and buffer_size determines the initial buffer size. The buffer ++ // is owned by the assembler and deallocated upon destruction of the ++ // assembler. ++ Assembler(Isolate* isolate, void* buffer, int buffer_size) ++ : Assembler(IsolateData(isolate), buffer, buffer_size) {} ++ Assembler(IsolateData isolate_data, void* buffer, int buffer_size); ++ virtual ~Assembler() {} ++ ++ // GetCode emits any pending (non-emitted) code and fills the descriptor ++ // desc. GetCode() is idempotent; it returns the same result if no other ++ // Assembler functions are invoked in between GetCode() calls. ++ void GetCode(Isolate* isolate, CodeDesc* desc); ++ ++ // Label operations & relative jumps (PPUM Appendix D). ++ // ++ // Takes a branch opcode (cc) and a label (L) and generates ++ // either a backward branch or a forward branch and links it ++ // to the label fixup chain. Usage: ++ // ++ // Label L; // unbound label ++ // j(cc, &L); // forward branch to unbound label ++ // bind(&L); // bind label to the current pc ++ // j(cc, &L); // backward branch to bound label ++ // bind(&L); // illegal: a label may be bound only once ++ // ++ // Note: The same Label can be used for forward and backward branches ++ // but it may be bound only once. ++ void bind(Label* L); // Binds an unbound label L to current code position. ++ ++ enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; ++ ++ // Determines if Label is bound and near enough so that branch instruction ++ // can be used to reach it, instead of jump instruction. ++ // c means conditinal branch, a means always branch. ++ bool is_near_c(Label* L); ++ bool is_near(Label* L, OffsetSize bits); ++ bool is_near_a(Label* L); ++ ++ int BranchOffset(Instr instr); ++ ++ // Returns the branch offset to the given label from the current code ++ // position. Links the label to the current position if it is still unbound. ++ // Manages the jump elimination optimization if the second parameter is true. ++ int32_t branch_offset_helper(Label* L, OffsetSize bits); ++ inline int32_t branch_offset(Label* L) { ++ return branch_offset_helper(L, OffsetSize::kOffset16); ++ } ++ inline int32_t branch_offset21(Label* L) { ++ return branch_offset_helper(L, OffsetSize::kOffset21); ++ } ++ inline int32_t branch_offset26(Label* L) { ++ return branch_offset_helper(L, OffsetSize::kOffset26); ++ } ++ inline int32_t shifted_branch_offset(Label* L) { ++ return branch_offset(L) >> 2; ++ } ++ inline int32_t shifted_branch_offset21(Label* L) { ++ return branch_offset21(L) >> 2; ++ } ++ inline int32_t shifted_branch_offset26(Label* L) { ++ return branch_offset26(L) >> 2; ++ } ++ uint64_t jump_address(Label* L); ++ uint64_t jump_offset(Label* L); ++ ++ // Puts a labels target address at the given position. ++ // The high 8 bits are set to zero. ++ void label_at_put(Label* L, int at_offset); ++ ++ // Read/Modify the code target address in the branch/call instruction at pc. ++ // The isolate argument is unused (and may be nullptr) when skipping flushing. ++ static Address target_address_at(Address pc); ++ INLINE(static void set_target_address_at( ++ Address pc, Address target, ++ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { ++ set_target_value_at(pc, target, icache_flush_mode); ++ } ++ // On LOONG64 there is no Constant Pool so we skip that parameter. ++ INLINE(static Address target_address_at(Address pc, Address constant_pool)) { ++ return target_address_at(pc); ++ } ++ INLINE(static void set_target_address_at( ++ Address pc, Address constant_pool, Address target, ++ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { ++ set_target_address_at(pc, target, icache_flush_mode); ++ } ++ ++ static void set_target_value_at( ++ Address pc, uint64_t target, ++ ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); ++ ++ // Return the code target address at a call site from the return address ++ // of that call in the instruction stream. ++ inline static Address target_address_from_return_address(Address pc); ++ ++ static void JumpLabelToJumpRegister(Address pc); ++ ++ // This sets the branch destination (which gets loaded at the call address). ++ // This is for calls and branches within generated code. The serializer ++ // has already deserialized the lui/ori instructions etc. ++ inline static void deserialization_set_special_target_at( ++ Address instruction_payload, Code* code, Address target); ++ ++ // Get the size of the special target encoded at 'instruction_payload'. ++ inline static int deserialization_special_target_size( ++ Address instruction_payload); ++ ++ // This sets the internal reference at the pc. ++ inline static void deserialization_set_target_internal_reference_at( ++ Address pc, Address target, ++ RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); ++ ++ // Size of an instruction. ++ static constexpr int kInstrSize = sizeof(Instr); ++ ++ // Here we are patching the address in the LUI/ORI instruction pair. ++ // These values are used in the serialization process and must be zero for ++ // LA platform, as Code, Embedded Object or External-reference pointers ++ // are split across two consecutive instructions and don't exist separately ++ // in the code, so the serializer should not step forwards in memory after ++ // a target is resolved and written. ++ static constexpr int kSpecialTargetSize = 0; ++ ++ // Number of consecutive instructions used to store 32bit/64bit constant. ++ // This constant was used in RelocInfo::target_address_address() function ++ // to tell serializer address of the instruction that follows ++ // LUI/ORI instruction pair. ++ // TODO check this ++ static constexpr int kInstructionsFor64BitConstant = 4; ++ ++ // Difference between address of current opcode and target address offset. ++ static constexpr int kBranchPCOffset = 0; ++ ++ // Distance between the instruction referring to the address of the call ++ // target and the return address. ++ static constexpr int kCallTargetAddressOffset = 5 * kInstrSize; ++ ++ // Max offset for instructions with 16-bit offset field ++ static constexpr int kMax16BranchOffset = (1 << (18 - 1)) - 1; ++ ++ // Max offset for instructions with 21-bit offset field ++ static constexpr int kMax21BranchOffset = (1 << (23 - 1)) - 1; ++ ++ // Max offset for compact branch instructions with 26-bit offset field ++ static constexpr int kMax26BranchOffset = (1 << (28 - 1)) - 1; ++ ++ static constexpr int kTrampolineSlotsSize = 2 * kInstrSize; ++ ++ RegList* GetScratchRegisterList() { return &scratch_register_list_; } ++ ++ // --------------------------------------------------------------------------- ++ // Code generation. ++ ++ // Insert the smallest number of nop instructions ++ // possible to align the pc offset to a multiple ++ // of m. m must be a power of 2 (>= 4). ++ void Align(int m); ++ // Insert the smallest number of zero bytes possible to align the pc offset ++ // to a mulitple of m. m must be a power of 2 (>= 2). ++ void DataAlign(int m); ++ // Aligns code to something that's optimal for a jump target for the platform. ++ void CodeTargetAlign(); ++ ++ // Different nop operations are used by the code generator to detect certain ++ // states of the generated code. ++ enum NopMarkerTypes { ++ NON_MARKING_NOP = 0, ++ DEBUG_BREAK_NOP, ++ // IC markers. ++ PROPERTY_ACCESS_INLINED, ++ PROPERTY_ACCESS_INLINED_CONTEXT, ++ PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, ++ // Helper values. ++ LAST_CODE_MARKER, ++ FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, ++ }; ++ ++ // Type == 0 is the default non-marking nop. For loongisa this is a ++ // andi(zero_reg, zero_reg, 0). We use rt_reg == r1 for non-zero ++ // marking, to avoid conflict with ssnop and ehb instructions. ++ void nop(unsigned int type = 0) { ++ DCHECK_LT(type, 32); ++ Register nop_rt_reg = (type == 0) ? zero_reg : t7; ++ andi(zero_reg, nop_rt_reg, type); ++ } ++ ++ // --------Branch-and-jump-instructions---------- ++ // We don't use likely variant of instructions. ++ void b(int32_t offset); ++ inline void b(Label* L) { b(shifted_branch_offset26(L)); } ++ void bl(int32_t offset); ++ inline void bl(Label* L) { bl(shifted_branch_offset26(L)); } ++ ++ void beq(Register rj, Register rd, int32_t offset); ++ inline void beq(Register rj, Register rd, Label* L) { ++ beq(rj, rd, shifted_branch_offset(L)); ++ } ++ void bne(Register rj, Register rd, int32_t offset); ++ inline void bne(Register rj, Register rd, Label* L) { ++ bne(rj, rd, shifted_branch_offset(L)); ++ } ++ void blt(Register rj, Register rd, int32_t offset); ++ inline void blt(Register rj, Register rd, Label* L) { ++ blt(rj, rd, shifted_branch_offset(L)); ++ } ++ void bge(Register rj, Register rd, int32_t offset); ++ inline void bge(Register rj, Register rd, Label* L) { ++ bge(rj, rd, shifted_branch_offset(L)); ++ } ++ void bltu(Register rj, Register rd, int32_t offset); ++ inline void bltu(Register rj, Register rd, Label* L) { ++ bltu(rj, rd, shifted_branch_offset(L)); ++ } ++ void bgeu(Register rj, Register rd, int32_t offset); ++ inline void bgeu(Register rj, Register rd, Label* L) { ++ bgeu(rj, rd, shifted_branch_offset(L)); ++ } ++ void beqz(Register rj, int32_t offset); ++ inline void beqz(Register rj, Label* L) { ++ beqz(rj, shifted_branch_offset21(L)); ++ } ++ void bnez(Register rj, int32_t offset); ++ inline void bnez(Register rj, Label* L) { ++ bnez(rj, shifted_branch_offset21(L)); ++ } ++ ++ void jirl(Register rd, Register rj, int32_t offset); ++ ++ void bceqz(CFRegister cj, int32_t si21); ++ inline void bceqz(CFRegister cj, Label* L) { ++ bceqz(cj, shifted_branch_offset21(L)); ++ } ++ void bcnez(CFRegister cj, int32_t si21); ++ inline void bcnez(CFRegister cj, Label* L) { ++ bcnez(cj, shifted_branch_offset21(L)); ++ } ++ ++ // -------Data-processing-instructions--------- ++ ++ // Arithmetic. ++ void add_w(Register rd, Register rj, Register rk); ++ void add_d(Register rd, Register rj, Register rk); ++ void sub_w(Register rd, Register rj, Register rk); ++ void sub_d(Register rd, Register rj, Register rk); ++ ++ void addi_w(Register rd, Register rj, int32_t si12); ++ void addi_d(Register rd, Register rj, int32_t si12); ++ ++ void addu16i_d(Register rd, Register rj, int32_t si16); ++ ++ void alsl_w(Register rd, Register rj, Register rk, int32_t sa2); ++ void alsl_wu(Register rd, Register rj, Register rk, int32_t sa2); ++ void alsl_d(Register rd, Register rj, Register rk, int32_t sa2); ++ ++ void lu12i_w(Register rd, int32_t si20); ++ void lu32i_d(Register rd, int32_t si20); ++ void lu52i_d(Register rd, Register rj, int32_t si12); ++ ++ void slt(Register rd, Register rj, Register rk); ++ void sltu(Register rd, Register rj, Register rk); ++ void slti(Register rd, Register rj, int32_t si12); ++ void sltui(Register rd, Register rj, int32_t si12); ++ ++ void pcaddi(Register rd, int32_t si20); ++ void pcaddu12i(Register rd, int32_t si20); ++ void pcaddu18i(Register rd, int32_t si20); ++ void pcalau12i(Register rd, int32_t si20); ++ ++ void and_(Register rd, Register rj, Register rk); ++ void or_(Register rd, Register rj, Register rk); ++ void xor_(Register rd, Register rj, Register rk); ++ void nor(Register rd, Register rj, Register rk); ++ void andn(Register rd, Register rj, Register rk); ++ void orn(Register rd, Register rj, Register rk); ++ ++ void andi(Register rd, Register rj, int32_t ui12); ++ void ori(Register rd, Register rj, int32_t ui12); ++ void xori(Register rd, Register rj, int32_t ui12); ++ ++ void mul_w(Register rd, Register rj, Register rk); ++ void mulh_w(Register rd, Register rj, Register rk); ++ void mulh_wu(Register rd, Register rj, Register rk); ++ void mul_d(Register rd, Register rj, Register rk); ++ void mulh_d(Register rd, Register rj, Register rk); ++ void mulh_du(Register rd, Register rj, Register rk); ++ ++ void mulw_d_w(Register rd, Register rj, Register rk); ++ void mulw_d_wu(Register rd, Register rj, Register rk); ++ ++ void div_w(Register rd, Register rj, Register rk); ++ void mod_w(Register rd, Register rj, Register rk); ++ void div_wu(Register rd, Register rj, Register rk); ++ void mod_wu(Register rd, Register rj, Register rk); ++ void div_d(Register rd, Register rj, Register rk); ++ void mod_d(Register rd, Register rj, Register rk); ++ void div_du(Register rd, Register rj, Register rk); ++ void mod_du(Register rd, Register rj, Register rk); ++ ++ // Shifts. ++ void sll_w(Register rd, Register rj, Register rk); ++ void srl_w(Register rd, Register rj, Register rk); ++ void sra_w(Register rd, Register rj, Register rk); ++ void rotr_w(Register rd, Register rj, Register rk); ++ ++ void slli_w(Register rd, Register rj, int32_t ui5); ++ void srli_w(Register rd, Register rj, int32_t ui5); ++ void srai_w(Register rd, Register rj, int32_t ui5); ++ void rotri_w(Register rd, Register rj, int32_t ui5); ++ ++ void sll_d(Register rd, Register rj, Register rk); ++ void srl_d(Register rd, Register rj, Register rk); ++ void sra_d(Register rd, Register rj, Register rk); ++ void rotr_d(Register rd, Register rj, Register rk); ++ ++ void slli_d(Register rd, Register rj, int32_t ui6); ++ void srli_d(Register rd, Register rj, int32_t ui6); ++ void srai_d(Register rd, Register rj, int32_t ui6); ++ void rotri_d(Register rd, Register rj, int32_t ui6); ++ ++ // Bit twiddling. ++ void ext_w_b(Register rd, Register rj); ++ void ext_w_h(Register rd, Register rj); ++ ++ void clo_w(Register rd, Register rj); ++ void clz_w(Register rd, Register rj); ++ void cto_w(Register rd, Register rj); ++ void ctz_w(Register rd, Register rj); ++ void clo_d(Register rd, Register rj); ++ void clz_d(Register rd, Register rj); ++ void cto_d(Register rd, Register rj); ++ void ctz_d(Register rd, Register rj); ++ ++ void bytepick_w(Register rd, Register rj, Register rk, int32_t sa2); ++ void bytepick_d(Register rd, Register rj, Register rk, int32_t sa3); ++ ++ void revb_2h(Register rd, Register rj); ++ void revb_4h(Register rd, Register rj); ++ void revb_2w(Register rd, Register rj); ++ void revb_d(Register rd, Register rj); ++ ++ void revh_2w(Register rd, Register rj); ++ void revh_d(Register rd, Register rj); ++ ++ void bitrev_4b(Register rd, Register rj); ++ void bitrev_8b(Register rd, Register rj); ++ ++ void bitrev_w(Register rd, Register rj); ++ void bitrev_d(Register rd, Register rj); ++ ++ void bstrins_w(Register rd, Register rj, int32_t msbw, int32_t lsbw); ++ void bstrins_d(Register rd, Register rj, int32_t msbd, int32_t lsbd); ++ ++ void bstrpick_w(Register rd, Register rj, int32_t msbw, int32_t lsbw); ++ void bstrpick_d(Register rd, Register rj, int32_t msbd, int32_t lsbd); ++ ++ void maskeqz(Register rd, Register rj, Register rk); ++ void masknez(Register rd, Register rj, Register rk); ++ ++ // Memory-instructions ++ void ld_b(Register rd, Register rj, int32_t si12); ++ void ld_h(Register rd, Register rj, int32_t si12); ++ void ld_w(Register rd, Register rj, int32_t si12); ++ void ld_d(Register rd, Register rj, int32_t si12); ++ void ld_bu(Register rd, Register rj, int32_t si12); ++ void ld_hu(Register rd, Register rj, int32_t si12); ++ void ld_wu(Register rd, Register rj, int32_t si12); ++ void st_b(Register rd, Register rj, int32_t si12); ++ void st_h(Register rd, Register rj, int32_t si12); ++ void st_w(Register rd, Register rj, int32_t si12); ++ void st_d(Register rd, Register rj, int32_t si12); ++ ++ void ldx_b(Register rd, Register rj, Register rk); ++ void ldx_h(Register rd, Register rj, Register rk); ++ void ldx_w(Register rd, Register rj, Register rk); ++ void ldx_d(Register rd, Register rj, Register rk); ++ void ldx_bu(Register rd, Register rj, Register rk); ++ void ldx_hu(Register rd, Register rj, Register rk); ++ void ldx_wu(Register rd, Register rj, Register rk); ++ void stx_b(Register rd, Register rj, Register rk); ++ void stx_h(Register rd, Register rj, Register rk); ++ void stx_w(Register rd, Register rj, Register rk); ++ void stx_d(Register rd, Register rj, Register rk); ++ ++ void ldptr_w(Register rd, Register rj, int32_t si14); ++ void ldptr_d(Register rd, Register rj, int32_t si14); ++ void stptr_w(Register rd, Register rj, int32_t si14); ++ void stptr_d(Register rd, Register rj, int32_t si14); ++ ++ void preld(int32_t hint, Register rj, int32_t si12); ++ ++ void amswap_w(Register rd, Register rk, Register rj); ++ void amswap_d(Register rd, Register rk, Register rj); ++ void amadd_w(Register rd, Register rk, Register rj); ++ void amadd_d(Register rd, Register rk, Register rj); ++ void amand_w(Register rd, Register rk, Register rj); ++ void amand_d(Register rd, Register rk, Register rj); ++ void amor_w(Register rd, Register rk, Register rj); ++ void amor_d(Register rd, Register rk, Register rj); ++ void amxor_w(Register rd, Register rk, Register rj); ++ void amxor_d(Register rd, Register rk, Register rj); ++ void ammax_w(Register rd, Register rk, Register rj); ++ void ammax_d(Register rd, Register rk, Register rj); ++ void ammin_w(Register rd, Register rk, Register rj); ++ void ammin_d(Register rd, Register rk, Register rj); ++ void ammax_wu(Register rd, Register rk, Register rj); ++ void ammax_du(Register rd, Register rk, Register rj); ++ void ammin_wu(Register rd, Register rk, Register rj); ++ void ammin_du(Register rd, Register rk, Register rj); ++ ++ void amswap_db_w(Register rd, Register rk, Register rj); ++ void amswap_db_d(Register rd, Register rk, Register rj); ++ void amadd_db_w(Register rd, Register rk, Register rj); ++ void amadd_db_d(Register rd, Register rk, Register rj); ++ void amand_db_w(Register rd, Register rk, Register rj); ++ void amand_db_d(Register rd, Register rk, Register rj); ++ void amor_db_w(Register rd, Register rk, Register rj); ++ void amor_db_d(Register rd, Register rk, Register rj); ++ void amxor_db_w(Register rd, Register rk, Register rj); ++ void amxor_db_d(Register rd, Register rk, Register rj); ++ void ammax_db_w(Register rd, Register rk, Register rj); ++ void ammax_db_d(Register rd, Register rk, Register rj); ++ void ammin_db_w(Register rd, Register rk, Register rj); ++ void ammin_db_d(Register rd, Register rk, Register rj); ++ void ammax_db_wu(Register rd, Register rk, Register rj); ++ void ammax_db_du(Register rd, Register rk, Register rj); ++ void ammin_db_wu(Register rd, Register rk, Register rj); ++ void ammin_db_du(Register rd, Register rk, Register rj); ++ ++ void ll_w(Register rd, Register rj, int32_t si14); ++ void ll_d(Register rd, Register rj, int32_t si14); ++ void sc_w(Register rd, Register rj, int32_t si14); ++ void sc_d(Register rd, Register rj, int32_t si14); ++ ++ void dbar(int32_t hint); ++ void ibar(int32_t hint); ++ ++ void syscall(int32_t code); ++ ++ // Break / Trap instructions. ++ void break_(uint32_t code, bool break_as_stop = false); ++ void stop(const char* msg, uint32_t code = kMaxStopCode); ++ ++ ++ // Arithmetic. ++ void fadd_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fadd_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fsub_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fsub_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmul_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmul_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fdiv_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fdiv_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ ++ void fmadd_s(FPURegister fd, FPURegister fj, FPURegister fk, FPURegister fa); ++ void fmadd_d(FPURegister fd, FPURegister fj, FPURegister fk, FPURegister fa); ++ void fmsub_s(FPURegister fd, FPURegister fj, FPURegister fk, FPURegister fa); ++ void fmsub_d(FPURegister fd, FPURegister fj, FPURegister fk, FPURegister fa); ++ void fnmadd_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa); ++ void fnmadd_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa); ++ void fnmsub_s(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa); ++ void fnmsub_d(FPURegister fd, FPURegister fj, ++ FPURegister fk, FPURegister fa); ++ ++ void fmax_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmax_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmin_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmin_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ ++ void fmaxa_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmaxa_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmina_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fmina_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ ++ void fabs_s(FPURegister fd, FPURegister fj); ++ void fabs_d(FPURegister fd, FPURegister fj); ++ void fneg_s(FPURegister fd, FPURegister fj); ++ void fneg_d(FPURegister fd, FPURegister fj); ++ ++ void fsqrt_s(FPURegister fd, FPURegister fj); ++ void fsqrt_d(FPURegister fd, FPURegister fj); ++ void frecip_s(FPURegister fd, FPURegister fj); ++ void frecip_d(FPURegister fd, FPURegister fj); ++ void frsqrt_s(FPURegister fd, FPURegister fj); ++ void frsqrt_d(FPURegister fd, FPURegister fj); ++ ++ void fscaleb_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fscaleb_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ void flogb_s(FPURegister fd, FPURegister fj); ++ void flogb_d(FPURegister fd, FPURegister fj); ++ void fcopysign_s(FPURegister fd, FPURegister fj, FPURegister fk); ++ void fcopysign_d(FPURegister fd, FPURegister fj, FPURegister fk); ++ ++ void fclass_s(FPURegister fd, FPURegister fj); ++ void fclass_d(FPURegister fd, FPURegister fj); ++ ++ void fcmp_cond_s(FPUCondition cc, FPURegister fj, ++ FPURegister fk, CFRegister cd); ++ void fcmp_cond_d(FPUCondition cc, FPURegister fj, ++ FPURegister fk, CFRegister cd); ++ ++ void fcvt_s_d(FPURegister fd, FPURegister fj); ++ void fcvt_d_s(FPURegister fd, FPURegister fj); ++ ++ void ffint_s_w(FPURegister fd, FPURegister fj); ++ void ffint_s_l(FPURegister fd, FPURegister fj); ++ void ffint_d_w(FPURegister fd, FPURegister fj); ++ void ffint_d_l(FPURegister fd, FPURegister fj); ++ void ftint_w_s(FPURegister fd, FPURegister fj); ++ void ftint_w_d(FPURegister fd, FPURegister fj); ++ void ftint_l_s(FPURegister fd, FPURegister fj); ++ void ftint_l_d(FPURegister fd, FPURegister fj); ++ ++ void ftintrm_w_s(FPURegister fd, FPURegister fj); ++ void ftintrm_w_d(FPURegister fd, FPURegister fj); ++ void ftintrm_l_s(FPURegister fd, FPURegister fj); ++ void ftintrm_l_d(FPURegister fd, FPURegister fj); ++ void ftintrp_w_s(FPURegister fd, FPURegister fj); ++ void ftintrp_w_d(FPURegister fd, FPURegister fj); ++ void ftintrp_l_s(FPURegister fd, FPURegister fj); ++ void ftintrp_l_d(FPURegister fd, FPURegister fj); ++ void ftintrz_w_s(FPURegister fd, FPURegister fj); ++ void ftintrz_w_d(FPURegister fd, FPURegister fj); ++ void ftintrz_l_s(FPURegister fd, FPURegister fj); ++ void ftintrz_l_d(FPURegister fd, FPURegister fj); ++ void ftintrne_w_s(FPURegister fd, FPURegister fj); ++ void ftintrne_w_d(FPURegister fd, FPURegister fj); ++ void ftintrne_l_s(FPURegister fd, FPURegister fj); ++ void ftintrne_l_d(FPURegister fd, FPURegister fj); ++ ++ void frint_s(FPURegister fd, FPURegister fj); ++ void frint_d(FPURegister fd, FPURegister fj); ++ ++ void fmov_s(FPURegister fd, FPURegister fj); ++ void fmov_d(FPURegister fd, FPURegister fj); ++ ++ void fsel(CFRegister ca, FPURegister fd, FPURegister fj, FPURegister fk); ++ ++ void movgr2fr_w(FPURegister fd, Register rj); ++ void movgr2fr_d(FPURegister fd, Register rj); ++ void movgr2frh_w(FPURegister fd, Register rj); ++ ++ void movfr2gr_s(Register rd, FPURegister fj); ++ void movfr2gr_d(Register rd, FPURegister fj); ++ void movfrh2gr_s(Register rd, FPURegister fj); ++ ++ void movgr2fcsr(Register rj); ++ void movfcsr2gr(Register rd); ++ ++ void movfr2cf(CFRegister cd, FPURegister fj); ++ void movcf2fr(FPURegister fd, CFRegister cj); ++ ++ void movgr2cf(CFRegister cd, Register rj); ++ void movcf2gr(Register rd, CFRegister cj); ++ ++ void fld_s(FPURegister fd, Register rj, int32_t si12); ++ void fld_d(FPURegister fd, Register rj, int32_t si12); ++ void fst_s(FPURegister fd, Register rj, int32_t si12); ++ void fst_d(FPURegister fd, Register rj, int32_t si12); ++ ++ void fldx_s(FPURegister fd, Register rj, Register rk); ++ void fldx_d(FPURegister fd, Register rj, Register rk); ++ void fstx_s(FPURegister fd, Register rj, Register rk); ++ void fstx_d(FPURegister fd, Register rj, Register rk); ++ ++ int SizeOfCodeGeneratedSince(Label* label) { ++ return pc_offset() - label->pos(); ++ } ++ ++ // Check the number of instructions generated from label to here. ++ int InstructionsGeneratedSince(Label* label) { ++ return SizeOfCodeGeneratedSince(label) / kInstrSize; ++ } ++ ++ // Class for scoping postponing the trampoline pool generation. ++ class BlockTrampolinePoolScope { ++ public: ++ explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { ++ assem_->StartBlockTrampolinePool(); ++ } ++ ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); } ++ ++ private: ++ Assembler* assem_; ++ ++ DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); ++ }; ++ ++ // Class for postponing the assembly buffer growth. Typically used for ++ // sequences of instructions that must be emitted as a unit, before ++ // buffer growth (and relocation) can occur. ++ // This blocking scope is not nestable. ++ class BlockGrowBufferScope { ++ public: ++ explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { ++ assem_->StartBlockGrowBuffer(); ++ } ++ ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); } ++ ++ private: ++ Assembler* assem_; ++ ++ DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); ++ }; ++ ++ // Record a comment relocation entry that can be used by a disassembler. ++ // Use --code-comments to enable. ++ void RecordComment(const char* msg); ++ ++ // Record a deoptimization reason that can be used by a log or cpu profiler. ++ // Use --trace-deopt to enable. ++ void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, ++ int id); ++ ++ static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc, ++ intptr_t pc_delta); ++ ++ // Writes a single byte or word of data in the code stream. Used for ++ // inline tables, e.g., jump-tables. ++ void db(uint8_t data); ++ void dd(uint32_t data); ++ void dq(uint64_t data); ++ void dp(uintptr_t data) { dq(data); } ++ void dd(Label* label); ++ ++ // Postpone the generation of the trampoline pool for the specified number of ++ // instructions. ++ void BlockTrampolinePoolFor(int instructions); ++ ++ // Check if there is less than kGap bytes available in the buffer. ++ // If this is the case, we need to grow the buffer before emitting ++ // an instruction or relocation information. ++ inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } ++ ++ // Get the number of bytes available in the buffer. ++ inline intptr_t available_space() const { ++ return reloc_info_writer.pos() - pc_; ++ } ++ ++ // Read/patch instructions. ++ static Instr instr_at(Address pc) { return *reinterpret_cast(pc); } ++ static void instr_at_put(Address pc, Instr instr) { ++ *reinterpret_cast(pc) = instr; ++ } ++ Instr instr_at(int pos) { ++ return *reinterpret_cast(buffer_ + pos); ++ } ++ void instr_at_put(int pos, Instr instr) { ++ *reinterpret_cast(buffer_ + pos) = instr; ++ } ++ ++ // Check if an instruction is a branch of some kind. ++ static bool IsBranch(Instr instr); ++ static bool IsB(Instr instr); ++ static bool IsBz(Instr instr); ++ ++ static bool IsBeq(Instr instr); ++ static bool IsBne(Instr instr); ++ ++ static bool IsJump(Instr instr); ++ static bool IsPcAddi(Instr instr, Register rd, int32_t si20); ++ ++ static bool IsJ(Instr instr); ++ static bool IsLu12i_w(Instr instr); ++ static bool IsOri(Instr instr); ++ static bool IsLu32i_d(Instr instr); ++ static bool IsLu52i_d(Instr instr); ++ ++ static bool IsNop(Instr instr, unsigned int type); ++ static bool IsPop(Instr instr); ++ static bool IsPush(Instr instr); ++// static bool IsLwRegFpOffset(Instr instr); ++// static bool IsSwRegFpOffset(Instr instr); ++// static bool IsLwRegFpNegOffset(Instr instr); ++// static bool IsSwRegFpNegOffset(Instr instr); ++ ++ static Register GetRjReg(Instr instr); ++ static Register GetRkReg(Instr instr); ++ static Register GetRdReg(Instr instr); ++ ++ static uint32_t GetRj(Instr instr); ++ static uint32_t GetRjField(Instr instr); ++ static uint32_t GetRk(Instr instr); ++ static uint32_t GetRkField(Instr instr); ++ static uint32_t GetRd(Instr instr); ++ static uint32_t GetRdField(Instr instr); ++ static uint32_t GetSa2(Instr instr); ++ static uint32_t GetSa3(Instr instr); ++ static uint32_t GetSa2Field(Instr instr); ++ static uint32_t GetSa3Field(Instr instr); ++ static uint32_t GetOpcodeField(Instr instr); ++ static uint32_t GetFunction(Instr instr); ++ static uint32_t GetFunctionField(Instr instr); ++ static uint32_t GetImmediate16(Instr instr); ++ static uint32_t GetLabelConst(Instr instr); ++ ++ static bool IsAddImmediate(Instr instr); ++ static Instr SetAddImmediateOffset(Instr instr, int16_t offset); ++ ++ static bool IsAndImmediate(Instr instr); ++ static bool IsEmittedConstant(Instr instr); ++ ++ void CheckTrampolinePool(); ++ ++ void PatchConstantPoolAccessInstruction(int pc_offset, int offset, ++ ConstantPoolEntry::Access access, ++ ConstantPoolEntry::Type type) { ++ // No embedded constant pool support. ++ UNREACHABLE(); ++ } ++ ++ inline int UnboundLabelsCount() { return unbound_labels_count_; } ++ ++ protected: ++ // Helper function for memory load/store. ++ void AdjustBaseAndOffset(MemOperand* src); ++ ++ inline static void set_target_internal_reference_encoded_at(Address pc, ++ Address target); ++ ++ int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; } ++ ++ // Decode branch instruction at pos and return branch target pos. ++ int target_at(int pos, bool is_internal); ++ ++ // Patch branch instruction at pos to branch to given branch target pos. ++ void target_at_put(int pos, int target_pos, bool is_internal); ++ ++ // Say if we need to relocate with this mode. ++ bool MustUseReg(RelocInfo::Mode rmode); ++ ++ // Record reloc info for current pc_. ++ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); ++ ++ // Block the emission of the trampoline pool before pc_offset. ++ void BlockTrampolinePoolBefore(int pc_offset) { ++ if (no_trampoline_pool_before_ < pc_offset) ++ no_trampoline_pool_before_ = pc_offset; ++ } ++ ++ void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; } ++ ++ void EndBlockTrampolinePool() { ++ trampoline_pool_blocked_nesting_--; ++ } ++ ++ bool is_trampoline_pool_blocked() const { ++ return trampoline_pool_blocked_nesting_ > 0; ++ } ++ ++ bool has_exception() const { return internal_trampoline_exception_; } ++ ++ bool is_trampoline_emitted() const { return trampoline_emitted_; } ++ ++ // Temporarily block automatic assembly buffer growth. ++ void StartBlockGrowBuffer() { ++ DCHECK(!block_buffer_growth_); ++ block_buffer_growth_ = true; ++ } ++ ++ void EndBlockGrowBuffer() { ++ DCHECK(block_buffer_growth_); ++ block_buffer_growth_ = false; ++ } ++ ++ bool is_buffer_growth_blocked() const { return block_buffer_growth_; } ++ ++ inline void CheckTrampolinePoolQuick(int extra_instructions = 0); ++ ++ private: ++ // Avoid overflows for displacements etc. ++ static const int kMaximalBufferSize = 512 * MB; ++ ++ // Buffer size and constant pool distance are checked together at regular ++ // intervals of kBufferCheckInterval emitted bytes. ++ static constexpr int kBufferCheckInterval = 1 * KB / 2; ++ ++ // Code generation. ++ // The relocation writer's position is at least kGap bytes below the end of ++ // the generated instructions. This is so that multi-instruction sequences do ++ // not have to check for overflow. The same is true for writes of large ++ // relocation info entries. ++ static constexpr int kGap = 64; ++ STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap); ++ ++ // Repeated checking whether the trampoline pool should be emitted is rather ++ // expensive. By default we only check again once a number of instructions ++ // has been generated. ++ static constexpr int kCheckConstIntervalInst = 32; ++ static constexpr int kCheckConstInterval = ++ kCheckConstIntervalInst * kInstrSize; ++ ++ int next_buffer_check_; // pc offset of next buffer check. ++ ++ // Emission of the trampoline pool may be blocked in some code sequences. ++ int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. ++ int no_trampoline_pool_before_; // Block emission before this pc offset. ++ ++ // Keep track of the last emitted pool to guarantee a maximal distance. ++ int last_trampoline_pool_end_; // pc offset of the end of the last pool. ++ ++ // Automatic growth of the assembly buffer may be blocked for some sequences. ++ bool block_buffer_growth_; // Block growth when true. ++ ++ // Relocation information generation. ++ // Each relocation is encoded as a variable size value. ++ static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize; ++ RelocInfoWriter reloc_info_writer; ++ ++ // The bound position, before this we cannot do instruction elimination. ++ int last_bound_pos_; ++ ++ // Code emission. ++ inline void CheckBuffer(); ++ void GrowBuffer(); ++ inline void emit(Instr x); ++ inline void emit(uint64_t x); ++// inline void CheckForEmitInForbiddenSlot(); ++ template ++ inline void EmitHelper(T x); ++ inline void EmitHelper(Instr x); ++ ++ void GenB(Opcode opcode, Register rj, int32_t si21); // opcode:6 ++ void GenB(Opcode opcode, CFRegister cj, int32_t si21, bool isEq); ++ void GenB(Opcode opcode, int32_t si26); ++ void GenBJ(Opcode opcode, Register rj, Register rd, int32_t si16); ++ void GenCmp(Opcode opcode, FPUCondition cond, FPURegister fk, FPURegister fj, CFRegister cd); ++ void GenSel(Opcode opcode, CFRegister ca, FPURegister fk, FPURegister fj, FPURegister rd); ++ ++ void GenRegister(Opcode opcode, Register rj, Register rd, bool rjrd = true); ++ void GenRegister(Opcode opcode, FPURegister fj, FPURegister fd); ++ void GenRegister(Opcode opcode, Register rj, FPURegister fd); ++ void GenRegister(Opcode opcode, FPURegister fj, Register rd); ++ void GenRegister(Opcode opcode, Register rj, FPUControlRegister fd); ++ void GenRegister(Opcode opcode, FPUControlRegister fj, Register rd); ++ void GenRegister(Opcode opcode, FPURegister fj, CFRegister cd); ++ void GenRegister(Opcode opcode, CFRegister cj, FPURegister fd); ++ void GenRegister(Opcode opcode, Register rj, CFRegister cd); ++ void GenRegister(Opcode opcode, CFRegister cj, Register rd); ++ ++ void GenRegister(Opcode opcode, Register rk, Register rj, Register rd); ++ void GenRegister(Opcode opcode, FPURegister fk, FPURegister fj, FPURegister fd); ++ ++ void GenRegister(Opcode opcode, FPURegister fa, FPURegister fk, ++ FPURegister fj, FPURegister fd); ++ void GenRegister(Opcode opcode, Register rk, Register rj, FPURegister fd); ++ ++ void GenImm(Opcode opcode, int32_t bit3, Register rk, Register rj, Register rd); ++ void GenImm(Opcode opcode, int32_t bit6m, int32_t bit6l, Register rj, Register rd); ++ void GenImm(Opcode opcode, int32_t bit20, Register rd); ++ void GenImm(Opcode opcode, int32_t bit15); ++ void GenImm(Opcode opcode, int32_t value, Register rj, Register rd, int32_t value_bits); // 6 | 12 | 14 | 16 ++ void GenImm(Opcode opcode, int32_t bit12, Register rj, FPURegister fd); ++ ++ // Labels. ++ void print(const Label* L); ++ void bind_to(Label* L, int pos); ++ void next(Label* L, bool is_internal); ++ ++ // One trampoline consists of: ++ // - space for trampoline slots, ++ // - space for labels. ++ // ++ // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. ++ // Space for trampoline slots precedes space for labels. Each label is of one ++ // instruction size, so total amount for labels is equal to ++ // label_count * kInstrSize. ++ class Trampoline { ++ public: ++ Trampoline() { ++ start_ = 0; ++ next_slot_ = 0; ++ free_slot_count_ = 0; ++ end_ = 0; ++ } ++ Trampoline(int start, int slot_count) { ++ start_ = start; ++ next_slot_ = start; ++ free_slot_count_ = slot_count; ++ end_ = start + slot_count * kTrampolineSlotsSize; ++ } ++ int start() { return start_; } ++ int end() { return end_; } ++ int take_slot() { ++ int trampoline_slot = kInvalidSlotPos; ++ if (free_slot_count_ <= 0) { ++ // We have run out of space on trampolines. ++ // Make sure we fail in debug mode, so we become aware of each case ++ // when this happens. ++ DCHECK(0); ++ // Internal exception will be caught. ++ } else { ++ trampoline_slot = next_slot_; ++ free_slot_count_--; ++ next_slot_ += kTrampolineSlotsSize; ++ } ++ return trampoline_slot; ++ } ++ ++ private: ++ int start_; ++ int end_; ++ int next_slot_; ++ int free_slot_count_; ++ }; ++ ++ int32_t get_trampoline_entry(int32_t pos); ++ int unbound_labels_count_; ++ // After trampoline is emitted, long branches are used in generated code for ++ // the forward branches whose target offsets could be beyond reach of branch ++ // instruction. We use this information to trigger different mode of ++ // branch instruction generation, where we use jump instructions rather ++ // than regular branch instructions. ++ bool trampoline_emitted_; ++ static constexpr int kInvalidSlotPos = -1; ++ ++ // Internal reference positions, required for unbounded internal reference ++ // labels. ++ std::set internal_reference_positions_; ++ bool is_internal_reference(Label* L) { ++ return internal_reference_positions_.find(L->pos()) != ++ internal_reference_positions_.end(); ++ } ++ ++ void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } ++ void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } ++ bool prev_instr_compact_branch_ = false; ++ ++ Trampoline trampoline_; ++ bool internal_trampoline_exception_; ++ ++ RegList scratch_register_list_; ++ ++ // The following functions help with avoiding allocations of embedded heap ++ // objects during the code assembly phase. {RequestHeapObject} records the ++ // need for a future heap number allocation or code stub generation. After ++ // code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these ++ // objects and place them where they are expected (determined by the pc offset ++ // associated with each request). That is, for each request, it will patch the ++ // dummy heap object handle that we emitted during code assembly with the ++ // actual heap object handle. ++ protected: ++ // TODO(neis): Make private if its use can be moved out of TurboAssembler. ++ void RequestHeapObject(HeapObjectRequest request); ++ ++ private: ++ void AllocateAndInstallRequestedHeapObjects(Isolate* isolate); ++ ++ std::forward_list heap_object_requests_; ++ ++ friend class RegExpMacroAssemblerMIPS; ++ friend class RelocInfo; ++ friend class BlockTrampolinePoolScope; ++ friend class EnsureSpace; ++}; ++ ++class EnsureSpace BASE_EMBEDDED { ++ public: ++ explicit inline EnsureSpace(Assembler* assembler); ++}; ++ ++class UseScratchRegisterScope { ++ public: ++ explicit UseScratchRegisterScope(Assembler* assembler); ++ ~UseScratchRegisterScope(); ++ ++ Register Acquire(); ++ bool hasAvailable() const; ++ ++ private: ++ RegList* available_; ++ RegList old_available_; ++}; ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_LOONG64_ASSEMBLER_LOONG64_H_ +diff --git a/deps/v8/src/loong64/code-stubs-loong64.cc b/deps/v8/src/loong64/code-stubs-loong64.cc +new file mode 100644 +index 0000000..a48ccac +--- /dev/null ++++ b/deps/v8/src/loong64/code-stubs-loong64.cc +@@ -0,0 +1,875 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/api-arguments.h" ++#include "src/bootstrapper.h" ++#include "src/code-stubs.h" ++#include "src/frame-constants.h" ++#include "src/frames.h" ++#include "src/heap/heap-inl.h" ++#include "src/ic/ic.h" ++#include "src/ic/stub-cache.h" ++#include "src/isolate.h" ++#include "src/objects/api-callbacks.h" ++#include "src/regexp/jsregexp.h" ++#include "src/regexp/regexp-macro-assembler.h" ++#include "src/runtime/runtime.h" ++ ++#include "src/loong64/code-stubs-loong64.h" // Cannot be the first include. ++ ++namespace v8 { ++namespace internal { ++ ++#define __ ACCESS_MASM(masm) ++ ++void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { ++ __ slli_d(t7, a0, kPointerSizeLog2); ++ __ Add_d(t7, sp, t7); ++ __ St_d(a1, MemOperand(t7, 0)); ++ __ Push(a1); ++ __ Push(a2); ++ __ Add_d(a0, a0, 3); ++ __ TailCallRuntime(Runtime::kNewArray); ++} ++ ++void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { ++ CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); ++ StoreFastElementStub::GenerateAheadOfTime(isolate); ++} ++ ++void JSEntryStub::Generate(MacroAssembler* masm) { ++ Label invoke, handler_entry, exit; ++ Isolate* isolate = masm->isolate(); ++ ++ { ++ NoRootArrayScope no_root_array(masm); ++ ++ // TODO(plind): unify the ABI description here. ++ // Registers: ++ // a0: entry address ++ // a1: function ++ // a2: receiver ++ // a3: argc ++ // a4 (a4): on mips64 ++ ++ // Stack: ++ // 0 arg slots on mips64 (4 args slots on mips) ++ // args -- in a4/a4 on mips64, on stack on mips ++ ++ ProfileEntryHookStub::MaybeCallEntryHook(masm); ++ ++ // Save callee saved registers on the stack. ++ __ MultiPush(kCalleeSaved | ra.bit()); ++ ++ // Save callee-saved FPU registers. ++ __ MultiPushFPU(kCalleeSavedFPU); ++ // Set up the reserved register for 0.0. ++ __ Move(kDoubleRegZero, 0.0); ++ ++ // Load argv in s0 register. ++ __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register. ++ ++ __ InitializeRootRegister(); ++ } ++ ++ // We build an EntryFrame. ++ __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used. ++ StackFrame::Type marker = type(); ++ __ li(a6, Operand(StackFrame::TypeToMarker(marker))); ++ __ li(a5, Operand(StackFrame::TypeToMarker(marker))); ++ ExternalReference c_entry_fp = ++ ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate); ++ __ li(a4, Operand(c_entry_fp)); ++ __ Ld_d(a4, MemOperand(a4)); ++ __ Push(a7, a6, a5, a4); ++ // Set up frame pointer for the frame to be pushed. ++ __ addi_d(fp, sp, -EntryFrameConstants::kCallerFPOffset); ++ ++ // Registers: ++ // a0: entry_address ++ // a1: function ++ // a2: receiver_pointer ++ // a3: argc ++ // s0: argv ++ // ++ // Stack: ++ // caller fp | ++ // function slot | entry frame ++ // context slot | ++ // bad fp (0xFF...F) | ++ // callee saved registers + ra ++ // [ O32: 4 args slots] ++ // args ++ ++ // If this is the outermost JS call, set js_entry_sp value. ++ Label non_outermost_js; ++ ExternalReference js_entry_sp = ++ ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, isolate); ++ __ li(a5, js_entry_sp); ++ __ Ld_d(a6, MemOperand(a5)); ++ __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg)); ++ __ St_d(fp, MemOperand(a5)); ++ __ li(a4, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); ++ Label cont; ++ __ Branch(&cont); ++ __ bind(&non_outermost_js); ++ __ li(a4, Operand(StackFrame::INNER_JSENTRY_FRAME)); ++ __ bind(&cont); ++ __ push(a4); ++ ++ // Jump to a faked try block that does the invoke, with a faked catch ++ // block that sets the pending exception. ++ __ jmp(&invoke); ++ __ bind(&handler_entry); ++ handler_offset_ = handler_entry.pos(); ++ // Caught exception: Store result (exception) in the pending exception ++ // field in the JSEnv and return a failure sentinel. Coming in here the ++ // fp will be invalid because the PushStackHandler below sets it to 0 to ++ // signal the existence of the JSEntry frame. ++ __ li(a4, ExternalReference::Create( ++ IsolateAddressId::kPendingExceptionAddress, isolate)); ++ __ St_d(a0, MemOperand(a4)); // We come back from 'invoke'. result is in v0. ++ __ LoadRoot(a0, Heap::kExceptionRootIndex); ++ __ Branch(&exit); // b exposes branch delay slot. ++ ++ // Invoke: Link this frame into the handler chain. ++ __ bind(&invoke); ++ __ PushStackHandler(); ++ // If an exception not caught by another handler occurs, this handler ++ // returns control to the code after the bal(&invoke) above, which ++ // restores all kCalleeSaved registers (including cp and fp) to their ++ // saved values before returning a failure to C. ++ ++ // Invoke the function by calling through JS entry trampoline builtin. ++ // Notice that we cannot store a reference to the trampoline code directly in ++ // this stub, because runtime stubs are not traversed when doing GC. ++ ++ // Registers: ++ // a0: entry_address ++ // a1: function ++ // a2: receiver_pointer ++ // a3: argc ++ // s0: argv ++ // ++ // Stack: ++ // handler frame ++ // entry frame ++ // callee saved registers + ra ++ // [ O32: 4 args slots] ++ // args ++ __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); ++ ++ // Unlink this frame from the handler chain. ++ __ PopStackHandler(); ++ ++ __ bind(&exit); // v0 holds result ++ // Check if the current stack frame is marked as the outermost JS frame. ++ Label non_outermost_js_2; ++ __ pop(a5); ++ __ Branch(&non_outermost_js_2, ne, a5, ++ Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); ++ __ li(a5, ExternalReference(js_entry_sp)); ++ __ St_d(zero_reg, MemOperand(a5)); ++ __ bind(&non_outermost_js_2); ++ ++ // Restore the top frame descriptors from the stack. ++ __ pop(a5); ++ __ li(a4, ++ ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate)); ++ __ St_d(a5, MemOperand(a4)); ++ ++ // Reset the stack to the callee saved registers. ++ __ addi_d(sp, sp, -EntryFrameConstants::kCallerFPOffset); ++ ++ // Restore callee-saved fpu registers. ++ __ MultiPopFPU(kCalleeSavedFPU); ++ ++ // Restore callee saved registers from the stack. ++ __ MultiPop(kCalleeSaved | ra.bit()); ++ // Return. ++ __ Jump(ra); ++} ++ ++void DirectCEntryStub::Generate(MacroAssembler* masm) { ++ // Make place for arguments to fit C calling convention. Most of the callers ++ // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame ++ // so they handle stack restoring and we don't have to do that here. ++ // Any caller of DirectCEntryStub::GenerateCall must take care of dropping ++ // kCArgsSlotsSize stack space after the call. ++ __ addi_d(sp, sp, -kCArgsSlotsSize); ++ // Place the return address on the stack, making the call ++ // GC safe. The RegExp backend also relies on this. ++ __ St_d(ra, MemOperand(sp, kCArgsSlotsSize)); ++ __ Call(t7); // Call the C++ function. ++ __ Ld_d(t7, MemOperand(sp, kCArgsSlotsSize)); ++ ++ if (FLAG_debug_code && FLAG_enable_slow_asserts) { ++ // In case of an error the return address may point to a memory area ++ // filled with kZapValue by the GC. ++ // Dereference the address and check for this. ++ __ Ld_d(a4, MemOperand(t7)); ++ __ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, a4, ++ Operand(reinterpret_cast(kZapValue))); ++ } ++ __ Jump(t7); ++} ++ ++ ++void DirectCEntryStub::GenerateCall(MacroAssembler* masm, ++ Register target) { ++ intptr_t loc = ++ reinterpret_cast(GetCode().location()); ++ __ Move(t7, target); ++ __ li(kScratchReg, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE); ++ __ Call(kScratchReg); ++} ++ ++ ++void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, ++ Zone* zone) { ++ if (tasm->isolate()->function_entry_hook() != nullptr) { ++ tasm->push(ra); ++ tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); ++ tasm->pop(ra); ++ } ++} ++ ++void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { ++ if (masm->isolate()->function_entry_hook() != nullptr) { ++ ProfileEntryHookStub stub(masm->isolate()); ++ __ push(ra); ++ __ CallStub(&stub); ++ __ pop(ra); ++ } ++} ++ ++ ++void ProfileEntryHookStub::Generate(MacroAssembler* masm) { ++ // The entry hook is a "push ra" instruction, followed by a call. ++ // Note: on MIPS "push" is 2 instruction ++ const int32_t kReturnAddressDistanceFromFunctionStart = ++ Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize); ++ ++ // This should contain all kJSCallerSaved registers. ++ const RegList kSavedRegs = ++ kJSCallerSaved | // Caller saved registers. ++ s5.bit(); // Saved stack pointer. ++ ++ // We also save ra, so the count here is one higher than the mask indicates. ++ const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; ++ ++ // Save all caller-save registers as this may be called from anywhere. ++ __ MultiPush(kSavedRegs | ra.bit()); ++ ++ // Compute the function's address for the first argument. ++ __ Sub_d(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart)); ++ ++ // The caller's return address is above the saved temporaries. ++ // Grab that for the second argument to the hook. ++ __ Add_d(a1, sp, Operand(kNumSavedRegs * kPointerSize)); ++ ++ // Align the stack if necessary. ++ int frame_alignment = masm->ActivationFrameAlignment(); ++ if (frame_alignment > kPointerSize) { ++ __ mov(s5, sp); ++ DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); ++ __ And(sp, sp, Operand(-frame_alignment)); ++ } ++ ++ __ Sub_d(sp, sp, kCArgsSlotsSize); ++#if V8_HOST_ARCH_LOONG64 ++ int64_t entry_hook = ++ reinterpret_cast(isolate()->function_entry_hook()); ++ __ li(t7, Operand(entry_hook)); ++#else ++ // Under the simulator we need to indirect the entry hook through a ++ // trampoline function at a known address. ++ // It additionally takes an isolate as a third parameter. ++ __ li(a2, ExternalReference::isolate_address(isolate())); ++ ++ ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); ++ __ li(t7, ExternalReference::Create(&dispatcher, ++ ExternalReference::BUILTIN_CALL)); ++#endif ++ // Call C function through t7 to conform ABI for PIC. ++ __ Call(t7); ++ ++ // Restore the stack pointer if needed. ++ if (frame_alignment > kPointerSize) { ++ __ mov(sp, s5); ++ } else { ++ __ Add_d(sp, sp, kCArgsSlotsSize); ++ } ++ ++ // Also pop ra to get Ret(0). ++ __ MultiPop(kSavedRegs | ra.bit()); ++ __ Ret(); ++} ++ ++ ++template ++static void CreateArrayDispatch(MacroAssembler* masm, ++ AllocationSiteOverrideMode mode) { ++ if (mode == DISABLE_ALLOCATION_SITES) { ++ T stub(masm->isolate(), GetInitialFastElementsKind(), mode); ++ __ TailCallStub(&stub); ++ } else if (mode == DONT_OVERRIDE) { ++ int last_index = ++ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); ++ for (int i = 0; i <= last_index; ++i) { ++ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); ++ T stub(masm->isolate(), kind); ++ __ TailCallStub(&stub, eq, a3, Operand(kind)); ++ } ++ ++ // If we reached this point there is a problem. ++ __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++ ++static void CreateArrayDispatchOneArgument(MacroAssembler* masm, ++ AllocationSiteOverrideMode mode) { ++ // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) ++ // a3 - kind (if mode != DISABLE_ALLOCATION_SITES) ++ // a0 - number of arguments ++ // a1 - constructor? ++ // sp[0] - last argument ++ STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); ++ STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); ++ STATIC_ASSERT(PACKED_ELEMENTS == 2); ++ STATIC_ASSERT(HOLEY_ELEMENTS == 3); ++ STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); ++ STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); ++ ++ if (mode == DISABLE_ALLOCATION_SITES) { ++ ElementsKind initial = GetInitialFastElementsKind(); ++ ElementsKind holey_initial = GetHoleyElementsKind(initial); ++ ++ ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), ++ holey_initial, ++ DISABLE_ALLOCATION_SITES); ++ __ TailCallStub(&stub_holey); ++ } else if (mode == DONT_OVERRIDE) { ++ // is the low bit set? If so, we are holey and that is good. ++ Label normal_sequence; ++ __ And(kScratchReg, a3, Operand(1)); ++ __ Branch(&normal_sequence, ne, kScratchReg, Operand(zero_reg)); ++ ++ // We are going to create a holey array, but our kind is non-holey. ++ // Fix kind and retry (only if we have an allocation site in the slot). ++ __ Add_d(a3, a3, Operand(1)); ++ ++ if (FLAG_debug_code) { ++ __ Ld_d(a5, FieldMemOperand(a2, 0)); ++ __ LoadRoot(kScratchReg, Heap::kAllocationSiteMapRootIndex); ++ __ Assert(eq, AbortReason::kExpectedAllocationSite, a5, ++ Operand(kScratchReg)); ++ } ++ ++ // Save the resulting elements kind in type info. We can't just store a3 ++ // in the AllocationSite::transition_info field because elements kind is ++ // restricted to a portion of the field...upper bits need to be left alone. ++ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); ++ __ Ld_d(a4, FieldMemOperand( ++ a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); ++ __ Add_d(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); ++ __ St_d(a4, FieldMemOperand( ++ a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); ++ ++ __ bind(&normal_sequence); ++ int last_index = ++ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); ++ for (int i = 0; i <= last_index; ++i) { ++ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); ++ ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); ++ __ TailCallStub(&stub, eq, a3, Operand(kind)); ++ } ++ ++ // If we reached this point there is a problem. ++ __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++ ++template ++static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { ++ int to_index = ++ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); ++ for (int i = 0; i <= to_index; ++i) { ++ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); ++ T stub(isolate, kind); ++ stub.GetCode(); ++ if (AllocationSite::ShouldTrack(kind)) { ++ T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); ++ stub1.GetCode(); ++ } ++ } ++} ++ ++void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ++ ArrayConstructorStubAheadOfTimeHelper( ++ isolate); ++ ArrayConstructorStubAheadOfTimeHelper( ++ isolate); ++ ArrayNArgumentsConstructorStub stub(isolate); ++ stub.GetCode(); ++ ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; ++ for (int i = 0; i < 2; i++) { ++ // For internal arrays we only need a few things. ++ InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); ++ stubh1.GetCode(); ++ InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); ++ stubh2.GetCode(); ++ } ++} ++ ++ ++void ArrayConstructorStub::GenerateDispatchToArrayStub( ++ MacroAssembler* masm, ++ AllocationSiteOverrideMode mode) { ++ Label not_zero_case, not_one_case; ++ __ And(kScratchReg, a0, a0); ++ __ Branch(¬_zero_case, ne, kScratchReg, Operand(zero_reg)); ++ CreateArrayDispatch(masm, mode); ++ ++ __ bind(¬_zero_case); ++ __ Branch(¬_one_case, gt, a0, Operand(1)); ++ CreateArrayDispatchOneArgument(masm, mode); ++ ++ __ bind(¬_one_case); ++ ArrayNArgumentsConstructorStub stub(masm->isolate()); ++ __ TailCallStub(&stub); ++} ++ ++ ++void ArrayConstructorStub::Generate(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argc (only if argument_count() == ANY) ++ // -- a1 : constructor ++ // -- a2 : AllocationSite or undefined ++ // -- a3 : new target ++ // -- sp[0] : last argument ++ // ----------------------------------- ++ ++ if (FLAG_debug_code) { ++ // The array construct code is only set for the global and natives ++ // builtin Array functions which always have maps. ++ ++ // Initial map for the builtin Array function should be a map. ++ __ Ld_d(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); ++ // Will both indicate a nullptr and a Smi. ++ __ SmiTst(a4, kScratchReg); ++ __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, ++ kScratchReg, Operand(zero_reg)); ++ __ GetObjectType(a4, a4, a5); ++ __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, a5, ++ Operand(MAP_TYPE)); ++ ++ // We should either have undefined in a2 or a valid AllocationSite ++ __ AssertUndefinedOrAllocationSite(a2, a4); ++ } ++ ++ // Enter the context of the Array function. ++ __ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ++ ++ Label subclassing; ++ __ Branch(&subclassing, ne, a1, Operand(a3)); ++ ++ Label no_info; ++ // Get the elements kind and case on that. ++ __ LoadRoot(kScratchReg, Heap::kUndefinedValueRootIndex); ++ __ Branch(&no_info, eq, a2, Operand(kScratchReg)); ++ ++ __ Ld_d(a3, FieldMemOperand( ++ a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); ++ __ SmiUntag(a3); ++ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); ++ __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask)); ++ GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); ++ ++ __ bind(&no_info); ++ GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); ++ ++ // Subclassing. ++ __ bind(&subclassing); ++ __ Alsl_d(kScratchReg, a0, sp, kPointerSizeLog2); ++ __ St_d(a1, MemOperand(kScratchReg)); ++ __ li(kScratchReg, Operand(3)); ++ __ Add_d(a0, a0, kScratchReg); ++ __ Push(a3, a2); ++ __ JumpToExternalReference(ExternalReference::Create(Runtime::kNewArray)); ++} ++ ++ ++void InternalArrayConstructorStub::GenerateCase( ++ MacroAssembler* masm, ElementsKind kind) { ++ ++ InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); ++ __ TailCallStub(&stub0, lo, a0, Operand(1)); ++ ++ ArrayNArgumentsConstructorStub stubN(isolate()); ++ __ TailCallStub(&stubN, hi, a0, Operand(1)); ++ ++ if (IsFastPackedElementsKind(kind)) { ++ // We might need to create a holey array ++ // look at the first argument. ++ __ Ld_d(kScratchReg, MemOperand(sp, 0)); ++ ++ InternalArraySingleArgumentConstructorStub ++ stub1_holey(isolate(), GetHoleyElementsKind(kind)); ++ __ TailCallStub(&stub1_holey, ne, kScratchReg, Operand(zero_reg)); ++ } ++ ++ InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); ++ __ TailCallStub(&stub1); ++} ++ ++ ++void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a0 : argc ++ // -- a1 : constructor ++ // -- sp[0] : return address ++ // -- sp[4] : last argument ++ // ----------------------------------- ++ ++ if (FLAG_debug_code) { ++ // The array construct code is only set for the global and natives ++ // builtin Array functions which always have maps. ++ ++ // Initial map for the builtin Array function should be a map. ++ __ Ld_d(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); ++ // Will both indicate a nullptr and a Smi. ++ __ SmiTst(a3, kScratchReg); ++ __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, ++ kScratchReg, Operand(zero_reg)); ++ __ GetObjectType(a3, a3, a4); ++ __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, a4, ++ Operand(MAP_TYPE)); ++ } ++ ++ // Figure out the right elements kind. ++ __ Ld_d(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); ++ ++ // Load the map's "bit field 2" into a3. We only need the first byte, ++ // but the following bit field extraction takes care of that anyway. ++ __ Ld_bu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); ++ // Retrieve elements_kind from bit field 2. ++ __ DecodeField(a3); ++ ++ if (FLAG_debug_code) { ++ Label done; ++ __ Branch(&done, eq, a3, Operand(PACKED_ELEMENTS)); ++ __ Assert( ++ eq, ++ AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray, ++ a3, Operand(HOLEY_ELEMENTS)); ++ __ bind(&done); ++ } ++ ++ Label fast_elements_case; ++ __ Branch(&fast_elements_case, eq, a3, Operand(PACKED_ELEMENTS)); ++ GenerateCase(masm, HOLEY_ELEMENTS); ++ ++ __ bind(&fast_elements_case); ++ GenerateCase(masm, PACKED_ELEMENTS); ++} ++ ++static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { ++ int64_t offset = (ref0.address() - ref1.address()); ++ DCHECK(static_cast(offset) == offset); ++ return static_cast(offset); ++} ++ ++ ++// Calls an API function. Allocates HandleScope, extracts returned value ++// from handle and propagates exceptions. Restores context. stack_space ++// - space to be unwound on exit (includes the call JS arguments space and ++// the additional space allocated for the fast call). ++static void CallApiFunctionAndReturn(MacroAssembler* masm, ++ Register function_address, ++ ExternalReference thunk_ref, ++ int stack_space, ++ int32_t stack_space_offset, ++ MemOperand return_value_operand) { ++ Isolate* isolate = masm->isolate(); ++ ExternalReference next_address = ++ ExternalReference::handle_scope_next_address(isolate); ++ const int kNextOffset = 0; ++ const int kLimitOffset = AddressOffset( ++ ExternalReference::handle_scope_limit_address(isolate), next_address); ++ const int kLevelOffset = AddressOffset( ++ ExternalReference::handle_scope_level_address(isolate), next_address); ++ ++ DCHECK(function_address == a1 || function_address == a2); ++ ++ Label profiler_disabled; ++ Label end_profiler_check; ++ __ li(t7, ExternalReference::is_profiling_address(isolate)); ++ __ Ld_b(t7, MemOperand(t7, 0)); ++ __ Branch(&profiler_disabled, eq, t7, Operand(zero_reg)); ++ ++ // Additional parameter is the address of the actual callback. ++ __ li(t7, Operand(thunk_ref)); ++ __ jmp(&end_profiler_check); ++ ++ __ bind(&profiler_disabled); ++ __ mov(t7, function_address); ++ __ bind(&end_profiler_check); ++ ++ // Allocate HandleScope in callee-save registers. ++ __ li(s5, Operand(next_address)); ++ __ Ld_d(s0, MemOperand(s5, kNextOffset)); ++ __ Ld_d(s1, MemOperand(s5, kLimitOffset)); ++ __ Ld_w(s2, MemOperand(s5, kLevelOffset)); ++ __ Add_w(s2, s2, Operand(1)); ++ __ St_w(s2, MemOperand(s5, kLevelOffset)); ++ ++ if (FLAG_log_timer_events) { ++ FrameScope frame(masm, StackFrame::MANUAL); ++ __ PushSafepointRegisters(); ++ __ PrepareCallCFunction(1, a0); ++ __ li(a0, ExternalReference::isolate_address(isolate)); ++ __ CallCFunction(ExternalReference::log_enter_external_function(), 1); ++ __ PopSafepointRegisters(); ++ } ++ ++ // Native call returns to the DirectCEntry stub which redirects to the ++ // return address pushed on stack (could have moved after GC). ++ // DirectCEntry stub itself is generated early and never moves. ++ DirectCEntryStub stub(isolate); ++ stub.GenerateCall(masm, t7); ++ ++ if (FLAG_log_timer_events) { ++ FrameScope frame(masm, StackFrame::MANUAL); ++ __ PushSafepointRegisters(); ++ __ PrepareCallCFunction(1, a0); ++ __ li(a0, ExternalReference::isolate_address(isolate)); ++ __ CallCFunction(ExternalReference::log_leave_external_function(), 1); ++ __ PopSafepointRegisters(); ++ } ++ ++ Label promote_scheduled_exception; ++ Label delete_allocated_handles; ++ Label leave_exit_frame; ++ Label return_value_loaded; ++ ++ // Load value from ReturnValue. ++ __ Ld_d(a0, return_value_operand); ++ __ bind(&return_value_loaded); ++ ++ // No more valid handles (the result handle was the last one). Restore ++ // previous handle scope. ++ __ St_d(s0, MemOperand(s5, kNextOffset)); ++ if (__ emit_debug_code()) { ++ __ Ld_w(a1, MemOperand(s5, kLevelOffset)); ++ __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1, ++ Operand(s2)); ++ } ++ __ Sub_w(s2, s2, Operand(1)); ++ __ St_w(s2, MemOperand(s5, kLevelOffset)); ++ __ Ld_d(kScratchReg, MemOperand(s5, kLimitOffset)); ++ __ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg)); ++ ++ // Leave the API exit frame. ++ __ bind(&leave_exit_frame); ++ ++ if (stack_space_offset != kInvalidStackOffset) { ++ DCHECK_EQ(kCArgsSlotsSize, 0); ++ __ Ld_d(s0, MemOperand(sp, stack_space_offset)); ++ } else { ++ __ li(s0, Operand(stack_space)); ++ } ++ __ LeaveExitFrame(false, s0, NO_EMIT_RETURN, ++ stack_space_offset != kInvalidStackOffset); ++ ++ // Check if the function scheduled an exception. ++ __ LoadRoot(a4, Heap::kTheHoleValueRootIndex); ++ __ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate)); ++ __ Ld_d(a5, MemOperand(kScratchReg)); ++ __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5)); ++ ++ __ Ret(); ++ ++ // Re-throw by promoting a scheduled exception. ++ __ bind(&promote_scheduled_exception); ++ __ TailCallRuntime(Runtime::kPromoteScheduledException); ++ ++ // HandleScope limit has changed. Delete allocated extensions. ++ __ bind(&delete_allocated_handles); ++ __ St_d(s1, MemOperand(s5, kLimitOffset)); ++ __ mov(s0, a0); ++ __ PrepareCallCFunction(1, s1); ++ __ li(a0, ExternalReference::isolate_address(isolate)); ++ __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); ++ __ mov(a0, s0); ++ __ jmp(&leave_exit_frame); ++} ++ ++void CallApiCallbackStub::Generate(MacroAssembler* masm) { ++ // ----------- S t a t e ------------- ++ // -- a4 : call_data ++ // -- a2 : holder ++ // -- a1 : api_function_address ++ // -- cp : context ++ // -- ++ // -- sp[0] : last argument ++ // -- ... ++ // -- sp[(argc - 1) * 8] : first argument ++ // -- sp[argc * 8] : receiver ++ // ----------------------------------- ++ ++ Register call_data = a4; ++ Register holder = a2; ++ Register api_function_address = a1; ++ ++ typedef FunctionCallbackArguments FCA; ++ ++ STATIC_ASSERT(FCA::kArgsLength == 6); ++ STATIC_ASSERT(FCA::kNewTargetIndex == 5); ++ STATIC_ASSERT(FCA::kDataIndex == 4); ++ STATIC_ASSERT(FCA::kReturnValueOffset == 3); ++ STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); ++ STATIC_ASSERT(FCA::kIsolateIndex == 1); ++ STATIC_ASSERT(FCA::kHolderIndex == 0); ++ ++ // new target ++ __ PushRoot(Heap::kUndefinedValueRootIndex); ++ ++ // call data. ++ __ Push(call_data); ++ ++ Register scratch = call_data; ++ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); ++ // Push return value and default return value. ++ __ Push(scratch, scratch); ++ __ li(scratch, ExternalReference::isolate_address(masm->isolate())); ++ // Push isolate and holder. ++ __ Push(scratch, holder); ++ ++ // Prepare arguments. ++ __ mov(scratch, sp); ++ ++ // Allocate the v8::Arguments structure in the arguments' space since ++ // it's not controlled by GC. ++ const int kApiStackSpace = 3; ++ ++ FrameScope frame_scope(masm, StackFrame::MANUAL); ++ __ EnterExitFrame(false, kApiStackSpace); ++ ++ DCHECK(api_function_address != a0 && scratch != a0); ++ // a0 = FunctionCallbackInfo& ++ // Arguments is after the return address. ++ __ Add_d(a0, sp, Operand(1 * kPointerSize)); ++ // FunctionCallbackInfo::implicit_args_ ++ __ St_d(scratch, MemOperand(a0, 0 * kPointerSize)); ++ // FunctionCallbackInfo::values_ ++ __ Add_d(kScratchReg, scratch, ++ Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); ++ __ St_d(kScratchReg, MemOperand(a0, 1 * kPointerSize)); ++ // FunctionCallbackInfo::length_ = argc ++ // Stored as int field, 32-bit integers within struct on stack always left ++ // justified by n64 ABI. ++ __ li(kScratchReg, Operand(argc())); ++ __ St_w(kScratchReg, MemOperand(a0, 2 * kPointerSize)); ++ ++ ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); ++ ++ AllowExternalCallThatCantCauseGC scope(masm); ++ // Stores return the first js argument. ++ int return_value_offset = 2 + FCA::kReturnValueOffset; ++ MemOperand return_value_operand(fp, return_value_offset * kPointerSize); ++ const int stack_space = argc() + FCA::kArgsLength + 1; ++ // TODO(adamk): Why are we clobbering this immediately? ++ const int32_t stack_space_offset = kInvalidStackOffset; ++ CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, ++ stack_space_offset, return_value_operand); ++} ++ ++ ++void CallApiGetterStub::Generate(MacroAssembler* masm) { ++ // Build v8::PropertyCallbackInfo::args_ array on the stack and push property ++ // name below the exit frame to make GC aware of them. ++ STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); ++ STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); ++ STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); ++ STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); ++ STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); ++ STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); ++ STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); ++ STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); ++ ++ Register receiver = ApiGetterDescriptor::ReceiverRegister(); ++ Register holder = ApiGetterDescriptor::HolderRegister(); ++ Register callback = ApiGetterDescriptor::CallbackRegister(); ++ Register scratch = a4; ++ DCHECK(!AreAliased(receiver, holder, callback, scratch)); ++ ++ Register api_function_address = a2; ++ ++ // Here and below +1 is for name() pushed after the args_ array. ++ typedef PropertyCallbackArguments PCA; ++ __ Sub_d(sp, sp, (PCA::kArgsLength + 1) * kPointerSize); ++ __ St_d(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize)); ++ __ Ld_d(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); ++ __ St_d(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize)); ++ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); ++ __ St_d(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize)); ++ __ St_d(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) * ++ kPointerSize)); ++ __ li(scratch, ExternalReference::isolate_address(isolate())); ++ __ St_d(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize)); ++ __ St_d(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize)); ++ // should_throw_on_error -> false ++ DCHECK_NULL(Smi::kZero); ++ __ St_d(zero_reg, ++ MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize)); ++ __ Ld_d(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); ++ __ St_d(scratch, MemOperand(sp, 0 * kPointerSize)); ++ ++ // v8::PropertyCallbackInfo::args_ array and name handle. ++ const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; ++ ++ // Load address of v8::PropertyAccessorInfo::args_ array and name handle. ++ __ mov(a0, sp); // a0 = Handle ++ __ Add_d(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_ ++ ++ const int kApiStackSpace = 1; ++ FrameScope frame_scope(masm, StackFrame::MANUAL); ++ __ EnterExitFrame(false, kApiStackSpace); ++ ++ // Create v8::PropertyCallbackInfo object on the stack and initialize ++ // it's args_ field. ++ __ St_d(a1, MemOperand(sp, 1 * kPointerSize)); ++ __ Add_d(a1, sp, Operand(1 * kPointerSize)); ++ // a1 = v8::PropertyCallbackInfo& ++ ++ ExternalReference thunk_ref = ++ ExternalReference::invoke_accessor_getter_callback(); ++ ++ __ Ld_d(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); ++ __ Ld_d(api_function_address, ++ FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); ++ ++ // +3 is to skip prolog, return address and name handle. ++ MemOperand return_value_operand( ++ fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); ++ CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, ++ kStackUnwindSpace, kInvalidStackOffset, ++ return_value_operand); ++} ++ ++#undef __ ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/code-stubs-loong64.h b/deps/v8/src/loong64/code-stubs-loong64.h +new file mode 100644 +index 0000000..62a7d77 +--- /dev/null ++++ b/deps/v8/src/loong64/code-stubs-loong64.h +@@ -0,0 +1,31 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_LOONG64_CODE_STUBS_LOONG64_H_ ++#define V8_LOONG64_CODE_STUBS_LOONG64_H_ ++ ++namespace v8 { ++namespace internal { ++ ++// Trampoline stub to call into native code. To call safely into native code ++// in the presence of compacting GC (which can move code objects) we need to ++// keep the code which called into native pinned in the memory. Currently the ++// simplest approach is to generate such stub early enough so it can never be ++// moved by GC. ++class DirectCEntryStub : public PlatformCodeStub { ++ public: ++ explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {} ++ void GenerateCall(MacroAssembler* masm, Register target); ++ ++ private: ++ Movability NeedsImmovableCode() override { return kImmovable; } ++ ++ DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR(); ++ DEFINE_PLATFORM_CODE_STUB(DirectCEntry, PlatformCodeStub); ++}; ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_LOONG64_CODE_STUBS_LOONG64_H_ +diff --git a/deps/v8/src/loong64/codegen-loong64.cc b/deps/v8/src/loong64/codegen-loong64.cc +new file mode 100644 +index 0000000..19dfdb8 +--- /dev/null ++++ b/deps/v8/src/loong64/codegen-loong64.cc +@@ -0,0 +1,53 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include ++ ++#include "src/codegen.h" ++#include "src/isolate.h" ++#include "src/macro-assembler.h" ++#include "src/loong64/simulator-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++#define __ masm. ++ ++#if defined(V8_HOST_ARCH_LOONG64) ++ ++UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { ++#if defined(USE_SIMULATOR) ++ return nullptr; ++#else ++ size_t allocated = 0; ++ byte* buffer = AllocatePage(isolate->heap()->GetRandomMmapAddr(), &allocated); ++ if (buffer == nullptr) return nullptr; ++ ++ MacroAssembler masm(isolate, buffer, static_cast(allocated), ++ CodeObjectRequired::kNo); ++ ++ __ MovFromFloatParameter(f12); ++ __ fsqrt_d(f0, f12); ++ __ MovToFloatResult(f0); ++ __ Ret(); ++ ++ CodeDesc desc; ++ masm.GetCode(isolate, &desc); ++ DCHECK(!RelocInfo::RequiresRelocation(desc)); ++ ++ Assembler::FlushICache(buffer, allocated); ++ CHECK(SetPermissions(buffer, allocated, PageAllocator::kReadExecute)); ++ return FUNCTION_CAST(buffer); ++#endif ++} ++ ++#endif ++#undef __ ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/constants-loong64.cc b/deps/v8/src/loong64/constants-loong64.cc +new file mode 100644 +index 0000000..fc23691 +--- /dev/null ++++ b/deps/v8/src/loong64/constants-loong64.cc +@@ -0,0 +1,103 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/loong64/constants-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++// ----------------------------------------------------------------------------- ++// Registers. ++ ++// These register names are defined in a way to match the native disassembler ++// formatting. See for example the command "objdump -d ". ++const char* Registers::names_[kNumSimuRegisters] = { ++ "zero_reg", "ra", "gp", "sp", "a0", "a1", "a2", "a3", "a4", ++ "a5", "a6", "a7", "t0", "t1", "t2", "t3", "t4", "t5", ++ "t6", "t7", "t8", "tp", "fp", "s0", "s1", "s2", "s3", ++ "s4", "s5", "s6", "s7", "s8", "pc"}; ++ ++// List of alias names which can be used when referring to MIPS registers. ++const Registers::RegisterAlias Registers::aliases_[] = { ++ {0, "zero"}, ++ {23, "cp"}, ++ {kInvalidRegister, nullptr}}; ++ ++const char* Registers::Name(int reg) { ++ const char* result; ++ if ((0 <= reg) && (reg < kNumSimuRegisters)) { ++ result = names_[reg]; ++ } else { ++ result = "noreg"; ++ } ++ return result; ++} ++ ++int Registers::Number(const char* name) { ++ // Look through the canonical names. ++ for (int i = 0; i < kNumSimuRegisters; i++) { ++ if (strcmp(names_[i], name) == 0) { ++ return i; ++ } ++ } ++ ++ // Look through the alias names. ++ int i = 0; ++ while (aliases_[i].reg != kInvalidRegister) { ++ if (strcmp(aliases_[i].name, name) == 0) { ++ return aliases_[i].reg; ++ } ++ i++; ++ } ++ ++ // No register with the reguested name found. ++ return kInvalidRegister; ++} ++ ++const char* FPURegisters::names_[kNumFPURegisters] = { ++ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", ++ "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", ++ "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"}; ++ ++// List of alias names which can be used when referring to MIPS registers. ++const FPURegisters::RegisterAlias FPURegisters::aliases_[] = { ++ {kInvalidRegister, nullptr}}; ++ ++const char* FPURegisters::Name(int creg) { ++ const char* result; ++ if ((0 <= creg) && (creg < kNumFPURegisters)) { ++ result = names_[creg]; ++ } else { ++ result = "nocreg"; ++ } ++ return result; ++} ++ ++int FPURegisters::Number(const char* name) { ++ // Look through the canonical names. ++ for (int i = 0; i < kNumFPURegisters; i++) { ++ if (strcmp(names_[i], name) == 0) { ++ return i; ++ } ++ } ++ ++ // Look through the alias names. ++ int i = 0; ++ while (aliases_[i].creg != kInvalidRegister) { ++ if (strcmp(aliases_[i].name, name) == 0) { ++ return aliases_[i].creg; ++ } ++ i++; ++ } ++ ++ // No Cregister with the reguested name found. ++ return kInvalidFPURegister; ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/constants-loong64.h b/deps/v8/src/loong64/constants-loong64.h +new file mode 100644 +index 0000000..d769500 +--- /dev/null ++++ b/deps/v8/src/loong64/constants-loong64.h +@@ -0,0 +1,1361 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_CODEGEN_LOONG64_CONSTANTS_LOONG64_H_ ++#define V8_CODEGEN_LOONG64_CONSTANTS_LOONG64_H_ ++ ++#include "src/base/logging.h" ++#include "src/base/macros.h" ++#include "src/globals.h" ++ ++// UNIMPLEMENTED_ macro for LOONGISA. ++#ifdef DEBUG ++#define UNIMPLEMENTED_LOONGISA() \ ++ v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ ++ __FILE__, __LINE__, __func__) ++#else ++#define UNIMPLEMENTED_LOONGISA() ++#endif ++ ++#define UNSUPPORTED_LOONGISA() v8::internal::PrintF("Unsupported instruction.\n") ++ ++const uint32_t kLeastSignificantByteInInt32Offset = 0; ++const uint32_t kLessSignificantWordInDoublewordOffset = 0; ++ ++#ifndef __STDC_FORMAT_MACROS ++#define __STDC_FORMAT_MACROS ++#endif ++#include ++ ++// Defines constants and accessor classes to assemble, disassemble and ++// simulate LOONG64 instructions. ++ ++namespace v8 { ++namespace internal { ++ ++constexpr size_t kMaxPCRelativeCodeRangeInMB = 128; ++ ++// ----------------------------------------------------------------------------- ++// Registers and FPURegisters. ++ ++// Number of general purpose registers. ++const int kNumRegisters = 32; ++const int kInvalidRegister = -1; ++ ++// Number of registers with pc. ++const int kNumSimuRegisters = 33; ++ ++// In the simulator, the PC register is simulated as the 34th register. ++const int kPCRegister = 32; ++ ++// Number coprocessor registers. ++const int kNumFPURegisters = 32; ++const int kInvalidFPURegister = -1; ++ ++// FPU (coprocessor 1) control registers. Currently only FCSR is implemented. ++// TODO fcsr0 fcsr1 fcsr2 fcsr3 ++const int kFCSRRegister = 0; ++const int kInvalidFPUControlRegister = -1; ++const uint32_t kFPUInvalidResult = static_cast(1u << 31) - 1; ++const int32_t kFPUInvalidResultNegative = static_cast(1u << 31); ++const uint64_t kFPU64InvalidResult = ++ static_cast(static_cast(1) << 63) - 1; ++const int64_t kFPU64InvalidResultNegative = ++ static_cast(static_cast(1) << 63); ++ ++// FCSR constants. ++// TODO ++const uint32_t kFCSRInexactFlagBit = 16; ++const uint32_t kFCSRUnderflowFlagBit = 17; ++const uint32_t kFCSROverflowFlagBit = 18; ++const uint32_t kFCSRDivideByZeroFlagBit = 19; ++const uint32_t kFCSRInvalidOpFlagBit = 20; ++ ++const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit; ++const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit; ++const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit; ++const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit; ++const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit; ++ ++const uint32_t kFCSRFlagMask = ++ kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask | ++ kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask; ++ ++const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask; ++ ++// 'preld' instruction hints ++const int32_t kPrefHintLoad = 0; ++const int32_t kPrefHintStore = 8; ++ ++// Actual value of root register is offset from the root array's start ++// to take advantage of negative displacement values. ++// TODO(sigurds): Choose best value. ++constexpr int kRootRegisterBias = 256; ++ ++// Helper functions for converting between register numbers and names. ++class Registers { ++ public: ++ // Return the name of the register. ++ static const char* Name(int reg); ++ ++ // Lookup the register number for the name provided. ++ static int Number(const char* name); ++ ++ struct RegisterAlias { ++ int reg; ++ const char* name; ++ }; ++ ++ static const int64_t kMaxValue = 0x7fffffffffffffffl; ++ static const int64_t kMinValue = 0x8000000000000000l; ++ ++ private: ++ static const char* names_[kNumSimuRegisters]; ++ static const RegisterAlias aliases_[]; ++}; ++ ++// Helper functions for converting between register numbers and names. ++class FPURegisters { ++ public: ++ // Return the name of the register. ++ static const char* Name(int reg); ++ ++ // Lookup the register number for the name provided. ++ static int Number(const char* name); ++ ++ struct RegisterAlias { ++ int creg; ++ const char* name; ++ }; ++ ++ private: ++ static const char* names_[kNumFPURegisters]; ++ static const RegisterAlias aliases_[]; ++}; ++ ++ ++// ----------------------------------------------------------------------------- ++// Instructions encoding constants. ++ ++// On LoongISA all instructions are 32 bits. ++using Instr = int32_t; ++ ++// Special Software Interrupt codes when used in the presence of the LOONG64 ++// simulator. ++enum SoftwareInterruptCodes { ++ // Transition to C code. ++ call_rt_redirected = 0x7fff ++}; ++ ++// On LOONG64 Simulator breakpoints can have different codes: ++// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, ++// the simulator will run through them and print the registers. ++// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() ++// instructions (see Assembler::stop()). ++// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the ++// debugger. ++const uint32_t kMaxWatchpointCode = 31; ++const uint32_t kMaxStopCode = 127; ++STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode); ++ ++// ----- Fields offset and length. ++const int kRjShift = 5; ++const int kRjBits = 5; ++const int kRkShift = 10; ++const int kRkBits = 5; ++const int kRdShift = 0; ++const int kRdBits = 5; ++const int kSaShift = 15; ++const int kSa2Bits = 2; ++const int kSa3Bits = 3; ++const int kCdShift = 0; ++const int kCdBits = 3; ++const int kCjShift = 5; ++const int kCjBits = 3; ++const int kCodeShift = 0; ++const int kCodeBits = 15; ++const int kCondShift = 15; ++const int kCondBits = 5; ++const int kUi5Shift = 10; ++const int kUi5Bits = 5; ++const int kUi6Shift = 10; ++const int kUi6Bits = 6; ++const int kSi12Shift = 10; ++const int kSi12Bits = 12; ++const int kUi12Shift = 10; ++const int kUi12Bits = 12; ++const int kSi14Shift = 10; ++const int kSi14Bits = 14; ++const int kSi16Shift = 10; ++const int kSi16Bits = 16; ++const int kSi20Shift = 5; ++const int kSi20Bits = 20; ++const int kMsbwShift = 16; ++const int kMsbwBits = 5; ++const int kLsbwShift = 10; ++const int kLsbwBits = 5; ++const int kMsbdShift = 16; ++const int kMsbdBits = 6; ++const int kLsbdShift = 10; ++const int kLsbdBits = 6; ++const int kFdShift = 0; ++const int kFdBits = 5; ++const int kFjShift = 5; ++const int kFjBits = 5; ++const int kFkShift = 10; ++const int kFkBits = 5; ++const int kCsrShift = 10; ++const int kCsrBits = 14; ++const int kFaShift = 15; ++const int kFaBits = 5; ++const int kCaShift = 15; ++const int kCaBits = 3; ++const int kHint15Shift = 0; ++const int kHint15Bits = 15; ++const int kHint5Shift = 0; ++const int kHint5Bits = 5; ++const int kOffsLowShift = 10; ++const int kOffsLowBits = 16; ++const int kOffs26HighShift = 0; ++const int kOffs26HighBits = 10; ++const int kOffs21HighShift = 0; ++const int kOffs21HighBits = 5; ++ ++// In branches and jumps immediate fields point to words, not bytes, ++// and are therefore shifted by 2. ++const int kImmFieldShift = 2; ++ ++const int kImm12Shift = 0; ++const int kImm12Bits = 12; ++const int kImm16Shift = 0; ++const int kImm16Bits = 16; ++const int kImm26Shift = 0; ++const int kImm26Bits = 26; ++const int kImm28Shift = 0; ++const int kImm28Bits = 28; ++const int kImm32Shift = 0; ++const int kImm32Bits = 32; ++ ++// ----- Miscellaneous useful masks. ++// Instruction bit masks. ++const int kRjFieldMask = ((1 << kRjBits) - 1) << kRjShift; ++const int kRkFieldMask = ((1 << kRkBits) - 1) << kRkShift; ++const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; ++const int kSa2FieldMask = ((1 << kSa2Bits) - 1) << kSaShift; ++const int kSa3FieldMask = ((1 << kSa3Bits) - 1) << kSaShift; ++// Misc masks. ++const int kHiMaskOf32 = 0xffff << 16; // Only to be used with 32-bit values ++const int kLoMaskOf32 = 0xffff; ++const int kSignMaskOf32 = 0x80000000; // Only to be used with 32-bit values ++const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48; ++const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32; ++const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16; ++ ++const int kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift; ++const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift; ++const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift; ++const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift; ++ ++// ----- LOONG64 Opcodes and Function Fields. ++enum Opcode : uint32_t { ++ BEQZ = 0x10U << 26, ++ BNEZ = 0x11U << 26, ++ BCZ = 0x12U << 26, // BCEQZ & BCNEZ ++ JIRL = 0x13U << 26, ++ B = 0x14U << 26, ++ BL = 0x15U << 26, ++ BEQ = 0x16U << 26, ++ BNE = 0x17U << 26, ++ BLT = 0x18U << 26, ++ BGE = 0x19U << 26, ++ BLTU = 0x1aU << 26, ++ BGEU = 0x1bU << 26, ++ ++ ADDU16I_D = 0x4U << 26, ++ ++ LU12I_W = 0xaU << 25, ++ LU32I_D = 0xbU << 25, ++ PCADDI = 0xcU << 25, ++ PCALAU12I = 0xdU << 25, ++ PCADDU12I = 0xeU << 25, ++ PCADDU18I = 0xfU << 25, ++ ++ CSR = 0x4U << 24, // CSRRD & CSRWR & CSRXCHG ++ ++ LL_W = 0x20U << 24, ++ SC_W = 0x21U << 24, ++ LL_D = 0x22U << 24, ++ SC_D = 0x23U << 24, ++ LDPTR_W = 0x24U << 24, ++ STPTR_W = 0x25U << 24, ++ LDPTR_D = 0x26U << 24, ++ STPTR_D = 0x27U << 24, ++ ++ BSTR_W = 0x1U << 22, // BSTRINS_W & BSTRPICK_W ++ BSTRINS_W = BSTR_W, ++ BSTRPICK_W = BSTR_W, ++ BSTRINS_D = 0x2U << 22, ++ BSTRPICK_D = 0x3U << 22, ++ ++ SLTI = 0x8U << 22, ++ SLTUI = 0x9U << 22, ++ ADDI_W = 0xaU << 22, ++ ADDI_D = 0xbU << 22, ++ LU52I_D = 0xcU << 22, ++ ANDI = 0xdU << 22, ++ ORI = 0xeU << 22, ++ XORI = 0xfU << 22, ++ ++ LD_B = 0xa0U << 22, ++ LD_H = 0xa1U << 22, ++ LD_W = 0xa2U << 22, ++ LD_D = 0xa3U << 22, ++ ST_B = 0xa4U << 22, ++ ST_H = 0xa5U << 22, ++ ST_W = 0xa6U << 22, ++ ST_D = 0xa7U << 22, ++ LD_BU = 0xa8U << 22, ++ LD_HU = 0xa9U << 22, ++ LD_WU = 0xaaU << 22, ++ PRELD = 0xabU << 22, ++ FLD_S = 0xacU << 22, ++ FST_S = 0xadU << 22, ++ FLD_D = 0xaeU << 22, ++ FST_D = 0xafU << 22, ++ ++ FMADD_S = 0x81U << 20, ++ FMADD_D = 0x82U << 20, ++ FMSUB_S = 0x85U << 20, ++ FMSUB_D = 0x86U << 20, ++ FNMADD_S = 0x89U << 20, ++ FNMADD_D = 0x8aU << 20, ++ FNMSUB_S = 0x8dU << 20, ++ FNMSUB_D = 0x8eU << 20, ++ FCMP_COND_S = 0xc1U << 20, ++ FCMP_COND_D = 0xc2U << 20, ++ ++ BYTEPICK_D = 0x3U << 18, ++ BYTEPICK_W = 0x2U << 18, ++ ++ LDDIR = 0x190U << 18, ++ LDPTE = 0x191U << 18, ++ ++ FSEL = 0x340U << 18, ++ ++ ALSL = 0x1U << 18, ++ ALSL_W = ALSL, ++ ALSL_WU = ALSL, ++ ++ ALSL_D = 0xbU << 18, ++ ++ SLLI_W = 0x40U << 16, ++ SRLI_W = 0x44U << 16, ++ SRAI_W = 0x48U << 16, ++ ROTRI_W = 0x4cU << 16, ++ ++ SLLI_D = 0x41U << 16, ++ SRLI_D = 0x45U << 16, ++ SRAI_D = 0x49U << 16, ++ ROTRI_D = 0x4dU << 16, ++ ++ SLLI = 0x10U << 18, ++ SRLI = 0x11U << 18, ++ SRAI = 0x12U << 18, ++ ROTRI = 0x13U << 18, ++ ++ ADD_W = 0x20U << 15, ++ ADD_D = 0x21U << 15, ++ SUB_W = 0x22U << 15, ++ SUB_D = 0x23U << 15, ++ SLT = 0x24U << 15, ++ SLTU = 0x25U << 15, ++ MASKNEZ = 0x26U << 15, ++ MASKEQZ = 0x27U << 15, ++ NOR = 0x28U << 15, ++ AND = 0x29U << 15, ++ OR = 0x2aU << 15, ++ XOR = 0x2bU << 15, ++ ORN = 0x2cU << 15, ++ ANDN = 0x2dU << 15, ++ SLL_W = 0x2eU << 15, ++ SRL_W = 0x2fU << 15, ++ SRA_W = 0x30U << 15, ++ SLL_D = 0x31U << 15, ++ SRL_D = 0x32U << 15, ++ SRA_D = 0x33U << 15, ++ ROTR_W = 0x36U << 15, ++ ROTR_D = 0x37U << 15, ++ MUL_W = 0x38U << 15, ++ MULH_W = 0x39U << 15, ++ MULH_WU = 0x3aU << 15, ++ MUL_D = 0x3bU << 15, ++ MULH_D = 0x3cU << 15, ++ MULH_DU = 0x3dU << 15, ++ MULW_D_W = 0x3eU << 15, ++ MULW_D_WU = 0x3fU << 15, ++ ++ DIV_W = 0x40U << 15, ++ MOD_W = 0x41U << 15, ++ DIV_WU = 0x42U << 15, ++ MOD_WU = 0x43U << 15, ++ DIV_D = 0x44U << 15, ++ MOD_D = 0x45U << 15, ++ DIV_DU = 0x46U << 15, ++ MOD_DU = 0x47U << 15, ++ ++ BREAK = 0x54U << 15, ++ SYSCALL = 0x56U << 15, ++ ++ FADD_S = 0x201U << 15, ++ FADD_D = 0x202U << 15, ++ FSUB_S = 0x205U << 15, ++ FSUB_D = 0x206U << 15, ++ FMUL_S = 0x209U << 15, ++ FMUL_D = 0x20aU << 15, ++ FDIV_S = 0x20dU << 15, ++ FDIV_D = 0x20eU << 15, ++ FMAX_S = 0x211U << 15, ++ FMAX_D = 0x212U << 15, ++ FMIN_S = 0x215U << 15, ++ FMIN_D = 0x216U << 15, ++ FMAXA_S = 0x219U << 15, ++ FMAXA_D = 0x21aU << 15, ++ FMINA_S = 0x21dU << 15, ++ FMINA_D = 0x21eU << 15, ++ FSCALEB_S = 0x221U << 15, ++ FSCALEB_D = 0x222U << 15, ++ FCOPYSIGN_S = 0x225U << 15, ++ FCOPYSIGN_D = 0x226U << 15, ++ ++ LDX_B = 0x7000U << 15, ++ LDX_H = 0x7008U << 15, ++ LDX_W = 0x7010U << 15, ++ LDX_D = 0x7018U << 15, ++ STX_B = 0x7020U << 15, ++ STX_H = 0x7028U << 15, ++ STX_W = 0x7030U << 15, ++ STX_D = 0x7038U << 15, ++ LDX_BU = 0x7040U << 15, ++ LDX_HU = 0x7048U << 15, ++ LDX_WU = 0x7050U << 15, ++ FLDX_S = 0x7060U << 15, ++ FLDX_D = 0x7068U << 15, ++ FSTX_S = 0x7070U << 15, ++ FSTX_D = 0x7078U << 15, ++ ++ AMSWAP_W = 0x70c0U << 15, ++ AMSWAP_D = 0x70c1U << 15, ++ AMADD_W = 0x70c2U << 15, ++ AMADD_D = 0x70c3U << 15, ++ AMAND_W = 0x70c4U << 15, ++ AMAND_D = 0x70c5U << 15, ++ AMOR_W = 0x70c6U << 15, ++ AMOR_D = 0x70c7U << 15, ++ AMXOR_W = 0x70c8U << 15, ++ AMXOR_D = 0x70c9U << 15, ++ AMMAX_W = 0x70caU << 15, ++ AMMAX_D = 0x70cbU << 15, ++ AMMIN_W = 0x70ccU << 15, ++ AMMIN_D = 0x70cdU << 15, ++ AMMAX_WU = 0x70ceU << 15, ++ AMMAX_DU = 0x70cfU << 15, ++ AMMIN_WU = 0x70d0U << 15, ++ AMMIN_DU = 0x70d1U << 15, ++ AMSWAP_DB_W = 0x70d2U << 15, ++ AMSWAP_DB_D = 0x70d3U << 15, ++ AMADD_DB_W = 0x70d4U << 15, ++ AMADD_DB_D = 0x70d5U << 15, ++ AMAND_DB_W = 0x70d6U << 15, ++ AMAND_DB_D = 0x70d7U << 15, ++ AMOR_DB_W = 0x70d8U << 15, ++ AMOR_DB_D = 0x70d9U << 15, ++ AMXOR_DB_W = 0x70daU << 15, ++ AMXOR_DB_D = 0x70dbU << 15, ++ AMMAX_DB_W = 0x70dcU << 15, ++ AMMAX_DB_D = 0x70ddU << 15, ++ AMMIN_DB_W = 0x70deU << 15, ++ AMMIN_DB_D = 0x70dfU << 15, ++ AMMAX_DB_WU = 0x70e0U << 15, ++ AMMAX_DB_DU = 0x70e1U << 15, ++ AMMIN_DB_WU = 0x70e2U << 15, ++ AMMIN_DB_DU = 0x70e3U << 15, ++ ++ DBAR = 0x70e4U << 15, ++ IBAR = 0x70e5U << 15, ++ ++ CLO_W = 0X4U << 10, ++ CLZ_W = 0X5U << 10, ++ CTO_W = 0X6U << 10, ++ CTZ_W = 0X7U << 10, ++ CLO_D = 0X8U << 10, ++ CLZ_D = 0X9U << 10, ++ CTO_D = 0XaU << 10, ++ CTZ_D = 0XbU << 10, ++ REVB_2H = 0XcU << 10, ++ REVB_4H = 0XdU << 10, ++ REVB_2W = 0XeU << 10, ++ REVB_D = 0XfU << 10, ++ REVH_2W = 0X10U << 10, ++ REVH_D = 0X11U << 10, ++ BITREV_4B = 0X12U << 10, ++ BITREV_8B = 0X13U << 10, ++ BITREV_W = 0X14U << 10, ++ BITREV_D = 0X15U << 10, ++ EXT_W_H = 0X16U << 10, ++ EXT_W_B = 0X17U << 10, ++ ++ FABS_S = 0X4501U << 10, ++ FABS_D = 0X4502U << 10, ++ FNEG_S = 0X4505U << 10, ++ FNEG_D = 0X4506U << 10, ++ FLOGB_S = 0X4509U << 10, ++ FLOGB_D = 0X450aU << 10, ++ FCLASS_S = 0X450dU << 10, ++ FCLASS_D = 0X450eU << 10, ++ FSQRT_S = 0X4511U << 10, ++ FSQRT_D = 0X4512U << 10, ++ FRECIP_S = 0X4515U << 10, ++ FRECIP_D = 0X4516U << 10, ++ FRSQRT_S = 0X4519U << 10, ++ FRSQRT_D = 0X451aU << 10, ++ FMOV_S = 0X4525U << 10, ++ FMOV_D = 0X4526U << 10, ++ MOVGR2FR_W = 0X4529U << 10, ++ MOVGR2FR_D = 0X452aU << 10, ++ MOVGR2FRH_W = 0X452bU << 10, ++ MOVFR2GR_S = 0X452dU << 10, ++ MOVFR2GR_D = 0X452eU << 10, ++ MOVFRH2GR_S = 0X452fU << 10, ++ MOVGR2FCSR = 0X4530U << 10, ++ MOVFCSR2GR = 0X4532U << 10, ++ MOVFR2CF = 0X4534U << 10, ++ MOVGR2CF = 0X4536U << 10, ++ ++ FCVT_S_D = 0x4646U << 10, ++ FCVT_D_S = 0x4649U << 10, ++ FTINTRM_W_S = 0x4681U << 10, ++ FTINTRM_W_D = 0x4682U << 10, ++ FTINTRM_L_S = 0x4689U << 10, ++ FTINTRM_L_D = 0x468aU << 10, ++ FTINTRP_W_S = 0x4691U << 10, ++ FTINTRP_W_D = 0x4692U << 10, ++ FTINTRP_L_S = 0x4699U << 10, ++ FTINTRP_L_D = 0x469aU << 10, ++ FTINTRZ_W_S = 0x46a1U << 10, ++ FTINTRZ_W_D = 0x46a2U << 10, ++ FTINTRZ_L_S = 0x46a9U << 10, ++ FTINTRZ_L_D = 0x46aaU << 10, ++ FTINTRNE_W_S = 0x46b1U << 10, ++ FTINTRNE_W_D = 0x46b2U << 10, ++ FTINTRNE_L_S = 0x46b9U << 10, ++ FTINTRNE_L_D = 0x46baU << 10, ++ FTINT_W_S = 0x46c1U << 10, ++ FTINT_W_D = 0x46c2U << 10, ++ FTINT_L_S = 0x46c9U << 10, ++ FTINT_L_D = 0x46caU << 10, ++ FFINT_S_W = 0x4744U << 10, ++ FFINT_S_L = 0x4746U << 10, ++ FFINT_D_W = 0x4748U << 10, ++ FFINT_D_L = 0x474aU << 10, ++ FRINT_S = 0x4791U << 10, ++ FRINT_D = 0x4792U << 10, ++ ++ MOVCF2FR = 0x4535U << 10, ++ MOVCF2GR = 0x4537U << 10, ++}; ++ ++// ----- Emulated conditions. ++// On LOONG64 we use this enum to abstract from conditional branch instructions. ++// The 'U' prefix is used to specify unsigned comparisons. ++enum Condition { ++ // Any value < 0 is considered no_condition. ++ kNoCondition = -1, ++ overflow = 0, ++ no_overflow = 1, ++ Uless = 2, ++ Ugreater_equal = 3, ++ Uless_equal = 4, ++ Ugreater = 5, ++ equal = 6, ++ not_equal = 7, // Unordered or Not Equal. ++ negative = 8, ++ positive = 9, ++ parity_even = 10, ++ parity_odd = 11, ++ less = 12, ++ greater_equal = 13, ++ less_equal = 14, ++ greater = 15, ++ ueq = 16, // Unordered or Equal. ++ ogl = 17, // Ordered and Not Equal. ++ cc_always = 18, ++ ++ // Aliases. ++ carry = Uless, ++ not_carry = Ugreater_equal, ++ zero = equal, ++ eq = equal, ++ not_zero = not_equal, ++ ne = not_equal, ++ nz = not_equal, ++ sign = negative, ++ not_sign = positive, ++ mi = negative, ++ pl = positive, ++ hi = Ugreater, ++ ls = Uless_equal, ++ ge = greater_equal, ++ lt = less, ++ gt = greater, ++ le = less_equal, ++ hs = Ugreater_equal, ++ lo = Uless, ++ al = cc_always, ++ ult = Uless, ++ uge = Ugreater_equal, ++ ule = Uless_equal, ++ ugt = Ugreater, ++ cc_default = kNoCondition ++}; ++ ++// Returns the equivalent of !cc. ++// Negation of the default kNoCondition (-1) results in a non-default ++// no_condition value (-2). As long as tests for no_condition check ++// for condition < 0, this will work as expected. ++inline Condition NegateCondition(Condition cc) { ++ DCHECK(cc != cc_always); ++ return static_cast(cc ^ 1); ++} ++ ++inline Condition NegateFpuCondition(Condition cc) { ++ DCHECK(cc != cc_always); ++ switch (cc) { ++ case ult: ++ return ge; ++ case ugt: ++ return le; ++ case uge: ++ return lt; ++ case ule: ++ return gt; ++ case lt: ++ return uge; ++ case gt: ++ return ule; ++ case ge: ++ return ult; ++ case le: ++ return ugt; ++ case eq: ++ return ne; ++ case ne: ++ return eq; ++ case ueq: ++ return ogl; ++ case ogl: ++ return ueq; ++ default: ++ return cc; ++ } ++} ++ ++// ----- Coprocessor conditions. ++enum FPUCondition { ++ kNoFPUCondition = -1, ++ ++ CAF = 0x00, // False. ++ SAF = 0x01, // False. ++ CLT = 0x02, // Less Than quiet ++// SLT = 0x03, // Less Than signaling ++ CEQ = 0x04, ++ SEQ = 0x05, ++ CLE = 0x06, ++ SLE = 0x07, ++ CUN = 0x08, ++ SUN = 0x09, ++ CULT = 0x0a, ++ SULT = 0x0b, ++ CUEQ = 0x0c, ++ SUEQ = 0x0d, ++ CULE = 0x0e, ++ SULE = 0x0f, ++ CNE = 0x10, ++ SNE = 0x11, ++ COR = 0x14, ++ SOR = 0x15, ++ CUNE = 0x18, ++ SUNE = 0x19, ++}; ++ ++const uint32_t kFPURoundingModeShift = 8; ++const uint32_t kFPURoundingModeMask = 0b11 << kFPURoundingModeShift; ++ ++// FPU rounding modes. ++enum FPURoundingMode { ++ RN = 0b00 << kFPURoundingModeShift, // Round to Nearest. ++ RZ = 0b01 << kFPURoundingModeShift, // Round towards zero. ++ RP = 0b10 << kFPURoundingModeShift, // Round towards Plus Infinity. ++ RM = 0b11 << kFPURoundingModeShift, // Round towards Minus Infinity. ++ ++ // Aliases. ++ kRoundToNearest = RN, ++ kRoundToZero = RZ, ++ kRoundToPlusInf = RP, ++ kRoundToMinusInf = RM, ++ ++ mode_round = RN, ++ mode_ceil = RP, ++ mode_floor = RM, ++ mode_trunc = RZ ++}; ++ ++enum CheckForInexactConversion { ++ kCheckForInexactConversion, ++ kDontCheckForInexactConversion ++}; ++ ++enum class MaxMinKind : int { kMin = 0, kMax = 1 }; ++ ++// ----------------------------------------------------------------------------- ++// Hints. ++ ++// Branch hints are not used on the LOONG64. They are defined so that they can ++// appear in shared function signatures, but will be ignored in LOONG64 ++// implementations. ++enum Hint { no_hint = 0 }; ++ ++inline Hint NegateHint(Hint hint) { return no_hint; } ++ ++// ----------------------------------------------------------------------------- ++// Specific instructions, constants, and masks. ++// These constants are declared in assembler-mips.cc, as they use named ++// registers and other constants. ++ ++// addi_d(sp, sp, 8) aka Pop() operation or part of Pop(r) ++// operations as post-increment of sp. ++extern const Instr kPopInstruction; ++// addi_d(sp, sp, -8) part of Push(r) operation as pre-decrement of sp. ++extern const Instr kPushInstruction; ++// St_d(r, MemOperand(sp, 0)) ++extern const Instr kPushRegPattern; ++// Ld_d(r, MemOperand(sp, 0)) ++extern const Instr kPopRegPattern; ++//extern const Instr kLwRegFpOffsetPattern; ++//extern const Instr kSwRegFpOffsetPattern; ++//extern const Instr kLwRegFpNegOffsetPattern; ++//extern const Instr kSwRegFpNegOffsetPattern; ++// A mask for the Rk register for push, pop, lw, sw instructions. ++extern const Instr kRtMask; ++//extern const Instr kLwSwInstrTypeMask; ++//extern const Instr kLwSwInstrArgumentMask; ++//extern const Instr kLwSwOffsetMask; ++ ++// Break 0xfffff, reserved for redirected real time call. ++const Instr rtCallRedirInstr = BREAK | call_rt_redirected; ++// A nop instruction. (Encoding of addi_w 0 0 0). ++const Instr nopInstr = ADDI_W; ++ ++constexpr uint8_t kInstrSize = 4; ++constexpr uint8_t kInstrSizeLog2 = 2; ++ ++class InstructionBase { ++ public: ++ enum { ++ // On Loonisa PC cannot actually be directly accessed. We behave as if PC was ++ // always the value of the current instruction being executed. ++ kPCReadOffset = 0 ++ }; ++ ++ enum Type { kOp6Type, kOp7Type, kOp8Type, kOp10Type, kOp12Type, kOp14Type, ++ kOp17Type, kOp22Type, kUnsupported = -1 }; ++ ++ // Get the raw instruction bits. ++ inline Instr InstructionBits() const { ++ return *reinterpret_cast(this); ++ } ++ ++ // Set the raw instruction bits to value. ++ inline void SetInstructionBits(Instr value) { ++ *reinterpret_cast(this) = value; ++ } ++ ++ // Read one particular bit out of the instruction bits. ++ inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } ++ ++ // Read a bit field out of the instruction bits. ++ inline int Bits(int hi, int lo) const { ++ return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); ++ } ++ ++ // Safe to call within InstructionType(). ++ inline int RjFieldRawNoAssert() const { ++ return InstructionBits() & kRjFieldMask; ++ } ++ ++ // Get the encoding type of the instruction. ++ inline Type InstructionType() const; ++ ++ protected: ++ InstructionBase() {} ++}; ++ ++template ++class InstructionGetters : public T { ++ public: ++ inline int RjValue() const { ++ return this->Bits(kRjShift + kRjBits - 1, kRjShift); ++ } ++ ++ inline int RkValue() const { ++ return this->Bits(kRkShift + kRkBits - 1, kRkShift); ++ } ++ ++ inline int RdValue() const { ++ return this->Bits(kRdShift + kRdBits - 1, kRdShift); ++ } ++ ++ inline int Sa2Value() const { ++ return this->Bits(kSaShift + kSa2Bits - 1, kSaShift); ++ } ++ ++ inline int Sa3Value() const { ++ return this->Bits(kSaShift + kSa3Bits - 1, kSaShift); ++ } ++ ++ inline int Ui5Value() const { ++ return this->Bits(kUi5Shift + kUi5Bits - 1, kUi5Shift); ++ } ++ ++ inline int Ui6Value() const { ++ return this->Bits(kUi6Shift + kUi6Bits - 1, kUi6Shift); ++ } ++ ++ inline int LsbwValue() const { ++ return this->Bits(kLsbwShift + kLsbwBits - 1, kLsbwShift); ++ } ++ ++ inline int MsbwValue() const { ++ return this->Bits(kMsbwShift + kMsbwBits - 1, kMsbwShift); ++ } ++ ++ inline int LsbdValue() const { ++ return this->Bits(kLsbdShift + kLsbdBits - 1, kLsbdShift); ++ } ++ ++ inline int MsbdValue() const { ++ return this->Bits(kMsbdShift + kMsbdBits - 1, kMsbdShift); ++ } ++ ++ inline int CondValue() const { ++ return this->Bits(kCondShift + kCondBits - 1, kCondShift); ++ } ++ ++ inline int Si12Value() const { ++ return this->Bits(kSi12Shift + kSi12Bits - 1, kSi12Shift); ++ } ++ ++ inline int Ui12Value() const { ++ return this->Bits(kUi12Shift + kUi12Bits - 1, kUi12Shift); ++ } ++ ++ inline int Si14Value() const { ++ return this->Bits(kSi14Shift + kSi14Bits - 1, kSi14Shift); ++ } ++ ++ inline int Si16Value() const { ++ return this->Bits(kSi16Shift + kSi16Bits - 1, kSi16Shift); ++ } ++ ++ inline int Si20Value() const { ++ return this->Bits(kSi20Shift + kSi20Bits - 1, kSi20Shift); ++ } ++ ++ inline int FdValue() const { ++ return this->Bits(kFdShift + kFdBits - 1, kFdShift); ++ } ++ ++ inline int FaValue() const { ++ return this->Bits(kFaShift + kFaBits - 1, kFaShift); ++ } ++ ++ inline int FjValue() const { ++ return this->Bits(kFjShift + kFjBits - 1, kFjShift); ++ } ++ ++ inline int FkValue() const { ++ return this->Bits(kFkShift + kFkBits - 1, kFkShift); ++ } ++ ++ inline int CjValue() const { ++ return this->Bits(kCjShift + kCjBits - 1, kCjShift); ++ } ++ ++ inline int CdValue() const { ++ return this->Bits(kCdShift + kCdBits - 1, kCdShift); ++ } ++ ++ inline int CaValue() const { ++ return this->Bits(kCaShift + kCaBits - 1, kCaShift); ++ } ++ ++ inline int CodeValue() const { ++ return this->Bits(kCodeShift + kCodeBits - 1, kCodeShift); ++ } ++ ++ inline int Hint5Value() const { ++ return this->Bits(kHint5Shift + kHint5Bits - 1, kHint5Shift); ++ } ++ ++ inline int Hint15Value() const { ++ return this->Bits(kHint15Shift + kHint15Bits - 1, kHint15Shift); ++ } ++ ++ inline int Offs16Value() const { ++ return this->Bits(kOffsLowShift + kOffsLowBits - 1, kOffsLowShift); ++ } ++ ++ inline int Offs21Value() const { ++ ++ int low = this->Bits(kOffsLowShift + kOffsLowBits - 1, kOffsLowShift); ++ int high = this->Bits(kOffs21HighShift + kOffs21HighBits - 1, kOffs21HighShift); ++ return ( (high<Bits(kOffsLowShift + kOffsLowBits - 1, kOffsLowShift); ++ int high = this->Bits(kOffs26HighShift + kOffs26HighBits - 1, kOffs26HighShift); ++ return ( (high<InstructionBits() & kRjFieldMask; ++ } ++ ++ inline int RkFieldRaw() const { ++ return this->InstructionBits() & kRkFieldMask; ++ } ++ ++ inline int RdFieldRaw() const { ++ return this->InstructionBits() & kRdFieldMask; ++ } ++ ++ inline int32_t ImmValue(int bits) const { ++ return this->Bits(bits - 1, 0); ++ } ++ ++ /*TODO*/ ++ inline int32_t Imm12Value() const { ++ abort(); ++ } ++ ++ inline int32_t Imm14Value() const { ++ abort(); ++ } ++ ++ inline int32_t Imm16Value() const { ++ abort(); ++ } ++ ++ // Say if the instruction 'links'. e.g. jal, bal. ++ bool IsLinkingInstruction() const; ++ // Say if the instruction is a break or a trap. ++ bool IsTrap() const; ++}; ++ ++class Instruction : public InstructionGetters { ++ public: ++ // Instructions are read of out a code stream. The only way to get a ++ // reference to an instruction is to convert a pointer. There is no way ++ // to allocate or create instances of class Instruction. ++ // Use the At(pc) function to create references to Instruction. ++ static Instruction* At(byte* pc) { ++ return reinterpret_cast(pc); ++ } ++ ++ private: ++ // We need to prevent the creation of instances of class Instruction. ++ DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); ++}; ++ ++// ----------------------------------------------------------------------------- ++// LOONG64 assembly various constants. ++ ++// C/C++ argument slots size. ++const int kCArgSlotCount = 0; ++ ++const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2; ++ ++const int kInvalidStackOffset = -1; ++ ++static const int kNegOffset = 0x00008000; ++ ++InstructionBase::Type InstructionBase::InstructionType() const { ++ InstructionBase::Type kType = kUnsupported; ++ ++ // Check for kOp6Type ++ switch (Bits(31, 26) << 26) { ++ case ADDU16I_D: ++ case BEQZ: ++ case BNEZ: ++ case BCZ: ++ case JIRL: ++ case B: ++ case BL: ++ case BEQ: ++ case BNE: ++ case BLT: ++ case BGE: ++ case BLTU: ++ case BGEU: ++ kType = kOp6Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp7Type ++ switch (Bits(31, 25) << 25) { ++ case LU12I_W: ++ case LU32I_D: ++ case PCADDI: ++ case PCALAU12I: ++ case PCADDU12I: ++ case PCADDU18I: ++ kType = kOp7Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp8Type ++ switch (Bits(31, 24) << 24) { ++ case LDPTR_W: ++ case STPTR_W: ++ case LDPTR_D: ++ case STPTR_D: ++ case LL_W: ++ case SC_W: ++ case LL_D: ++ case SC_D: ++ case CSR: ++ kType = kOp8Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp10Type ++ switch (Bits(31, 22) << 22) { ++ case BSTR_W: { ++ // If Bit(21) = 0, then the Opcode is not BSTR_W. ++ if (Bit(21) == 0) ++ kType = kUnsupported; ++ else ++ kType = kOp10Type; ++ break; ++ } ++ case BSTRINS_D: ++ case BSTRPICK_D: ++ case SLTI: ++ case SLTUI: ++ case ADDI_W: ++ case ADDI_D: ++ case LU52I_D: ++ case ANDI: ++ case ORI: ++ case XORI: ++ case LD_B: ++ case LD_H: ++ case LD_W: ++ case LD_D: ++ case ST_B: ++ case ST_H: ++ case ST_W: ++ case ST_D: ++ case LD_BU: ++ case LD_HU: ++ case LD_WU: ++ case PRELD: ++ case FLD_S: ++ case FST_S: ++ case FLD_D: ++ case FST_D: ++ kType = kOp10Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp12Type ++ switch (Bits(31, 20) << 20) { ++ case FMADD_S: ++ case FMADD_D: ++ case FMSUB_S: ++ case FMSUB_D: ++ case FNMADD_S: ++ case FNMADD_D: ++ case FNMSUB_S: ++ case FNMSUB_D: ++ case FCMP_COND_S: ++ case FCMP_COND_D: ++ case FSEL: ++ kType = kOp12Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp14Type ++ switch (Bits(31, 18) << 18) { ++ case ALSL: ++ case BYTEPICK_W: ++ case BYTEPICK_D: ++ case ALSL_D: ++ case SLLI: ++ case SRLI: ++ case SRAI: ++ case ROTRI: ++ case LDDIR: ++ case LDPTE: ++ kType = kOp14Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp17Type ++ switch (Bits(31, 15) << 15) { ++ case ADD_W: ++ case ADD_D: ++ case SUB_W: ++ case SUB_D: ++ case SLT: ++ case SLTU: ++ case MASKEQZ: ++ case MASKNEZ: ++ case NOR: ++ case AND: ++ case OR: ++ case XOR: ++ case ORN: ++ case ANDN: ++ case SLL_W: ++ case SRL_W: ++ case SRA_W: ++ case SLL_D: ++ case SRL_D: ++ case SRA_D: ++ case ROTR_W: ++ case ROTR_D: ++ case MUL_W: ++ case MULH_W: ++ case MULH_WU: ++ case MUL_D: ++ case MULH_D: ++ case MULH_DU: ++ case MULW_D_W: ++ case MULW_D_WU: ++ case DIV_W: ++ case MOD_W: ++ case DIV_WU: ++ case MOD_WU: ++ case DIV_D: ++ case MOD_D: ++ case DIV_DU: ++ case MOD_DU: ++ case BREAK: ++ case FADD_S: ++ case FADD_D: ++ case FSUB_S: ++ case FSUB_D: ++ case FMUL_S: ++ case FMUL_D: ++ case FDIV_S: ++ case FDIV_D: ++ case FMAX_S: ++ case FMAX_D: ++ case FMIN_S: ++ case FMIN_D: ++ case FMAXA_S: ++ case FMAXA_D: ++ case FMINA_S: ++ case FMINA_D: ++ case LDX_B: ++ case LDX_H: ++ case LDX_W: ++ case LDX_D: ++ case STX_B: ++ case STX_H: ++ case STX_W: ++ case STX_D: ++ case LDX_BU: ++ case LDX_HU: ++ case LDX_WU: ++ case FLDX_S: ++ case FLDX_D: ++ case FSTX_S: ++ case FSTX_D: ++ case SYSCALL: ++ case AMSWAP_W: ++ case AMSWAP_D: ++ case AMADD_W: ++ case AMADD_D: ++ case AMAND_W: ++ case AMAND_D: ++ case AMOR_W: ++ case AMOR_D: ++ case AMXOR_W: ++ case AMXOR_D: ++ case AMMAX_W: ++ case AMMAX_D: ++ case AMMIN_W: ++ case AMMIN_D: ++ case AMMAX_WU: ++ case AMMAX_DU: ++ case AMMIN_WU: ++ case AMMIN_DU: ++ case AMSWAP_DB_W: ++ case AMSWAP_DB_D: ++ case AMADD_DB_W: ++ case AMADD_DB_D: ++ case AMAND_DB_W: ++ case AMAND_DB_D: ++ case AMOR_DB_W: ++ case AMOR_DB_D: ++ case AMXOR_DB_W: ++ case AMXOR_DB_D: ++ case AMMAX_DB_W: ++ case AMMAX_DB_D: ++ case AMMIN_DB_W: ++ case AMMIN_DB_D: ++ case AMMAX_DB_WU: ++ case AMMAX_DB_DU: ++ case AMMIN_DB_WU: ++ case AMMIN_DB_DU: ++ case DBAR: ++ case IBAR: ++ case FSCALEB_S: ++ case FSCALEB_D: ++ case FCOPYSIGN_S: ++ case FCOPYSIGN_D: ++ kType = kOp17Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ if (kType == kUnsupported) { ++ // Check for kOp22Type ++ switch (Bits(31, 10) << 10) { ++ case CLZ_W: ++ case CTZ_W: ++ case CLZ_D: ++ case CTZ_D: ++ case REVB_2H: ++ case REVB_4H: ++ case REVB_2W: ++ case REVB_D: ++ case REVH_2W: ++ case REVH_D: ++ case BITREV_4B: ++ case BITREV_8B: ++ case BITREV_W: ++ case BITREV_D: ++ case EXT_W_B: ++ case EXT_W_H: ++ case FABS_S: ++ case FABS_D: ++ case FNEG_S: ++ case FNEG_D: ++ case FSQRT_S: ++ case FSQRT_D: ++ case FMOV_S: ++ case FMOV_D: ++ case MOVGR2FR_W: ++ case MOVGR2FR_D: ++ case MOVGR2FRH_W: ++ case MOVFR2GR_S: ++ case MOVFR2GR_D: ++ case MOVFRH2GR_S: ++ case MOVGR2FCSR: ++ case MOVFCSR2GR: ++ case FCVT_S_D: ++ case FCVT_D_S: ++ case FTINTRM_W_S: ++ case FTINTRM_W_D: ++ case FTINTRM_L_S: ++ case FTINTRM_L_D: ++ case FTINTRP_W_S: ++ case FTINTRP_W_D: ++ case FTINTRP_L_S: ++ case FTINTRP_L_D: ++ case FTINTRZ_W_S: ++ case FTINTRZ_W_D: ++ case FTINTRZ_L_S: ++ case FTINTRZ_L_D: ++ case FTINTRNE_W_S: ++ case FTINTRNE_W_D: ++ case FTINTRNE_L_S: ++ case FTINTRNE_L_D: ++ case FTINT_W_S: ++ case FTINT_W_D: ++ case FTINT_L_S: ++ case FTINT_L_D: ++ case FFINT_S_W: ++ case FFINT_S_L: ++ case FFINT_D_W: ++ case FFINT_D_L: ++ case FRINT_S: ++ case FRINT_D: ++ case MOVFR2CF: ++ case MOVCF2FR: ++ case MOVGR2CF: ++ case MOVCF2GR: ++ case FRECIP_S: ++ case FRECIP_D: ++ case FRSQRT_S: ++ case FRSQRT_D: ++ case FCLASS_S: ++ case FCLASS_D: ++ case FLOGB_S: ++ case FLOGB_D: ++ case CLO_W: ++ case CTO_W: ++ case CLO_D: ++ case CTO_D: ++ kType = kOp22Type; ++ break; ++ default: ++ kType = kUnsupported; ++ } ++ } ++ ++ return kType; ++} ++ ++// ----------------------------------------------------------------------------- ++// Instructions. ++ ++template ++bool InstructionGetters

::IsTrap() const { ++ return true; ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_CODEGEN_LOONG64_CONSTANTS_LOONG64_H_ +diff --git a/deps/v8/src/loong64/cpu-loong64.cc b/deps/v8/src/loong64/cpu-loong64.cc +new file mode 100644 +index 0000000..ff8300e +--- /dev/null ++++ b/deps/v8/src/loong64/cpu-loong64.cc +@@ -0,0 +1,42 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++// CPU specific code for arm independent of OS goes here. ++ ++#include ++#include ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/assembler.h" ++#include "src/macro-assembler.h" ++ ++#include "src/simulator.h" // For cache flushing. ++ ++namespace v8 { ++namespace internal { ++ ++ ++void CpuFeatures::FlushICache(void* start, size_t size) { ++#if !defined(USE_SIMULATOR) ++ // Nothing to do, flushing no instructions. ++ if (size == 0) { ++ return; ++ } ++ ++#if defined(ANDROID) && !defined(__LP64__) ++ // Bionic cacheflush can typically run in userland, avoiding kernel call. ++ char *end = reinterpret_cast(start) + size; ++ cacheflush( ++ reinterpret_cast(start), reinterpret_cast(end), 0); ++#else // ANDROID ++ asm("ibar 0\n"); ++#endif // ANDROID ++#endif // !USE_SIMULATOR. ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/deoptimizer-loong64.cc b/deps/v8/src/loong64/deoptimizer-loong64.cc +new file mode 100644 +index 0000000..fffce08 +--- /dev/null ++++ b/deps/v8/src/loong64/deoptimizer-loong64.cc +@@ -0,0 +1,314 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include "src/assembler-inl.h" ++#include "src/deoptimizer.h" ++#include "src/register-configuration.h" ++#include "src/safepoint-table.h" ++ ++namespace v8 { ++namespace internal { ++ ++#define __ masm()-> ++ ++ ++// This code tries to be close to ia32 code so that any changes can be ++// easily ported. ++void Deoptimizer::TableEntryGenerator::Generate() { ++ GeneratePrologue(); ++ ++ // Unlike on ARM we don't save all the registers, just the useful ones. ++ // For the rest, there are gaps on the stack, so the offsets remain the same. ++ const int kNumberOfRegisters = Register::kNumRegisters; ++ ++ RegList restored_regs = kJSCallerSaved | kCalleeSaved; ++ RegList saved_regs = restored_regs | sp.bit() | ra.bit(); ++ ++ const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; ++ const int kFloatRegsSize = kFloatSize * FloatRegister::kNumRegisters; ++ ++ // Save all double FPU registers before messing with them. ++ __ Sub_d(sp, sp, Operand(kDoubleRegsSize)); ++ const RegisterConfiguration* config = RegisterConfiguration::Default(); ++ for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { ++ int code = config->GetAllocatableDoubleCode(i); ++ const DoubleRegister fpu_reg = DoubleRegister::from_code(code); ++ int offset = code * kDoubleSize; ++ __ Fst_d(fpu_reg, MemOperand(sp, offset)); ++ } ++ ++ // Save all float FPU registers before messing with them. ++ __ Sub_d(sp, sp, Operand(kFloatRegsSize)); ++ for (int i = 0; i < config->num_allocatable_float_registers(); ++i) { ++ int code = config->GetAllocatableFloatCode(i); ++ const FloatRegister fpu_reg = FloatRegister::from_code(code); ++ int offset = code * kFloatSize; ++ __ Fst_s(fpu_reg, MemOperand(sp, offset)); ++ } ++ ++ // Push saved_regs (needed to populate FrameDescription::registers_). ++ // Leave gaps for other registers. ++ __ Sub_d(sp, sp, kNumberOfRegisters * kPointerSize); ++ for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { ++ if ((saved_regs & (1 << i)) != 0) { ++ __ St_d(ToRegister(i), MemOperand(sp, kPointerSize * i)); ++ } ++ } ++ ++ __ li(a2, Operand(ExternalReference::Create( ++ IsolateAddressId::kCEntryFPAddress, isolate()))); ++ __ St_d(fp, MemOperand(a2)); ++ ++ const int kSavedRegistersAreaSize = ++ (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize + kFloatRegsSize; ++ ++ // Get the bailout id from the stack. ++ __ Ld_d(a2, MemOperand(sp, kSavedRegistersAreaSize)); ++ ++ // Get the address of the location in the code object (a3) (return ++ // address for lazy deoptimization) and compute the fp-to-sp delta in ++ // register a4. ++ __ mov(a3, ra); ++ // Correct one word for bailout id. ++ __ Add_d(a4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); ++ ++ __ Sub_d(a4, fp, a4); ++ ++ // Allocate a new deoptimizer object. ++ __ PrepareCallCFunction(6, a5); ++ // Pass six arguments, according to n64 ABI. ++ __ mov(a0, zero_reg); ++ Label context_check; ++ __ Ld_d(a1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); ++ __ JumpIfSmi(a1, &context_check); ++ __ Ld_d(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); ++ __ bind(&context_check); ++ __ li(a1, Operand(type())); // Bailout type. ++ // a2: bailout id already loaded. ++ // a3: code address or 0 already loaded. ++ // a4: already has fp-to-sp delta. ++ __ li(a5, Operand(ExternalReference::isolate_address(isolate()))); ++ ++ // Call Deoptimizer::New(). ++ { ++ AllowExternalCallThatCantCauseGC scope(masm()); ++ __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); ++ } ++ ++ // Preserve "deoptimizer" object in register v0 and get the input ++ // frame descriptor pointer to a1 (deoptimizer->input_); ++ // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below. ++ //__ mov(a0, v0); ++ __ Ld_d(a1, MemOperand(a0, Deoptimizer::input_offset())); ++ ++ // Copy core registers into FrameDescription::registers_[kNumRegisters]. ++ DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); ++ for (int i = 0; i < kNumberOfRegisters; i++) { ++ int offset = (i * kPointerSize) + FrameDescription::registers_offset(); ++ if ((saved_regs & (1 << i)) != 0) { ++ __ Ld_d(a2, MemOperand(sp, i * kPointerSize)); ++ __ St_d(a2, MemOperand(a1, offset)); ++ } else if (FLAG_debug_code) { ++ __ li(a2, kDebugZapValue); ++ __ St_d(a2, MemOperand(a1, offset)); ++ } ++ } ++ ++ int double_regs_offset = FrameDescription::double_registers_offset(); ++ // Copy FPU registers to ++ // double_registers_[DoubleRegister::kNumAllocatableRegisters] ++ for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { ++ int code = config->GetAllocatableDoubleCode(i); ++ int dst_offset = code * kDoubleSize + double_regs_offset; ++ int src_offset = ++ code * kDoubleSize + kNumberOfRegisters * kPointerSize + kFloatRegsSize; ++ __ Fld_d(f0, MemOperand(sp, src_offset)); ++ __ Fst_d(f0, MemOperand(a1, dst_offset)); ++ } ++ ++ int float_regs_offset = FrameDescription::float_registers_offset(); ++ // Copy FPU registers to ++ // float_registers_[FloatRegister::kNumAllocatableRegisters] ++ for (int i = 0; i < config->num_allocatable_float_registers(); ++i) { ++ int code = config->GetAllocatableFloatCode(i); ++ int dst_offset = code * kFloatSize + float_regs_offset; ++ int src_offset = code * kFloatSize + kNumberOfRegisters * kPointerSize; ++ __ Fld_s(f0, MemOperand(sp, src_offset)); ++ __ Fst_s(f0, MemOperand(a1, dst_offset)); ++ } ++ ++ // Remove the bailout id and the saved registers from the stack. ++ __ Add_d(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); ++ ++ // Compute a pointer to the unwinding limit in register a2; that is ++ // the first stack slot not part of the input frame. ++ __ Ld_d(a2, MemOperand(a1, FrameDescription::frame_size_offset())); ++ __ Add_d(a2, a2, sp); ++ ++ // Unwind the stack down to - but not including - the unwinding ++ // limit and copy the contents of the activation frame to the input ++ // frame description. ++ __ Add_d(a3, a1, Operand(FrameDescription::frame_content_offset())); ++ Label pop_loop; ++ Label pop_loop_header; ++ __ Branch(&pop_loop_header); ++ __ bind(&pop_loop); ++ __ pop(a4); ++ __ St_d(a4, MemOperand(a3, 0)); ++ __ addi_d(a3, a3, sizeof(uint64_t)); ++ __ bind(&pop_loop_header); ++ __ BranchShort(&pop_loop, ne, a2, Operand(sp)); ++ // Compute the output frame in the deoptimizer. ++ __ push(a0); // Preserve deoptimizer object across call. ++ // a0: deoptimizer object; a1: scratch. ++ __ PrepareCallCFunction(1, a1); ++ // Call Deoptimizer::ComputeOutputFrames(). ++ { ++ AllowExternalCallThatCantCauseGC scope(masm()); ++ __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); ++ } ++ __ pop(a0); // Restore deoptimizer object (class Deoptimizer). ++ ++ __ Ld_d(sp, MemOperand(a0, Deoptimizer::caller_frame_top_offset())); ++ ++ // Replace the current (input) frame with the output frames. ++ Label outer_push_loop, inner_push_loop, ++ outer_loop_header, inner_loop_header; ++ // Outer loop state: a4 = current "FrameDescription** output_", ++ // a1 = one past the last FrameDescription**. ++ __ Ld_w(a1, MemOperand(a0, Deoptimizer::output_count_offset())); ++ __ Ld_d(a4, MemOperand(a0, Deoptimizer::output_offset())); // a4 is output_. ++ __ Alsl_d(a1, a1, a4, kPointerSizeLog2, t7); ++ __ Branch(&outer_loop_header); ++ __ bind(&outer_push_loop); ++ // Inner loop state: a2 = current FrameDescription*, a3 = loop index. ++ __ Ld_d(a2, MemOperand(a4, 0)); // output_[ix] ++ __ Ld_d(a3, MemOperand(a2, FrameDescription::frame_size_offset())); ++ __ Branch(&inner_loop_header); ++ __ bind(&inner_push_loop); ++ __ Sub_d(a3, a3, Operand(sizeof(uint64_t))); ++ __ Add_d(a6, a2, Operand(a3)); ++ __ Ld_d(a7, MemOperand(a6, FrameDescription::frame_content_offset())); ++ __ push(a7); ++ __ bind(&inner_loop_header); ++ __ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg)); ++ ++ __ Add_d(a4, a4, Operand(kPointerSize)); ++ __ bind(&outer_loop_header); ++ __ BranchShort(&outer_push_loop, lt, a4, Operand(a1)); ++ ++ __ Ld_d(a1, MemOperand(a0, Deoptimizer::input_offset())); ++ for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { ++ int code = config->GetAllocatableDoubleCode(i); ++ const DoubleRegister fpu_reg = DoubleRegister::from_code(code); ++ int src_offset = code * kDoubleSize + double_regs_offset; ++ __ Fld_d(fpu_reg, MemOperand(a1, src_offset)); ++ } ++ ++ // Push pc and continuation from the last output frame. ++ __ Ld_d(a6, MemOperand(a2, FrameDescription::pc_offset())); ++ __ push(a6); ++ __ Ld_d(a6, MemOperand(a2, FrameDescription::continuation_offset())); ++ __ push(a6); ++ ++ // Technically restoring 't7' should work unless zero_reg is also restored ++ // but it's safer to check for this. ++ DCHECK(!(t7.bit() & restored_regs)); ++ // Restore the registers from the last output frame. ++ __ mov(t7, a2); ++ for (int i = kNumberOfRegisters - 1; i >= 0; i--) { ++ int offset = (i * kPointerSize) + FrameDescription::registers_offset(); ++ if ((restored_regs & (1 << i)) != 0) { ++ __ Ld_d(ToRegister(i), MemOperand(t7, offset)); ++ } ++ } ++ ++ __ InitializeRootRegister(); ++ ++ __ pop(t7); // Get continuation, leave pc on stack. ++ __ pop(ra); ++ __ Jump(t7); ++ __ stop("Unreachable."); ++} ++ ++ ++// Maximum size of a table entry generated below. ++const int Deoptimizer::table_entry_size_ = 4 * Assembler::kInstrSize; ++ ++void Deoptimizer::TableEntryGenerator::GeneratePrologue() { ++ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); ++ ++ // Create a sequence of deoptimization entries. ++ // Note that registers are still live when jumping to an entry. ++ Label table_start, done, trampoline_jump; ++ __ bind(&table_start); ++ int kMaxEntriesBranchReach = ++ (1 << (kImm26Bits - 2)) / (table_entry_size_ / Assembler::kInstrSize); ++ ++ if (count() <= kMaxEntriesBranchReach) { ++ // Common case. ++ for (int i = 0; i < count(); i++) { ++ Label start; ++ __ bind(&start); ++ //CHECK(is_int12(i)); ++ __ li(kScratchReg, i, ADDRESS_LOAD); ++ __ Branch(&done); ++ ++ CHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); ++ } ++ ++ CHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), ++ count() * table_entry_size_); ++ __ bind(&done); ++ __ Push(kScratchReg); ++ } else { ++ // Uncommon case, the branch cannot reach. ++ // Create mini trampoline to reach the end of the table ++ for (int i = 0, j = 0; i < count(); i++, j++) { ++ Label start; ++ __ bind(&start); ++ //CHECK(is_int12(i)); ++ if (j >= kMaxEntriesBranchReach) { ++ j = 0; ++ __ li(kScratchReg, i, ADDRESS_LOAD); ++ __ bind(&trampoline_jump); ++ trampoline_jump = Label(); ++ __ Branch(&trampoline_jump); ++ } else { ++ __ li(kScratchReg, i, ADDRESS_LOAD); // In the delay slot. ++ __ Branch(&trampoline_jump); // Expose delay slot. ++ } ++ CHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); ++ } ++ ++ CHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), ++ count() * table_entry_size_); ++ __ bind(&trampoline_jump); ++ __ Push(kScratchReg); ++ } ++} ++ ++bool Deoptimizer::PadTopOfStackRegister() { return false; } ++ ++void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { ++ SetFrameSlot(offset, value); ++} ++ ++ ++void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { ++ SetFrameSlot(offset, value); ++} ++ ++ ++void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { ++ // No embedded constant pool support. ++ UNREACHABLE(); ++} ++ ++ ++#undef __ ++ ++ ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/src/loong64/disasm-loong64.cc b/deps/v8/src/loong64/disasm-loong64.cc +new file mode 100644 +index 0000000..067d5ea +--- /dev/null ++++ b/deps/v8/src/loong64/disasm-loong64.cc +@@ -0,0 +1,1713 @@ ++#include ++#include ++#include ++#include ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/base/platform/platform.h" ++#include "src/disasm.h" ++#include "src/macro-assembler.h" ++#include "src/loong64/constants-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++//------------------------------------------------------------------------------ ++ ++// Decoder decodes and disassembles instructions into an output buffer. ++// It uses the converter to convert register names and call destinations into ++// more informative description. ++class Decoder { ++ public: ++ Decoder(const disasm::NameConverter& converter, ++ v8::internal::Vector out_buffer) ++ : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { ++ out_buffer_[out_buffer_pos_] = '\0'; ++ } ++ ++ ~Decoder() {} ++ ++ // Writes one disassembled instruction into 'buffer' (0-terminated). ++ // Returns the length of the disassembled machine instruction in bytes. ++ int InstructionDecode(byte* instruction); ++ ++ private: ++ // Bottleneck functions to print into the out_buffer. ++ void PrintChar(const char ch); ++ void Print(const char* str); ++ ++ // Printing of common values. ++ void PrintRegister(int reg); ++ void PrintFPURegister(int freg); ++ void PrintFPUStatusRegister(int freg); ++ void PrintRj(Instruction* instr); ++ void PrintRk(Instruction* instr); ++ void PrintRd(Instruction* instr); ++ void PrintFj(Instruction* instr); ++ void PrintFk(Instruction* instr); ++ void PrintFd(Instruction* instr); ++ void PrintFa(Instruction* instr); ++ void PrintSa2(Instruction* instr); ++ void PrintSa3(Instruction* instr); ++ void PrintUi5(Instruction* instr); ++ void PrintUi6(Instruction* instr); ++ void PrintUi12(Instruction* instr); ++ void PrintXi12(Instruction* instr); ++ void PrintMsbw(Instruction* instr); ++ void PrintLsbw(Instruction* instr); ++ void PrintMsbd(Instruction* instr); ++ void PrintLsbd(Instruction* instr); ++ // void PrintCond(Instruction* instr); ++ void PrintSi12(Instruction* instr); ++ void PrintSi14(Instruction* instr); ++ void PrintSi16(Instruction* instr); ++ void PrintSi20(Instruction* instr); ++ void PrintCj(Instruction* instr); ++ void PrintCd(Instruction* instr); ++ void PrintCa(Instruction* instr); ++ void PrintCode(Instruction* instr); ++ void PrintHint5(Instruction* instr); ++ void PrintHint15(Instruction* instr); ++ void PrintPCOffs16(Instruction* instr); ++ void PrintPCOffs21(Instruction* instr); ++ void PrintPCOffs26(Instruction* instr); ++ void PrintOffs16(Instruction* instr); ++ void PrintOffs21(Instruction* instr); ++ void PrintOffs26(Instruction* instr); ++ ++ // Handle formatting of instructions and their options. ++ int FormatRegister(Instruction* instr, const char* option); ++ int FormatFPURegister(Instruction* instr, const char* option); ++ int FormatOption(Instruction* instr, const char* option); ++ void Format(Instruction* instr, const char* format); ++ void Unknown(Instruction* instr); ++ int DecodeBreakInstr(Instruction* instr); ++ ++ // Each of these functions decodes one particular instruction type. ++ int InstructionDecode(Instruction* instr); ++ void DecodeTypekOp6(Instruction* instr); ++ void DecodeTypekOp7(Instruction* instr); ++ void DecodeTypekOp8(Instruction* instr); ++ void DecodeTypekOp10(Instruction* instr); ++ void DecodeTypekOp12(Instruction* instr); ++ void DecodeTypekOp14(Instruction* instr); ++ int DecodeTypekOp17(Instruction* instr); ++ void DecodeTypekOp22(Instruction* instr); ++ ++ const disasm::NameConverter& converter_; ++ v8::internal::Vector out_buffer_; ++ int out_buffer_pos_; ++ ++ DISALLOW_COPY_AND_ASSIGN(Decoder); ++}; ++ ++// Support for assertions in the Decoder formatting functions. ++#define STRING_STARTS_WITH(string, compare_string) \ ++ (strncmp(string, compare_string, strlen(compare_string)) == 0) ++ ++// Append the ch to the output buffer. ++void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } ++ ++// Append the str to the output buffer. ++void Decoder::Print(const char* str) { ++ char cur = *str++; ++ while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { ++ PrintChar(cur); ++ cur = *str++; ++ } ++ out_buffer_[out_buffer_pos_] = 0; ++} ++ ++// Print the register name according to the active name converter. ++void Decoder::PrintRegister(int reg) { ++ Print(converter_.NameOfCPURegister(reg)); ++} ++ ++void Decoder::PrintRj(Instruction* instr) { ++ int reg = instr->RjValue(); ++ PrintRegister(reg); ++} ++ ++void Decoder::PrintRk(Instruction* instr) { ++ int reg = instr->RkValue(); ++ PrintRegister(reg); ++} ++ ++void Decoder::PrintRd(Instruction* instr) { ++ int reg = instr->RdValue(); ++ PrintRegister(reg); ++} ++ ++// Print the FPUregister name according to the active name converter. ++void Decoder::PrintFPURegister(int freg) { ++ Print(converter_.NameOfXMMRegister(freg)); ++} ++ ++void Decoder::PrintFj(Instruction* instr) { ++ int freg = instr->FjValue(); ++ PrintFPURegister(freg); ++} ++ ++void Decoder::PrintFk(Instruction* instr) { ++ int freg = instr->FkValue(); ++ PrintFPURegister(freg); ++} ++ ++void Decoder::PrintFd(Instruction* instr) { ++ int freg = instr->FdValue(); ++ PrintFPURegister(freg); ++} ++ ++void Decoder::PrintFa(Instruction* instr) { ++ int freg = instr->FaValue(); ++ PrintFPURegister(freg); ++} ++ ++// Print the integer value of the sa field. ++void Decoder::PrintSa2(Instruction* instr) { ++ int sa = instr->Sa2Value(); ++ uint32_t opcode = (instr->InstructionBits() >> 18) << 18; ++ if (opcode == ALSL || opcode == ALSL_D) { ++ sa += 1; ++ } ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa); ++} ++ ++void Decoder::PrintSa3(Instruction* instr) { ++ int sa = instr->Sa3Value(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa); ++} ++ ++void Decoder::PrintUi5(Instruction* instr) { ++ int ui = instr->Ui5Value(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", ui); ++} ++ ++void Decoder::PrintUi6(Instruction* instr) { ++ int ui = instr->Ui6Value(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", ui); ++} ++ ++void Decoder::PrintUi12(Instruction* instr) { ++ int ui = instr->Ui12Value(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", ui); ++} ++ ++void Decoder::PrintXi12(Instruction* instr) { ++ int xi = instr->Ui12Value(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", xi); ++} ++ ++void Decoder::PrintMsbd(Instruction* instr) { ++ int msbd = instr->MsbdValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", msbd); ++} ++ ++void Decoder::PrintLsbd(Instruction* instr) { ++ int lsbd = instr->LsbdValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", lsbd); ++} ++ ++void Decoder::PrintMsbw(Instruction* instr) { ++ int msbw = instr->MsbwValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", msbw); ++} ++ ++void Decoder::PrintLsbw(Instruction* instr) { ++ int lsbw = instr->LsbwValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", lsbw); ++} ++ ++void Decoder::PrintSi12(Instruction* instr) { ++ int si = ((instr->Si12Value()) << (32 - kSi12Bits)) >> (32 - kSi12Bits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", si); ++} ++ ++void Decoder::PrintSi14(Instruction* instr) { ++ int si = ((instr->Si14Value()) << (32 - kSi14Bits)) >> (32 - kSi14Bits); ++ si <<= 2; ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", si); ++} ++ ++void Decoder::PrintSi16(Instruction* instr) { ++ int si = ((instr->Si16Value()) << (32 - kSi16Bits)) >> (32 - kSi16Bits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", si); ++} ++ ++void Decoder::PrintSi20(Instruction* instr) { ++ int si = ((instr->Si20Value()) << (32 - kSi20Bits)) >> (32 - kSi20Bits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", si); ++} ++ ++void Decoder::PrintCj(Instruction* instr) { ++ int cj = instr->CjValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", cj); ++} ++ ++void Decoder::PrintCd(Instruction* instr) { ++ int cd = instr->CdValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", cd); ++} ++ ++void Decoder::PrintCa(Instruction* instr) { ++ int ca = instr->CaValue(); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", ca); ++} ++ ++void Decoder::PrintCode(Instruction* instr) { ++ int code = instr->CodeValue(); ++ out_buffer_pos_ += ++ SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x(%u)", code, code); ++} ++ ++void Decoder::PrintHint5(Instruction* instr) { ++ int hint = instr->Hint5Value(); ++ out_buffer_pos_ += ++ SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x(%u)", hint, hint); ++} ++ ++void Decoder::PrintHint15(Instruction* instr) { ++ int hint = instr->Hint15Value(); ++ out_buffer_pos_ += ++ SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x(%u)", hint, hint); ++} ++ ++void Decoder::PrintPCOffs16(Instruction* instr) { ++ int n_bits = 2; ++ int offs = instr->Offs16Value(); ++ int target = ((offs << n_bits) << (32 - kOffsLowBits - n_bits)) >> ++ (32 - kOffsLowBits - n_bits); ++ out_buffer_pos_ += SNPrintF( ++ out_buffer_ + out_buffer_pos_, "%s", ++ converter_.NameOfAddress(reinterpret_cast(instr) + target)); ++} ++ ++void Decoder::PrintPCOffs21(Instruction* instr) { ++ int n_bits = 2; ++ int offs = instr->Offs21Value(); ++ int target = ++ ((offs << n_bits) << (32 - kOffsLowBits - kOffs21HighBits - n_bits)) >> ++ (32 - kOffsLowBits - kOffs21HighBits - n_bits); ++ out_buffer_pos_ += SNPrintF( ++ out_buffer_ + out_buffer_pos_, "%s", ++ converter_.NameOfAddress(reinterpret_cast(instr) + target)); ++} ++ ++void Decoder::PrintPCOffs26(Instruction* instr) { ++ int n_bits = 2; ++ int offs = instr->Offs26Value(); ++ int target = ++ ((offs << n_bits) << (32 - kOffsLowBits - kOffs26HighBits - n_bits)) >> ++ (32 - kOffsLowBits - kOffs26HighBits - n_bits); ++ out_buffer_pos_ += SNPrintF( ++ out_buffer_ + out_buffer_pos_, "%s", ++ converter_.NameOfAddress(reinterpret_cast(instr) + target)); ++} ++ ++void Decoder::PrintOffs16(Instruction* instr) { ++ int offs = instr->Offs16Value(); ++ offs <<= (32 - kOffsLowBits); ++ offs >>= (32 - kOffsLowBits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs); ++} ++ ++void Decoder::PrintOffs21(Instruction* instr) { ++ int offs = instr->Offs21Value(); ++ offs <<= (32 - kOffsLowBits - kOffs21HighBits); ++ offs >>= (32 - kOffsLowBits - kOffs21HighBits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs); ++} ++ ++void Decoder::PrintOffs26(Instruction* instr) { ++ int offs = instr->Offs26Value(); ++ offs <<= (32 - kOffsLowBits - kOffs26HighBits); ++ offs >>= (32 - kOffsLowBits - kOffs26HighBits); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs); ++} ++ ++// Handle all register based formatting in this function to reduce the ++// complexity of FormatOption. ++int Decoder::FormatRegister(Instruction* instr, const char* format) { ++ DCHECK_EQ(format[0], 'r'); ++ if (format[1] == 'j') { // 'rj: Rj register. ++ int reg = instr->RjValue(); ++ PrintRegister(reg); ++ return 2; ++ } else if (format[1] == 'k') { // 'rk: rk register. ++ int reg = instr->RkValue(); ++ PrintRegister(reg); ++ return 2; ++ } else if (format[1] == 'd') { // 'rd: rd register. ++ int reg = instr->RdValue(); ++ PrintRegister(reg); ++ return 2; ++ } ++ UNREACHABLE(); ++ return 0; ++} ++ ++// Handle all FPUregister based formatting in this function to reduce the ++// complexity of FormatOption. ++int Decoder::FormatFPURegister(Instruction* instr, const char* format) { ++ DCHECK_EQ(format[0], 'f'); ++ if (format[1] == 'j') { // 'fj: fj register. ++ int reg = instr->FjValue(); ++ PrintFPURegister(reg); ++ return 2; ++ } else if (format[1] == 'k') { // 'fk: fk register. ++ int reg = instr->FkValue(); ++ PrintFPURegister(reg); ++ return 2; ++ } else if (format[1] == 'd') { // 'fd: fd register. ++ int reg = instr->FdValue(); ++ PrintFPURegister(reg); ++ return 2; ++ } else if (format[1] == 'a') { // 'fa: fa register. ++ int reg = instr->FaValue(); ++ PrintFPURegister(reg); ++ return 2; ++ } ++ UNREACHABLE(); ++ return 0; ++} ++ ++// FormatOption takes a formatting string and interprets it based on ++// the current instructions. The format string points to the first ++// character of the option string (the option escape has already been ++// consumed by the caller.) FormatOption returns the number of ++// characters that were consumed from the formatting string. ++int Decoder::FormatOption(Instruction* instr, const char* format) { ++ switch (format[0]) { ++ case 'c': { ++ switch (format[1]) { ++ case 'a': ++ DCHECK(STRING_STARTS_WITH(format, "ca")); ++ PrintCa(instr); ++ return 2; ++ case 'd': ++ DCHECK(STRING_STARTS_WITH(format, "cd")); ++ PrintCd(instr); ++ return 2; ++ case 'j': ++ DCHECK(STRING_STARTS_WITH(format, "cj")); ++ PrintCj(instr); ++ return 2; ++ case 'o': ++ DCHECK(STRING_STARTS_WITH(format, "code")); ++ PrintCode(instr); ++ return 4; ++ } ++ } ++ case 'f': { ++ return FormatFPURegister(instr, format); ++ } ++ case 'h': { ++ if (format[4] == '5') { ++ DCHECK(STRING_STARTS_WITH(format, "hint5")); ++ PrintHint5(instr); ++ return 5; ++ } else if (format[4] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "hint15")); ++ PrintHint15(instr); ++ return 6; ++ } ++ break; ++ } ++ case 'l': { ++ switch (format[3]) { ++ case 'w': ++ DCHECK(STRING_STARTS_WITH(format, "lsbw")); ++ PrintLsbw(instr); ++ return 4; ++ case 'd': ++ DCHECK(STRING_STARTS_WITH(format, "lsbd")); ++ PrintLsbd(instr); ++ return 4; ++ default: ++ return 0; ++ } ++ } ++ case 'm': { ++ if (format[3] == 'w') { ++ DCHECK(STRING_STARTS_WITH(format, "msbw")); ++ PrintMsbw(instr); ++ } else if (format[3] == 'd') { ++ DCHECK(STRING_STARTS_WITH(format, "msbd")); ++ PrintMsbd(instr); ++ } ++ return 4; ++ } ++ case 'o': { ++ if (format[1] == 'f') { ++ if (format[4] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "offs16")); ++ PrintOffs16(instr); ++ return 6; ++ } else if (format[4] == '2') { ++ if (format[5] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "offs21")); ++ PrintOffs21(instr); ++ return 6; ++ } else if (format[5] == '6') { ++ DCHECK(STRING_STARTS_WITH(format, "offs26")); ++ PrintOffs26(instr); ++ return 6; ++ } ++ } ++ } ++ break; ++ } ++ case 'p': { ++ if (format[6] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "pcoffs16")); ++ PrintPCOffs16(instr); ++ return 8; ++ } else if (format[6] == '2') { ++ if (format[7] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "pcoffs21")); ++ PrintPCOffs21(instr); ++ return 8; ++ } else if (format[7] == '6') { ++ DCHECK(STRING_STARTS_WITH(format, "pcoffs26")); ++ PrintPCOffs26(instr); ++ return 8; ++ } ++ } ++ break; ++ } ++ case 'r': { ++ return FormatRegister(instr, format); ++ break; ++ } ++ case 's': { ++ switch (format[1]) { ++ case 'a': ++ if (format[2] == '2') { ++ DCHECK(STRING_STARTS_WITH(format, "sa2")); ++ PrintSa2(instr); ++ } else if (format[2] == '3') { ++ DCHECK(STRING_STARTS_WITH(format, "sa3")); ++ PrintSa3(instr); ++ } ++ return 3; ++ case 'i': ++ if (format[2] == '2') { ++ DCHECK(STRING_STARTS_WITH(format, "si20")); ++ PrintSi20(instr); ++ return 4; ++ } else if (format[2] == '1') { ++ switch (format[3]) { ++ case '2': ++ DCHECK(STRING_STARTS_WITH(format, "si12")); ++ PrintSi12(instr); ++ return 4; ++ case '4': ++ DCHECK(STRING_STARTS_WITH(format, "si14")); ++ PrintSi14(instr); ++ return 4; ++ case '6': ++ DCHECK(STRING_STARTS_WITH(format, "si16")); ++ PrintSi16(instr); ++ return 4; ++ default: ++ break; ++ } ++ } ++ break; ++ default: ++ break; ++ } ++ break; ++ } ++ case 'u': { ++ if (format[2] == '5') { ++ DCHECK(STRING_STARTS_WITH(format, "ui5")); ++ PrintUi5(instr); ++ return 3; ++ } else if (format[2] == '6') { ++ DCHECK(STRING_STARTS_WITH(format, "ui6")); ++ PrintUi6(instr); ++ return 3; ++ } else if (format[2] == '1') { ++ DCHECK(STRING_STARTS_WITH(format, "ui12")); ++ PrintUi12(instr); ++ return 4; ++ } ++ break; ++ } ++ case 'x': { ++ DCHECK(STRING_STARTS_WITH(format, "xi12")); ++ PrintXi12(instr); ++ return 4; ++ } ++ default: ++ UNREACHABLE(); ++ } ++ return 0; ++} ++ ++// Format takes a formatting string for a whole instruction and prints it into ++// the output buffer. All escaped options are handed to FormatOption to be ++// parsed further. ++void Decoder::Format(Instruction* instr, const char* format) { ++ char cur = *format++; ++ while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { ++ if (cur == '\'') { // Single quote is used as the formatting escape. ++ format += FormatOption(instr, format); ++ } else { ++ out_buffer_[out_buffer_pos_++] = cur; ++ } ++ cur = *format++; ++ } ++ out_buffer_[out_buffer_pos_] = '\0'; ++} ++ ++// For currently unimplemented decodings the disassembler calls Unknown(instr) ++// which will just print "unknown" of the instruction bits. ++void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } ++ ++int Decoder::DecodeBreakInstr(Instruction* instr) { ++ // This is already known to be BREAK instr, just extract the code. ++ /*if (instr->Bits(14, 0) == static_cast(kMaxStopCode)) { ++ // This is stop(msg). ++ Format(instr, "break, code: 'code"); ++ out_buffer_pos_ += SNPrintF( ++ out_buffer_ + out_buffer_pos_, "\n%p %08" PRIx64, ++ static_cast(reinterpret_cast(instr + kInstrSize)), ++ reinterpret_cast( ++ *reinterpret_cast(instr + kInstrSize))); ++ // Size 3: the break_ instr, plus embedded 64-bit char pointer. ++ return 3 * kInstrSize; ++ } else { ++ Format(instr, "break, code: 'code"); ++ return kInstrSize; ++ } * ++ Format(instr, "break code: 'code"); ++ return kInstrSize; */ ++} //=================================================== ++ ++void Decoder::DecodeTypekOp6(Instruction* instr) { ++ switch (instr->Bits(31, 26) << 26) { ++ case ADDU16I_D: ++ Format(instr, "addu16i.d 'rd, 'rj, 'si16"); ++ break; ++ case BEQZ: ++ Format(instr, "beqz 'rj, 'offs21 -> 'pcoffs21"); ++ break; ++ case BNEZ: ++ Format(instr, "bnez 'rj, 'offs21 -> 'pcoffs21"); ++ break; ++ case BCZ: ++ if (instr->Bit(8)) ++ Format(instr, "bcnez fcc'cj, 'offs21 -> 'pcoffs21"); ++ else ++ Format(instr, "bceqz fcc'cj, 'offs21 -> 'pcoffs21"); ++ break; ++ case JIRL: ++ Format(instr, "jirl 'rd, 'rj, 'offs16"); ++ break; ++ case B: ++ Format(instr, "b 'offs26 -> 'pcoffs26"); ++ break; ++ case BL: ++ Format(instr, "bl 'offs26 -> 'pcoffs26"); ++ break; ++ case BEQ: ++ Format(instr, "beq 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ case BNE: ++ Format(instr, "bne 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ case BLT: ++ Format(instr, "blt 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ case BGE: ++ Format(instr, "bge 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ case BLTU: ++ Format(instr, "bltu 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ case BGEU: ++ Format(instr, "bgeu 'rj, 'rd, 'offs16 -> 'pcoffs16"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Decoder::DecodeTypekOp7(Instruction* instr) { ++ switch (instr->Bits(31, 25) << 25) { ++ case LU12I_W: ++ Format(instr, "lu12i.w 'rd, 'si20"); ++ break; ++ case LU32I_D: ++ Format(instr, "lu32i.d 'rd, 'si20"); ++ break; ++ case PCADDI: ++ Format(instr, "pcaddi 'rd, 'si20"); ++ break; ++ case PCALAU12I: ++ Format(instr, "pcalau12i 'rd, 'si20"); ++ break; ++ case PCADDU12I: ++ Format(instr, "pcaddu12i 'rd, 'si20"); ++ break; ++ case PCADDU18I: ++ Format(instr, "pcaddu18i 'rd, 'si20"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Decoder::DecodeTypekOp8(Instruction* instr) { ++ switch (instr->Bits(31, 24) << 24) { ++ case LDPTR_W: ++ Format(instr, "ldptr.w 'rd, 'rj, 'si14"); ++ break; ++ case STPTR_W: ++ Format(instr, "stptr.w 'rd, 'rj, 'si14"); ++ break; ++ case LDPTR_D: ++ Format(instr, "ldptr.d 'rd, 'rj, 'si14"); ++ break; ++ case STPTR_D: ++ Format(instr, "stptr.d 'rd, 'rj, 'si14"); ++ break; ++ case LL_W: ++ Format(instr, "ll.w 'rd, 'rj, 'si14"); ++ break; ++ case SC_W: ++ Format(instr, "sc.w 'rd, 'rj, 'si14"); ++ break; ++ case LL_D: ++ Format(instr, "ll.d 'rd, 'rj, 'si14"); ++ break; ++ case SC_D: ++ Format(instr, "sc.d 'rd, 'rj, 'si14"); ++ break; ++ case CSR: ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Decoder::DecodeTypekOp10(Instruction* instr) { ++ switch (instr->Bits(31, 22) << 22) { ++ case BSTR_W: { ++ if (instr->Bit(21) != 0){ ++ if(instr->Bit(15) == 0){ ++ Format(instr, "bstrins.w 'rd, 'rj, 'msbw, 'lsbw");} ++ else{ ++ Format(instr, "bstrpick.w 'rd, 'rj, 'msbw, 'lsbw");} ++ } ++ break; ++ } ++ case BSTRINS_D: ++ Format(instr, "bstrins.d 'rd, 'rj, 'msbd, 'lsbd"); ++ break; ++ case BSTRPICK_D: ++ Format(instr, "bstrpick.d 'rd, 'rj, 'msbd, 'lsbd"); ++ break; ++ case SLTI: ++ Format(instr, "slti 'rd, 'rj, 'si12"); ++ break; ++ case SLTUI: ++ Format(instr, "sltui 'rd, 'rj, 'si12"); ++ break; ++ case ADDI_W: ++ Format(instr, "addi.w 'rd, 'rj, 'si12"); ++ break; ++ case ADDI_D: ++ Format(instr, "addi.d 'rd, 'rj, 'si12"); ++ break; ++ case LU52I_D: ++ Format(instr, "lu52i.d 'rd, 'rj, 'si12"); ++ break; ++ case ANDI: ++ Format(instr, "andi 'rd, 'rj, 'xi12"); ++ break; ++ case ORI: ++ Format(instr, "ori 'rd, 'rj, 'xi12"); ++ break; ++ case XORI: ++ Format(instr, "xori 'rd, 'rj, 'xi12"); ++ break; ++ case LD_B: ++ Format(instr, "ld.b 'rd, 'rj, 'si12"); ++ break; ++ case LD_H: ++ Format(instr, "ld.h 'rd, 'rj, 'si12"); ++ break; ++ case LD_W: ++ Format(instr, "ld.w 'rd, 'rj, 'si12"); ++ break; ++ case LD_D: ++ Format(instr, "ld.d 'rd, 'rj, 'si12"); ++ break; ++ case ST_B: ++ Format(instr, "st.b 'rd, 'rj, 'si12"); ++ break; ++ case ST_H: ++ Format(instr, "st.h 'rd, 'rj, 'si12"); ++ break; ++ case ST_W: ++ Format(instr, "st.w 'rd, 'rj, 'si12"); ++ break; ++ case ST_D: ++ Format(instr, "st.d 'rd, 'rj, 'si12"); ++ break; ++ case LD_BU: ++ Format(instr, "ld.bu 'rd, 'rj, 'si12"); ++ break; ++ case LD_HU: ++ Format(instr, "ld.hu 'rd, 'rj, 'si12"); ++ break; ++ case LD_WU: ++ Format(instr, "ld.wu 'rd, 'rj, 'si12"); ++ break; ++ case PRELD: ++ Format(instr, "preld 'hint5, 'rj, 'si12"); ++ break; ++ case FLD_S: ++ Format(instr, "fld.s 'fd, 'rj, 'si12"); ++ break; ++ case FST_S: ++ Format(instr, "fst.s 'fd, 'rj, 'si12"); ++ break; ++ case FLD_D: ++ Format(instr, "fld.d 'fd, 'rj, 'si12"); ++ break; ++ case FST_D: ++ Format(instr, "fst.d 'fd, 'rj, 'si12"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Decoder::DecodeTypekOp12(Instruction* instr) { ++ switch (instr->Bits(31, 20) << 20) { ++ case FMADD_S: ++ Format(instr, "fmadd.s 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FMADD_D: ++ Format(instr, "fmadd.d 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FMSUB_S: ++ Format(instr, "fmsub.s 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FMSUB_D: ++ Format(instr, "fmsub.d 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FNMADD_S: ++ Format(instr, "fnmadd.s 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FNMADD_D: ++ Format(instr, "fnmadd.d 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FNMSUB_S: ++ Format(instr, "fnmsub.s 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FNMSUB_D: ++ Format(instr, "fnmsub.d 'fd, 'fj, 'fk, 'fa"); ++ break; ++ case FCMP_COND_S: ++ switch (instr->Bits(19, 15)) { ++ case CAF: ++ Format(instr, "fcmp.caf.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SAF: ++ Format(instr, "fcmp.saf.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CLT: ++ Format(instr, "fcmp.clt.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CEQ: ++ Format(instr, "fcmp.ceq.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SEQ: ++ Format(instr, "fcmp.seq.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CLE: ++ Format(instr, "fcmp.cle.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SLE: ++ Format(instr, "fcmp.sle.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CUN: ++ Format(instr, "fcmp.cun.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SUN: ++ Format(instr, "fcmp.sun.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CULT: ++ Format(instr, "fcmp.cult.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SULT: ++ Format(instr, "fcmp.sult.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CUEQ: ++ Format(instr, "fcmp.cueq.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SUEQ: ++ Format(instr, "fcmp.sueq.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CULE: ++ Format(instr, "fcmp.cule.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SULE: ++ Format(instr, "fcmp.sule.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CNE: ++ Format(instr, "fcmp.cne.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SNE: ++ Format(instr, "fcmp.sne.s fcc'cd, 'fj, 'fk"); ++ break; ++ case COR: ++ Format(instr, "fcmp.cor.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SOR: ++ Format(instr, "fcmp.sor.s fcc'cd, 'fj, 'fk"); ++ break; ++ case CUNE: ++ Format(instr, "fcmp.cune.s fcc'cd, 'fj, 'fk"); ++ break; ++ case SUNE: ++ Format(instr, "fcmp.sune.s fcc'cd, 'fj, 'fk"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ case FCMP_COND_D: ++ switch (instr->Bits(19, 15)) { ++ case CAF: ++ Format(instr, "fcmp.caf.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SAF: ++ Format(instr, "fcmp.saf.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CLT: ++ Format(instr, "fcmp.clt.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CEQ: ++ Format(instr, "fcmp.ceq.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SEQ: ++ Format(instr, "fcmp.seq.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CLE: ++ Format(instr, "fcmp.cle.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SLE: ++ Format(instr, "fcmp.sle.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CUN: ++ Format(instr, "fcmp.cun.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SUN: ++ Format(instr, "fcmp.sun.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CULT: ++ Format(instr, "fcmp.cult.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SULT: ++ Format(instr, "fcmp.sult.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CUEQ: ++ Format(instr, "fcmp.cueq.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SUEQ: ++ Format(instr, "fcmp.sueq.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CULE: ++ Format(instr, "fcmp.cule.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SULE: ++ Format(instr, "fcmp.sule.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CNE: ++ Format(instr, "fcmp.cne.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SNE: ++ Format(instr, "fcmp.sne.d fcc'cd, 'fj, 'fk"); ++ break; ++ case COR: ++ Format(instr, "fcmp.cor.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SOR: ++ Format(instr, "fcmp.sor.d fcc'cd, 'fj, 'fk"); ++ break; ++ case CUNE: ++ Format(instr, "fcmp.cune.d fcc'cd, 'fj, 'fk"); ++ break; ++ case SUNE: ++ Format(instr, "fcmp.sune.d fcc'cd, 'fj, 'fk"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ case FSEL: ++ Format(instr, "fsel 'fd, 'fj, 'fk, fcc'ca"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Decoder::DecodeTypekOp14(Instruction* instr) { ++ switch (instr->Bits(31, 18) << 18) { ++ case ALSL: ++ if (instr->Bit(17)) ++ Format(instr, "alsl.wu 'rd, 'rj, 'rk, 'sa2"); ++ else ++ Format(instr, "alsl.w 'rd, 'rj, 'rk, 'sa2"); ++ break; ++ case BYTEPICK_W: ++ Format(instr, "bytepick.w 'rd, 'rj, 'rk, 'sa2"); ++ break; ++ case BYTEPICK_D: ++ Format(instr, "bytepick.d 'rd, 'rj, 'rk, 'sa3"); ++ break; ++ case ALSL_D: ++ Format(instr, "alsl.d 'rd, 'rj, 'rk, 'sa2"); ++ break; ++ case SLLI: ++ if (instr->Bit(16)) ++ Format(instr, "slli.d 'rd, 'rj, 'ui6"); ++ else ++ Format(instr, "slli.w 'rd, 'rj, 'ui5"); ++ break; ++ case SRLI: ++ if (instr->Bit(16)) ++ Format(instr, "srli.d 'rd, 'rj, 'ui6"); ++ else ++ Format(instr, "srli.w 'rd, 'rj, 'ui5"); ++ break; ++ case SRAI: ++ if (instr->Bit(16)) ++ Format(instr, "srai.d 'rd, 'rj, 'ui6"); ++ else ++ Format(instr, "srai.w 'rd, 'rj, 'ui5"); ++ break; ++ case ROTRI: ++ if (instr->Bit(16)) ++ Format(instr, "rotri.d 'rd, 'rj, 'ui6"); ++ else ++ Format(instr, "rotri.w 'rd, 'rj, 'ui5"); ++ break; ++ case LDDIR: ++ case LDPTE: ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++int Decoder::DecodeTypekOp17(Instruction* instr) { ++ switch (instr->Bits(31, 15) << 15) { ++ case ADD_W: ++ Format(instr, "add.w 'rd, 'rj, 'rk"); ++ break; ++ case ADD_D: ++ Format(instr, "add.d 'rd, 'rj, 'rk"); ++ break; ++ case SUB_W: ++ Format(instr, "sub.w 'rd, 'rj, 'rk"); ++ break; ++ case SUB_D: ++ Format(instr, "sub.d 'rd, 'rj, 'rk"); ++ break; ++ case SLT: ++ Format(instr, "slt 'rd, 'rj, 'rk"); ++ break; ++ case SLTU: ++ Format(instr, "sltu 'rd, 'rj, 'rk"); ++ break; ++ case MASKEQZ: ++ Format(instr, "maskeqz 'rd, 'rj, 'rk"); ++ break; ++ case MASKNEZ: ++ Format(instr, "masknez 'rd, 'rj, 'rk"); ++ break; ++ case NOR: ++ Format(instr, "nor 'rd, 'rj, 'rk"); ++ break; ++ case AND: ++ Format(instr, "and 'rd, 'rj, 'rk"); ++ break; ++ case OR: ++ Format(instr, "or 'rd, 'rj, 'rk"); ++ break; ++ case XOR: ++ Format(instr, "xor 'rd, 'rj, 'rk"); ++ break; ++ case ORN: ++ Format(instr, "orn 'rd, 'rj, 'rk"); ++ break; ++ case ANDN: ++ Format(instr, "andn 'rd, 'rj, 'rk"); ++ break; ++ case SLL_W: ++ Format(instr, "sll.w 'rd, 'rj, 'rk"); ++ break; ++ case SRL_W: ++ Format(instr, "srl.w 'rd, 'rj, 'rk"); ++ break; ++ case SRA_W: ++ Format(instr, "sra.w 'rd, 'rj, 'rk"); ++ break; ++ case SLL_D: ++ Format(instr, "sll.d 'rd, 'rj, 'rk"); ++ break; ++ case SRL_D: ++ Format(instr, "srl.d 'rd, 'rj, 'rk"); ++ break; ++ case SRA_D: ++ Format(instr, "sra.d 'rd, 'rj, 'rk"); ++ break; ++ case ROTR_D: ++ Format(instr, "rotr.d 'rd, 'rj, 'rk"); ++ break; ++ case ROTR_W: ++ Format(instr, "rotr.w 'rd, 'rj, 'rk"); ++ break; ++ case MUL_W: ++ Format(instr, "mul.w 'rd, 'rj, 'rk"); ++ break; ++ case MULH_W: ++ Format(instr, "mulh.w 'rd, 'rj, 'rk"); ++ break; ++ case MULH_WU: ++ Format(instr, "mulh.wu 'rd, 'rj, 'rk"); ++ break; ++ case MUL_D: ++ Format(instr, "mul.d 'rd, 'rj, 'rk"); ++ break; ++ case MULH_D: ++ Format(instr, "mulh.d 'rd, 'rj, 'rk"); ++ break; ++ case MULH_DU: ++ Format(instr, "mulh.du 'rd, 'rj, 'rk"); ++ break; ++ case MULW_D_W: ++ Format(instr, "mulw.d.w 'rd, 'rj, 'rk"); ++ break; ++ case MULW_D_WU: ++ Format(instr, "mulw.d.wu 'rd, 'rj, 'rk"); ++ break; ++ case DIV_W: ++ Format(instr, "div.w 'rd, 'rj, 'rk"); ++ break; ++ case MOD_W: ++ Format(instr, "mod.w 'rd, 'rj, 'rk"); ++ break; ++ case DIV_WU: ++ Format(instr, "div.wu 'rd, 'rj, 'rk"); ++ break; ++ case MOD_WU: ++ Format(instr, "mod.wu 'rd, 'rj, 'rk"); ++ break; ++ case DIV_D: ++ Format(instr, "div.d 'rd, 'rj, 'rk"); ++ break; ++ case MOD_D: ++ Format(instr, "mod.d 'rd, 'rj, 'rk"); ++ break; ++ case DIV_DU: ++ Format(instr, "div.du 'rd, 'rj, 'rk"); ++ break; ++ case MOD_DU: ++ Format(instr, "mod.du 'rd, 'rj, 'rk"); ++ break; ++ case BREAK: ++ return DecodeBreakInstr(instr); ++ case FADD_S: ++ Format(instr, "fadd.s 'fd, 'fj, 'fk"); ++ break; ++ case FADD_D: ++ Format(instr, "fadd.d 'fd, 'fj, 'fk"); ++ break; ++ case FSUB_S: ++ Format(instr, "fsub.s 'fd, 'fj, 'fk"); ++ break; ++ case FSUB_D: ++ Format(instr, "fsub.d 'fd, 'fj, 'fk"); ++ break; ++ case FMUL_S: ++ Format(instr, "fmul.s 'fd, 'fj, 'fk"); ++ break; ++ case FMUL_D: ++ Format(instr, "fmul.d 'fd, 'fj, 'fk"); ++ break; ++ case FDIV_S: ++ Format(instr, "fdiv.s 'fd, 'fj, 'fk"); ++ break; ++ case FDIV_D: ++ Format(instr, "fdiv.d 'fd, 'fj, 'fk"); ++ break; ++ case FMAX_S: ++ Format(instr, "fmax.s 'fd, 'fj, 'fk"); ++ break; ++ case FMAX_D: ++ Format(instr, "fmax.d 'fd, 'fj, 'fk"); ++ break; ++ case FMIN_S: ++ Format(instr, "fmin.s 'fd, 'fj, 'fk"); ++ break; ++ case FMIN_D: ++ Format(instr, "fmin.d 'fd, 'fj, 'fk"); ++ break; ++ case FMAXA_S: ++ Format(instr, "fmaxa.s 'fd, 'fj, 'fk"); ++ break; ++ case FMAXA_D: ++ Format(instr, "fmaxa.d 'fd, 'fj, 'fk"); ++ break; ++ case FMINA_S: ++ Format(instr, "fmina.s 'fd, 'fj, 'fk"); ++ break; ++ case FMINA_D: ++ Format(instr, "fmina.d 'fd, 'fj, 'fk"); ++ break; ++ case LDX_B: ++ Format(instr, "ldx.b 'rd, 'rj, 'rk"); ++ break; ++ case LDX_H: ++ Format(instr, "ldx.h 'rd, 'rj, 'rk"); ++ break; ++ case LDX_W: ++ Format(instr, "ldx.w 'rd, 'rj, 'rk"); ++ break; ++ case LDX_D: ++ Format(instr, "ldx.d 'rd, 'rj, 'rk"); ++ break; ++ case STX_B: ++ Format(instr, "stx.b 'rd, 'rj, 'rk"); ++ break; ++ case STX_H: ++ Format(instr, "stx.h 'rd, 'rj, 'rk"); ++ break; ++ case STX_W: ++ Format(instr, "stx.w 'rd, 'rj, 'rk"); ++ break; ++ case STX_D: ++ Format(instr, "stx.d 'rd, 'rj, 'rk"); ++ break; ++ case LDX_BU: ++ Format(instr, "ldx.bu 'rd, 'rj, 'rk"); ++ break; ++ case LDX_HU: ++ Format(instr, "ldx.hu 'rd, 'rj, 'rk"); ++ break; ++ case LDX_WU: ++ Format(instr, "ldx.wu 'rd, 'rj, 'rk"); ++ break; ++ case FLDX_S: ++ Format(instr, "fldx.s 'fd, 'rj, 'rk"); ++ break; ++ case FLDX_D: ++ Format(instr, "fldx.d 'fd, 'rj, 'rk"); ++ break; ++ case FSTX_S: ++ Format(instr, "fstx.s 'fd, 'rj, 'rk"); ++ break; ++ case FSTX_D: ++ Format(instr, "fstx.d 'fd, 'rj, 'rk"); ++ break; ++ case SYSCALL: ++ Format(instr, "syscall code 'code"); ++ break; ++ case AMSWAP_W: ++ Format(instr, "amswap.w 'rd, 'rk, 'rj"); ++ break; ++ case AMSWAP_D: ++ Format(instr, "amswap.d 'rd, 'rk, 'rj"); ++ break; ++ case AMADD_W: ++ Format(instr, "amadd.w 'rd, 'rk, 'rj"); ++ break; ++ case AMADD_D: ++ Format(instr, "amadd.d 'rd, 'rk, 'rj"); ++ break; ++ case AMAND_W: ++ Format(instr, "amand.w 'rd, 'rk, 'rj"); ++ break; ++ case AMAND_D: ++ Format(instr, "amand.d 'rd, 'rk, 'rj"); ++ break; ++ case AMOR_W: ++ Format(instr, "amor.w 'rd, 'rk, 'rj"); ++ break; ++ case AMOR_D: ++ Format(instr, "amor.d 'rd, 'rk, 'rj"); ++ break; ++ case AMXOR_W: ++ Format(instr, "amxor.w 'rd, 'rk, 'rj"); ++ break; ++ case AMXOR_D: ++ Format(instr, "amxor.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_W: ++ Format(instr, "ammax.w 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_D: ++ Format(instr, "ammax.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_W: ++ Format(instr, "ammin.w 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_D: ++ Format(instr, "ammin.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_WU: ++ Format(instr, "ammax.wu 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_DU: ++ Format(instr, "ammax.du 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_WU: ++ Format(instr, "ammin.wu 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_DU: ++ Format(instr, "ammin.du 'rd, 'rk, 'rj"); ++ break; ++ case AMSWAP_DB_W: ++ Format(instr, "amswap_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMSWAP_DB_D: ++ Format(instr, "amswap_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMADD_DB_W: ++ Format(instr, "amadd_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMADD_DB_D: ++ Format(instr, "amadd_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMAND_DB_W: ++ Format(instr, "amand_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMAND_DB_D: ++ Format(instr, "amand_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMOR_DB_W: ++ Format(instr, "amor_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMOR_DB_D: ++ Format(instr, "amor_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMXOR_DB_W: ++ Format(instr, "amxor_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMXOR_DB_D: ++ Format(instr, "amxor_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_DB_W: ++ Format(instr, "ammax_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_DB_D: ++ Format(instr, "ammax_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_DB_W: ++ Format(instr, "ammin_db.w 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_DB_D: ++ Format(instr, "ammin_db.d 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_DB_WU: ++ Format(instr, "ammax_db.wu 'rd, 'rk, 'rj"); ++ break; ++ case AMMAX_DB_DU: ++ Format(instr, "ammax_db.du 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_DB_WU: ++ Format(instr, "ammin_db.wu 'rd, 'rk, 'rj"); ++ break; ++ case AMMIN_DB_DU: ++ Format(instr, "ammin_db.du 'rd, 'rk, 'rj"); ++ break; ++ case DBAR: ++ Format(instr, "dbar 'hint15"); ++ break; ++ case IBAR: ++ Format(instr, "ibar 'hint15"); ++ break; ++ case FSCALEB_S: ++ Format(instr, "fscaleb.s 'fd, 'fj, 'fk"); ++ break; ++ case FSCALEB_D: ++ Format(instr, "fscaleb.d 'fd, 'fj, 'fk"); ++ break; ++ case FCOPYSIGN_S: ++ Format(instr, "fcopysign.s 'fd, 'fj, 'fk"); ++ break; ++ case FCOPYSIGN_D: ++ Format(instr, "fcopysign.d 'fd, 'fj, 'fk"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ return kInstrSize; ++} ++ ++void Decoder::DecodeTypekOp22(Instruction* instr) { ++ switch (instr->Bits(31, 10) << 10) { ++ case CLZ_W: ++ Format(instr, "clz.w 'rd, 'rj"); ++ break; ++ case CTZ_W: ++ Format(instr, "ctz.w 'rd, 'rj"); ++ break; ++ case CLZ_D: ++ Format(instr, "clz.d 'rd, 'rj"); ++ break; ++ case CTZ_D: ++ Format(instr, "ctz.d 'rd, 'rj"); ++ break; ++ case REVB_2H: ++ Format(instr, "revb.2h 'rd, 'rj"); ++ break; ++ case REVB_4H: ++ Format(instr, "revb.4h 'rd, 'rj"); ++ break; ++ case REVB_2W: ++ Format(instr, "revb.2w 'rd, 'rj"); ++ break; ++ case REVB_D: ++ Format(instr, "revb.d 'rd, 'rj"); ++ break; ++ case REVH_2W: ++ Format(instr, "revh.2w 'rd, 'rj"); ++ break; ++ case REVH_D: ++ Format(instr, "revh.d 'rd, 'rj"); ++ break; ++ case BITREV_4B: ++ Format(instr, "bitrev.4b 'rd, 'rj"); ++ break; ++ case BITREV_8B: ++ Format(instr, "bitrev.8b 'rd, 'rj"); ++ break; ++ case BITREV_W: ++ Format(instr, "bitrev.w 'rd, 'rj"); ++ break; ++ case BITREV_D: ++ Format(instr, "bitrev.d 'rd, 'rj"); ++ break; ++ case EXT_W_B: ++ Format(instr, "ext.w.b 'rd, 'rj"); ++ break; ++ case EXT_W_H: ++ Format(instr, "ext.w.h 'rd, 'rj"); ++ break; ++ case FABS_S: ++ Format(instr, "fabs.s 'fd, 'fj"); ++ break; ++ case FABS_D: ++ Format(instr, "fabs.d 'fd, 'fj"); ++ break; ++ case FNEG_S: ++ Format(instr, "fneg.s 'fd, 'fj"); ++ break; ++ case FNEG_D: ++ Format(instr, "fneg.d 'fd, 'fj"); ++ break; ++ case FSQRT_S: ++ Format(instr, "fsqrt.s 'fd, 'fj"); ++ break; ++ case FSQRT_D: ++ Format(instr, "fsqrt.d 'fd, 'fj"); ++ break; ++ case FMOV_S: ++ Format(instr, "fmov.s 'fd, 'fj"); ++ break; ++ case FMOV_D: ++ Format(instr, "fmov.d 'fd, 'fj"); ++ break; ++ case MOVGR2FR_W: ++ Format(instr, "movgr2fr.w 'fd, 'rj"); ++ break; ++ case MOVGR2FR_D: ++ Format(instr, "movgr2fr.d 'fd, 'rj"); ++ break; ++ case MOVGR2FRH_W: ++ Format(instr, "movgr2frh.w 'fd, 'rj"); ++ break; ++ case MOVFR2GR_S: ++ Format(instr, "movfr2gr.s 'rd, 'fj"); ++ break; ++ case MOVFR2GR_D: ++ Format(instr, "movfr2gr.d 'rd, 'fj"); ++ break; ++ case MOVFRH2GR_S: ++ Format(instr, "movfrh2gr.s 'rd, 'fj"); ++ break; ++ case MOVGR2FCSR: ++ Format(instr, "movgr2fcsr fcsr, 'rj"); ++ break; ++ case MOVFCSR2GR: ++ Format(instr, "movfcsr2gr 'rd, fcsr"); ++ break; ++ case FCVT_S_D: ++ Format(instr, "fcvt.s.d 'fd, 'fj"); ++ break; ++ case FCVT_D_S: ++ Format(instr, "fcvt.d.s 'fd, 'fj"); ++ break; ++ case FTINTRM_W_S: ++ Format(instr, "ftintrm.w.s 'fd, 'fj"); ++ break; ++ case FTINTRM_W_D: ++ Format(instr, "ftintrm.w.d 'fd, 'fj"); ++ break; ++ case FTINTRM_L_S: ++ Format(instr, "ftintrm.l.s 'fd, 'fj"); ++ break; ++ case FTINTRM_L_D: ++ Format(instr, "ftintrm.l.d 'fd, 'fj"); ++ break; ++ case FTINTRP_W_S: ++ Format(instr, "ftintrp.w.s 'fd, 'fj"); ++ break; ++ case FTINTRP_W_D: ++ Format(instr, "ftintrp.w.d 'fd, 'fj"); ++ break; ++ case FTINTRP_L_S: ++ Format(instr, "ftintrp.l.s 'fd, 'fj"); ++ break; ++ case FTINTRP_L_D: ++ Format(instr, "ftintrp.l.d 'fd, 'fj"); ++ break; ++ case FTINTRZ_W_S: ++ Format(instr, "ftintrz.w.s 'fd, 'fj"); ++ break; ++ case FTINTRZ_W_D: ++ Format(instr, "ftintrz.w.d 'fd, 'fj"); ++ break; ++ case FTINTRZ_L_S: ++ Format(instr, "ftintrz.l.s 'fd, 'fj"); ++ break; ++ case FTINTRZ_L_D: ++ Format(instr, "ftintrz.l.d 'fd, 'fj"); ++ break; ++ case FTINTRNE_W_S: ++ Format(instr, "ftintrne.w.s 'fd, 'fj"); ++ break; ++ case FTINTRNE_W_D: ++ Format(instr, "ftintrne.w.d 'fd, 'fj"); ++ break; ++ case FTINTRNE_L_S: ++ Format(instr, "ftintrne.l.s 'fd, 'fj"); ++ break; ++ case FTINTRNE_L_D: ++ Format(instr, "ftintrne.l.d 'fd, 'fj"); ++ break; ++ case FTINT_W_S: ++ Format(instr, "ftint.w.s 'fd, 'fj"); ++ break; ++ case FTINT_W_D: ++ Format(instr, "ftint.w.d 'fd, 'fj"); ++ break; ++ case FTINT_L_S: ++ Format(instr, "ftint.l.s 'fd, 'fj"); ++ break; ++ case FTINT_L_D: ++ Format(instr, "ftint.l.d 'fd, 'fj"); ++ break; ++ case FFINT_S_W: ++ Format(instr, "ffint.s.w 'fd, 'fj"); ++ break; ++ case FFINT_S_L: ++ Format(instr, "ffint.s.l 'fd, 'fj"); ++ break; ++ case FFINT_D_W: ++ Format(instr, "ffint.d.w 'fd, 'fj"); ++ break; ++ case FFINT_D_L: ++ Format(instr, "ffint.d.l 'fd, 'fj"); ++ break; ++ case FRINT_S: ++ Format(instr, "frint.s 'fd, 'fj"); ++ break; ++ case FRINT_D: ++ Format(instr, "frint.d 'fd, 'fj"); ++ break; ++ case MOVFR2CF: ++ Format(instr, "movfr2cf fcc'cd, 'fj"); ++ break; ++ case MOVCF2FR: ++ Format(instr, "movcf2fr 'fd, fcc'cj"); ++ break; ++ case MOVGR2CF: ++ Format(instr, "movgr2cf fcc'cd, 'rj"); ++ break; ++ case MOVCF2GR: ++ Format(instr, "movcf2gr 'rd, fcc'cj"); ++ break; ++ case FRECIP_S: ++ Format(instr, "frecip.s 'fd, 'fj"); ++ break; ++ case FRECIP_D: ++ Format(instr, "frecip.d 'fd, 'fj"); ++ break; ++ case FRSQRT_S: ++ Format(instr, "frsqrt.s 'fd, 'fj"); ++ break; ++ case FRSQRT_D: ++ Format(instr, "frsqrt.d 'fd, 'fj"); ++ break; ++ case FCLASS_S: ++ Format(instr, "fclass.s 'fd, 'fj"); ++ break; ++ case FCLASS_D: ++ Format(instr, "fclass.d 'fd, 'fj"); ++ break; ++ case FLOGB_S: ++ Format(instr, "flogb.s 'fd, 'fj"); ++ break; ++ case FLOGB_D: ++ Format(instr, "flogb.d 'fd, 'fj"); ++ break; ++ case CLO_W: ++ Format(instr, "clo.w 'rd, 'rj"); ++ break; ++ case CTO_W: ++ Format(instr, "cto.w 'rd, 'rj"); ++ break; ++ case CLO_D: ++ Format(instr, "clo.d 'rd, 'rj"); ++ break; ++ case CTO_D: ++ Format(instr, "cto.d 'rd, 'rj"); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++int Decoder::InstructionDecode(byte* instr_ptr) { ++ Instruction* instr = Instruction::At(instr_ptr); ++ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", ++ instr->InstructionBits()); ++ switch (instr->InstructionType()) { ++ case Instruction::kOp6Type: { ++ DecodeTypekOp6(instr); ++ break; ++ } ++ case Instruction::kOp7Type: { ++ DecodeTypekOp7(instr); ++ break; ++ } ++ case Instruction::kOp8Type: { ++ DecodeTypekOp8(instr); ++ break; ++ } ++ case Instruction::kOp10Type: { ++ DecodeTypekOp10(instr); ++ break; ++ } ++ case Instruction::kOp12Type: { ++ DecodeTypekOp12(instr); ++ break; ++ } ++ case Instruction::kOp14Type: { ++ DecodeTypekOp14(instr); ++ break; ++ } ++ case Instruction::kOp17Type: { ++ return DecodeTypekOp17(instr); ++ } ++ case Instruction::kOp22Type: { ++ DecodeTypekOp22(instr); ++ break; ++ } ++ case Instruction::kUnsupported: { ++ Format(instr, "UNSUPPORTED"); ++ break; ++ } ++ default: { ++ Format(instr, "UNSUPPORTED"); ++ break; ++ } ++ } ++ return kInstrSize; ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++//------------------------------------------------------------------------------ ++ ++namespace disasm { ++ ++const char* NameConverter::NameOfAddress(byte* addr) const { ++ v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast(addr)); ++ return tmp_buffer_.start(); ++} ++ ++const char* NameConverter::NameOfConstant(byte* addr) const { ++ return NameOfAddress(addr); ++} ++ ++const char* NameConverter::NameOfCPURegister(int reg) const { ++ return v8::internal::Registers::Name(reg); ++} ++ ++const char* NameConverter::NameOfXMMRegister(int reg) const { ++ return v8::internal::FPURegisters::Name(reg); ++} ++ ++const char* NameConverter::NameOfByteCPURegister(int reg) const { ++ UNREACHABLE(); ++ return "nobytereg"; ++} ++ ++const char* NameConverter::NameInCode(byte* addr) const { ++ // The default name converter is called for unknown code. So we will not try ++ // to access any memory. ++ return ""; ++} ++ ++//------------------------------------------------------------------------------ ++ ++Disassembler::Disassembler(const NameConverter& converter) ++ : converter_(converter) {} ++ ++ ++Disassembler::~Disassembler() {} ++ ++ ++int Disassembler::InstructionDecode(v8::internal::Vector buffer, ++ byte* instruction) { ++ v8::internal::Decoder d(converter_, buffer); ++ return d.InstructionDecode(instruction); ++} ++ ++ ++// The MIPS assembler does not currently use constant pools. ++int Disassembler::ConstantPoolSizeAt(byte* instruction) { ++ return -1; ++} ++ ++ ++void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { ++ NameConverter converter; ++ Disassembler d(converter); ++ for (byte* pc = begin; pc < end;) { ++ v8::internal::EmbeddedVector buffer; ++ buffer[0] = '\0'; ++ byte* prev_pc = pc; ++ pc += d.InstructionDecode(buffer, pc); ++ v8::internal::PrintF(f, "%p %08x %s\n", static_cast(prev_pc), ++ *reinterpret_cast(prev_pc), buffer.start()); ++ } ++} ++ ++#undef STRING_STARTS_WITH ++ ++} // namespace disasm ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/frame-constants-loong64.cc b/deps/v8/src/loong64/frame-constants-loong64.cc +new file mode 100644 +index 0000000..8b47399 +--- /dev/null ++++ b/deps/v8/src/loong64/frame-constants-loong64.cc +@@ -0,0 +1,33 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/assembler.h" ++#include "src/frame-constants.h" ++#include "src/loong64/assembler-loong64-inl.h" ++#include "src/loong64/assembler-loong64.h" ++ ++#include "src/loong64/frame-constants-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++Register JavaScriptFrame::fp_register() { return v8::internal::fp; } ++Register JavaScriptFrame::context_register() { return cp; } ++Register JavaScriptFrame::constant_pool_pointer_register() { UNREACHABLE(); } ++ ++int InterpreterFrameConstants::RegisterStackSlotCount(int register_count) { ++ return register_count; ++} ++ ++int BuiltinContinuationFrameConstants::PaddingSlotCount(int register_count) { ++ USE(register_count); ++ return 0; ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/frame-constants-loong64.h b/deps/v8/src/loong64/frame-constants-loong64.h +new file mode 100644 +index 0000000..da3c31b +--- /dev/null ++++ b/deps/v8/src/loong64/frame-constants-loong64.h +@@ -0,0 +1,54 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_LOONG64_FRAME_CONSTANTS_LOONG64_H_ ++#define V8_LOONG64_FRAME_CONSTANTS_LOONG64_H_ ++ ++namespace v8 { ++namespace internal { ++ ++class EntryFrameConstants : public AllStatic { ++ public: ++ static constexpr int kCallerFPOffset = ++ -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); ++}; ++ ++class ExitFrameConstants : public TypedFrameConstants { ++ public: ++ static constexpr int kSPOffset = TYPED_FRAME_PUSHED_VALUE_OFFSET(0); ++ static constexpr int kCodeOffset = TYPED_FRAME_PUSHED_VALUE_OFFSET(1); ++ DEFINE_TYPED_FRAME_SIZES(2); ++ ++ // The caller fields are below the frame pointer on the stack. ++ static constexpr int kCallerFPOffset = +0 * kPointerSize; ++ // The calling JS function is between FP and PC. ++ static constexpr int kCallerPCOffset = +1 * kPointerSize; ++ ++ // MIPS-specific: a pointer to the old sp to avoid unnecessary calculations. ++ static constexpr int kCallerSPOffset = +2 * kPointerSize; ++ ++ // FP-relative displacement of the caller's SP. ++ static constexpr int kCallerSPDisplacement = +2 * kPointerSize; ++ ++ static constexpr int kConstantPoolOffset = 0; // Not used. ++}; ++ ++class JavaScriptFrameConstants : public AllStatic { ++ public: ++ // FP-relative. ++ static constexpr int kLocal0Offset = ++ StandardFrameConstants::kExpressionsOffset; ++ static constexpr int kLastParameterOffset = +2 * kPointerSize; ++ static constexpr int kFunctionOffset = ++ StandardFrameConstants::kFunctionOffset; ++ ++ // Caller SP-relative. ++ static constexpr int kParam0Offset = -2 * kPointerSize; ++ static constexpr int kReceiverOffset = -1 * kPointerSize; ++}; ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_LOONG64_FRAME_CONSTANTS_LOONG64_H_ +diff --git a/deps/v8/src/loong64/interface-descriptors-loong64.cc b/deps/v8/src/loong64/interface-descriptors-loong64.cc +new file mode 100644 +index 0000000..d65bc7f +--- /dev/null ++++ b/deps/v8/src/loong64/interface-descriptors-loong64.cc +@@ -0,0 +1,338 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/interface-descriptors.h" ++ ++namespace v8 { ++namespace internal { ++ ++const Register CallInterfaceDescriptor::ContextRegister() { return cp; } ++ ++void CallInterfaceDescriptor::DefaultInitializePlatformSpecific( ++ CallInterfaceDescriptorData* data, int register_parameter_count) { ++ const Register default_stub_registers[] = {a0, a1, a2, a3, a4}; ++ CHECK_LE(static_cast(register_parameter_count), ++ arraysize(default_stub_registers)); ++ data->InitializePlatformSpecific(register_parameter_count, ++ default_stub_registers); ++} ++ ++void RecordWriteDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ const Register default_stub_registers[] = {a0, a1, a2, a3, a4}; ++ ++ data->RestrictAllocatableRegisters(default_stub_registers, ++ arraysize(default_stub_registers)); ++ ++ CHECK_LE(static_cast(kParameterCount), ++ arraysize(default_stub_registers)); ++ data->InitializePlatformSpecific(kParameterCount, default_stub_registers); ++} ++ ++const Register FastNewFunctionContextDescriptor::ScopeInfoRegister() { ++ return a1; ++} ++const Register FastNewFunctionContextDescriptor::SlotsRegister() { return a0; } ++ ++const Register LoadDescriptor::ReceiverRegister() { return a1; } ++const Register LoadDescriptor::NameRegister() { return a2; } ++const Register LoadDescriptor::SlotRegister() { return a0; } ++ ++const Register LoadWithVectorDescriptor::VectorRegister() { return a3; } ++ ++const Register StoreDescriptor::ReceiverRegister() { return a1; } ++const Register StoreDescriptor::NameRegister() { return a2; } ++const Register StoreDescriptor::ValueRegister() { return a0; } ++const Register StoreDescriptor::SlotRegister() { return a4; } ++ ++const Register StoreWithVectorDescriptor::VectorRegister() { return a3; } ++ ++const Register StoreTransitionDescriptor::SlotRegister() { return a4; } ++const Register StoreTransitionDescriptor::VectorRegister() { return a3; } ++const Register StoreTransitionDescriptor::MapRegister() { return a5; } ++ ++const Register ApiGetterDescriptor::HolderRegister() { return a0; } ++const Register ApiGetterDescriptor::CallbackRegister() { return a3; } ++ ++const Register MathPowTaggedDescriptor::exponent() { return a2; } ++ ++const Register MathPowIntegerDescriptor::exponent() { ++ return MathPowTaggedDescriptor::exponent(); ++} ++ ++ ++const Register GrowArrayElementsDescriptor::ObjectRegister() { return a0; } ++const Register GrowArrayElementsDescriptor::KeyRegister() { return a3; } ++ ++ ++// static ++const Register TypeConversionDescriptor::ArgumentRegister() { return a0; } ++ ++void TypeofDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a3}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void CallFunctionDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a1}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void CallTrampolineDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1: target ++ // a0: number of arguments ++ Register registers[] = {a1, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void CallVarargsDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a0 : number of arguments (on the stack, not including receiver) ++ // a1 : the target to call ++ // a2 : arguments list (FixedArray) ++ // a4 : arguments list length (untagged) ++ Register registers[] = {a1, a0, a2, a4}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void CallForwardVarargsDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1: the target to call ++ // a0: number of arguments ++ // a2: start index (to support rest parameters) ++ Register registers[] = {a1, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void CallWithSpreadDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a0 : number of arguments (on the stack, not including receiver) ++ // a1 : the target to call ++ // a2 : the object to spread ++ Register registers[] = {a1, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void CallWithArrayLikeDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1 : the target to call ++ // a2 : the arguments list ++ Register registers[] = {a1, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ConstructVarargsDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a0 : number of arguments (on the stack, not including receiver) ++ // a1 : the target to call ++ // a3 : the new target ++ // a2 : arguments list (FixedArray) ++ // a4 : arguments list length (untagged) ++ Register registers[] = {a1, a3, a0, a2, a4}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ConstructForwardVarargsDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1: the target to call ++ // a3: new target ++ // a0: number of arguments ++ // a2: start index (to support rest parameters) ++ Register registers[] = {a1, a3, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ConstructWithSpreadDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a0 : number of arguments (on the stack, not including receiver) ++ // a1 : the target to call ++ // a3 : the new target ++ // a2 : the object to spread ++ Register registers[] = {a1, a3, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ConstructWithArrayLikeDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1 : the target to call ++ // a3 : the new target ++ // a2 : the arguments list ++ Register registers[] = {a1, a3, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ConstructStubDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1: target ++ // a3: new target ++ // a0: number of arguments ++ // a2: allocation site or undefined ++ Register registers[] = {a1, a3, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++ ++void ConstructTrampolineDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // a1: target ++ // a3: new target ++ // a0: number of arguments ++ Register registers[] = {a1, a3, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++ ++void TransitionElementsKindDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a0, a1}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void AbortJSDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void AllocateHeapNumberDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // register state ++ data->InitializePlatformSpecific(0, nullptr, nullptr); ++} ++ ++void ArrayConstructorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // kTarget, kNewTarget, kActualArgumentsCount, kAllocationSite ++ Register registers[] = {a1, a3, a0, a2}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void ArrayNoArgumentConstructorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // register state ++ // a0 -- number of arguments ++ // a1 -- function ++ // a2 -- allocation site with elements kind ++ Register registers[] = {a1, a2, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void ArraySingleArgumentConstructorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // register state ++ // a0 -- number of arguments ++ // a1 -- function ++ // a2 -- allocation site with elements kind ++ Register registers[] = {a1, a2, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void ArrayNArgumentsConstructorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ // stack param count needs (constructor pointer, and single argument) ++ Register registers[] = {a1, a2, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void CompareDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a1, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++ ++void BinaryOpDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = {a1, a0}; ++ data->InitializePlatformSpecific(arraysize(registers), registers, nullptr); ++} ++ ++void ArgumentAdaptorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a1, // JSFunction ++ a3, // the new target ++ a0, // actual number of arguments ++ a2, // expected number of arguments ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ApiCallbackDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ JavaScriptFrame::context_register(), // callee context ++ a4, // call_data ++ a2, // holder ++ a1, // api_function_address ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void InterpreterDispatchDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ kInterpreterAccumulatorRegister, kInterpreterBytecodeOffsetRegister, ++ kInterpreterBytecodeArrayRegister, kInterpreterDispatchTableRegister}; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void InterpreterPushArgsThenCallDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a0, // argument count (not including receiver) ++ a2, // address of first argument ++ a1 // the target callable to be call ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void InterpreterPushArgsThenConstructDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a0, // argument count (not including receiver) ++ a3, // new target ++ a1, // constructor to call ++ a2, // allocation site feedback if available, undefined otherwise. ++ a4 // address of the first argument ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void InterpreterCEntryDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a0, // argument count (argc) ++ a2, // address of first argument (argv) ++ a1 // the runtime function to call ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void ResumeGeneratorDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a0, // the value to pass to the generator ++ a1 // the JSGeneratorObject to resume ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++void FrameDropperTrampolineDescriptor::InitializePlatformSpecific( ++ CallInterfaceDescriptorData* data) { ++ Register registers[] = { ++ a1, // loaded new FP ++ }; ++ data->InitializePlatformSpecific(arraysize(registers), registers); ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/macro-assembler-loong64.cc b/deps/v8/src/loong64/macro-assembler-loong64.cc +new file mode 100644 +index 0000000..3a0c3dd +--- /dev/null ++++ b/deps/v8/src/loong64/macro-assembler-loong64.cc +@@ -0,0 +1,4085 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include // For LONG_MIN, LONG_MAX. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/base/bits.h" ++#include "src/base/division-by-constant.h" ++#include "src/bootstrapper.h" ++#include "src/builtins/constants-table-builder.h" ++#include "src/callable.h" ++#include "src/code-factory.h" ++#include "src/code-stubs.h" ++#include "src/debug/debug.h" ++#include "src/external-reference-table.h" ++#include "src/frames-inl.h" ++#include "src/instruction-stream.h" ++#include "src/loong64/assembler-loong64-inl.h" ++#include "src/loong64/macro-assembler-loong64.h" ++#include "src/register-configuration.h" ++#include "src/runtime/runtime.h" ++ ++#include "src/snapshot/serializer-common.h" ++ ++namespace v8 { ++namespace internal { ++ ++MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, ++ CodeObjectRequired create_code_object) ++ : TurboAssembler(isolate, buffer, size, create_code_object) { ++ if (create_code_object == CodeObjectRequired::kYes) { ++ // Unlike TurboAssembler, which can be used off the main thread and may not ++ // allocate, macro assembler creates its own copy of the self-reference ++ // marker in order to disambiguate between self-references during nested ++ // code generation (e.g.: codegen of the current object triggers stub ++ // compilation through CodeStub::GetCode()). ++ code_object_ = Handle::New( ++ *isolate->factory()->NewSelfReferenceMarker(), isolate); ++ } ++} ++ ++TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, ++ CodeObjectRequired create_code_object) ++ : Assembler(isolate, buffer, buffer_size), ++ isolate_(isolate), ++ has_double_zero_reg_set_(false) { ++ if (create_code_object == CodeObjectRequired::kYes) { ++ code_object_ = Handle::New( ++ isolate->heap()->self_reference_marker(), isolate); ++ } ++} ++ ++static inline bool IsZero(const Operand& rk) { ++ if (rk.is_reg()) { ++ return rk.rm() == zero_reg; ++ } else { ++ return rk.immediate() == 0; ++ } ++} ++ ++int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, ++ Register exclusion1, ++ Register exclusion2, ++ Register exclusion3) const { ++ int bytes = 0; ++ RegList exclusions = 0; ++ if (exclusion1 != no_reg) { ++ exclusions |= exclusion1.bit(); ++ if (exclusion2 != no_reg) { ++ exclusions |= exclusion2.bit(); ++ if (exclusion3 != no_reg) { ++ exclusions |= exclusion3.bit(); ++ } ++ } ++ } ++ ++ RegList list = kJSCallerSaved & ~exclusions; ++ bytes += NumRegs(list) * kPointerSize; ++ ++ if (fp_mode == kSaveFPRegs) { ++ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; ++ } ++ ++ return bytes; ++} ++ ++int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, ++ Register exclusion2, Register exclusion3) { ++ int bytes = 0; ++ RegList exclusions = 0; ++ if (exclusion1 != no_reg) { ++ exclusions |= exclusion1.bit(); ++ if (exclusion2 != no_reg) { ++ exclusions |= exclusion2.bit(); ++ if (exclusion3 != no_reg) { ++ exclusions |= exclusion3.bit(); ++ } ++ } ++ } ++ ++ RegList list = kJSCallerSaved & ~exclusions; ++ MultiPush(list); ++ bytes += NumRegs(list) * kPointerSize; ++ ++ if (fp_mode == kSaveFPRegs) { ++ MultiPushFPU(kCallerSavedFPU); ++ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; ++ } ++ ++ return bytes; ++} ++ ++int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, ++ Register exclusion2, Register exclusion3) { ++ int bytes = 0; ++ if (fp_mode == kSaveFPRegs) { ++ MultiPopFPU(kCallerSavedFPU); ++ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; ++ } ++ ++ RegList exclusions = 0; ++ if (exclusion1 != no_reg) { ++ exclusions |= exclusion1.bit(); ++ if (exclusion2 != no_reg) { ++ exclusions |= exclusion2.bit(); ++ if (exclusion3 != no_reg) { ++ exclusions |= exclusion3.bit(); ++ } ++ } ++ } ++ ++ RegList list = kJSCallerSaved & ~exclusions; ++ MultiPop(list); ++ bytes += NumRegs(list) * kPointerSize; ++ ++ return bytes; ++} ++ ++void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { ++ Ld_d(destination, MemOperand(s6, index << kPointerSizeLog2)); ++} ++ ++void TurboAssembler::PushCommonFrame(Register marker_reg) { ++ if (marker_reg.is_valid()) { ++ Push(ra, fp, marker_reg); ++ Add_d(fp, sp, Operand(kPointerSize)); ++ } else { ++ Push(ra, fp); ++ mov(fp, sp); ++ } ++} ++ ++void TurboAssembler::PushStandardFrame(Register function_reg) { ++ int offset = -StandardFrameConstants::kContextOffset; ++ if (function_reg.is_valid()) { ++ Push(ra, fp, cp, function_reg); ++ offset += kPointerSize; ++ } else { ++ Push(ra, fp, cp); ++ } ++ Add_d(fp, sp, Operand(offset)); ++} ++ ++// Push and pop all registers that can hold pointers. ++void MacroAssembler::PushSafepointRegisters() { ++ // Safepoints expect a block of kNumSafepointRegisters values on the ++ // stack, so adjust the stack for unsaved registers. ++ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ++ DCHECK_GE(num_unsaved, 0); ++ if (num_unsaved > 0) { ++ Sub_d(sp, sp, Operand(num_unsaved * kPointerSize)); ++ } ++ MultiPush(kSafepointSavedRegisters); ++} ++ ++void MacroAssembler::PopSafepointRegisters() { ++ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ++ MultiPop(kSafepointSavedRegisters); ++ if (num_unsaved > 0) { ++ Add_d(sp, sp, Operand(num_unsaved * kPointerSize)); ++ } ++} ++ ++int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { ++ // The registers are pushed starting with the highest encoding, ++ // which means that lowest encodings are closest to the stack pointer. ++ return kSafepointRegisterStackIndexMap[reg_code]; ++} ++ ++// Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved) ++// The register 'object' contains a heap object pointer. The heap object ++// tag is shifted away. ++void MacroAssembler::RecordWriteField(Register object, int offset, ++ Register value, Register dst, ++ RAStatus ra_status, ++ SaveFPRegsMode save_fp, ++ RememberedSetAction remembered_set_action, ++ SmiCheck smi_check) { ++ DCHECK(!AreAliased(value, dst, t8, object)); ++ // First, check if a write barrier is even needed. The tests below ++ // catch stores of Smis. ++ Label done; ++ ++ // Skip barrier if writing a smi. ++ if (smi_check == INLINE_SMI_CHECK) { ++ JumpIfSmi(value, &done); ++ } ++ ++ // Although the object register is tagged, the offset is relative to the start ++ // of the object, so so offset must be a multiple of kPointerSize. ++ DCHECK(IsAligned(offset, kPointerSize)); ++ ++ Add_d(dst, object, Operand(offset - kHeapObjectTag)); ++ if (emit_debug_code()) { ++ Label ok; ++ And(t8, dst, Operand(kPointerSize - 1)); ++ Branch(&ok, eq, t8, Operand(zero_reg)); ++ stop("Unaligned cell in write barrier"); ++ bind(&ok); ++ } ++ ++ RecordWrite(object, dst, value, ra_status, save_fp, remembered_set_action, ++ OMIT_SMI_CHECK); ++ ++ bind(&done); ++ ++ // Clobber clobbered input registers when running with the debug-code flag ++ // turned on to provoke errors. ++ if (emit_debug_code()) { ++ li(value, Operand(bit_cast(kZapValue + 4))); ++ li(dst, Operand(bit_cast(kZapValue + 8))); ++ } ++} ++ ++void TurboAssembler::SaveRegisters(RegList registers) { ++ DCHECK_GT(NumRegs(registers), 0); ++ RegList regs = 0; ++ for (int i = 0; i < Register::kNumRegisters; ++i) { ++ if ((registers >> i) & 1u) { ++ regs |= Register::from_code(i).bit(); ++ } ++ } ++ MultiPush(regs); ++} ++ ++void TurboAssembler::RestoreRegisters(RegList registers) { ++ DCHECK_GT(NumRegs(registers), 0); ++ RegList regs = 0; ++ for (int i = 0; i < Register::kNumRegisters; ++i) { ++ if ((registers >> i) & 1u) { ++ regs |= Register::from_code(i).bit(); ++ } ++ } ++ MultiPop(regs); ++} ++ ++void TurboAssembler::CallRecordWriteStub( ++ Register object, Register address, ++ RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { ++ // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, ++ // i.e. always emit remember set and save FP registers in RecordWriteStub. If ++ // large performance regression is observed, we should use these values to ++ // avoid unnecessary work. ++ ++ Callable const callable = ++ Builtins::CallableFor(isolate(), Builtins::kRecordWrite); ++ RegList registers = callable.descriptor().allocatable_registers(); ++ ++ SaveRegisters(registers); ++ Register object_parameter(callable.descriptor().GetRegisterParameter( ++ RecordWriteDescriptor::kObject)); ++ Register slot_parameter( ++ callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); ++ Register isolate_parameter(callable.descriptor().GetRegisterParameter( ++ RecordWriteDescriptor::kIsolate)); ++ Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( ++ RecordWriteDescriptor::kRememberedSet)); ++ Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( ++ RecordWriteDescriptor::kFPMode)); ++ ++ Push(object); ++ Push(address); ++ ++ Pop(slot_parameter); ++ Pop(object_parameter); ++ ++ li(isolate_parameter, ExternalReference::isolate_address(isolate())); ++ Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); ++ Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); ++ Call(callable.code(), RelocInfo::CODE_TARGET); ++ ++ RestoreRegisters(registers); ++} ++ ++// Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved) ++// The register 'object' contains a heap object pointer. The heap object ++// tag is shifted away. ++void MacroAssembler::RecordWrite(Register object, Register address, ++ Register value, RAStatus ra_status, ++ SaveFPRegsMode fp_mode, ++ RememberedSetAction remembered_set_action, ++ SmiCheck smi_check) { ++ DCHECK(!AreAliased(object, address, value)); ++ ++ if (emit_debug_code()) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Ld_d(scratch, MemOperand(address, 0)); ++ Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch, ++ Operand(value)); ++ } ++ ++ if (remembered_set_action == OMIT_REMEMBERED_SET && ++ !FLAG_incremental_marking) { ++ return; ++ } ++ ++ // First, check if a write barrier is even needed. The tests below ++ // catch stores of smis and stores into the young generation. ++ Label done; ++ ++ if (smi_check == INLINE_SMI_CHECK) { ++ DCHECK_EQ(0, kSmiTag); ++ JumpIfSmi(value, &done); ++ } ++ ++ CheckPageFlag(value, ++ value, // Used as scratch. ++ MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); ++ CheckPageFlag(object, ++ value, // Used as scratch. ++ MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); ++ ++ // Record the actual write. ++ if (ra_status == kRAHasNotBeenSaved) { ++ push(ra); ++ } ++ CallRecordWriteStub(object, address, remembered_set_action, fp_mode); ++ if (ra_status == kRAHasNotBeenSaved) { ++ pop(ra); ++ } ++ ++ bind(&done); ++ ++ { ++ // Count number of write barriers in generated code. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ isolate()->counters()->write_barriers_static()->Increment(); ++ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ++ scratch, value); ++ } ++ ++ // Clobber clobbered registers when running with the debug-code flag ++ // turned on to provoke errors. ++ if (emit_debug_code()) { ++ li(address, Operand(bit_cast(kZapValue + 12))); ++ li(value, Operand(bit_cast(kZapValue + 16))); ++ } ++} ++ ++// --------------------------------------------------------------------------- ++// Instruction macros. ++ ++void TurboAssembler::Add_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ add_w(rd, rj, rk.rm()); ++ } else { ++ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ addi_w(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ add_w(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Add_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ add_d(rd, rj, rk.rm()); ++ } else { ++ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ addi_d(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ add_d(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Sub_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ sub_w(rd, rj, rk.rm()); ++ } else { ++ DCHECK(is_int32(rk.immediate())); ++ if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) { ++ addi_w(rd, rj, ++ static_cast( ++ -rk.immediate())); // No subi_w instr, use addi_w(x, y, -imm). ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ if (-rk.immediate() >> 12 == 0 && !MustUseReg(rk.rmode())) { ++ // Use load -imm and addu when loading -imm generates one instruction. ++ li(scratch, -rk.immediate()); ++ add_w(rd, rj, scratch); ++ } else { ++ // li handles the relocation. ++ li(scratch, rk); ++ sub_w(rd, rj, scratch); ++ } ++ } ++ } ++} ++ ++void TurboAssembler::Sub_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ sub_d(rd, rj, rk.rm()); ++ } else if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) { ++ addi_d(rd, rj, ++ static_cast( ++ -rk.immediate())); // No subi_d instr, use addi_d(x, y, -imm). ++ } else { ++ DCHECK(rj != t7); ++ int li_count = InstrCountForLi64Bit(rk.immediate()); ++ int li_neg_count = InstrCountForLi64Bit(-rk.immediate()); ++ if (li_neg_count < li_count && !MustUseReg(rk.rmode())) { ++ // Use load -imm and add_d when loading -imm generates one instruction. ++ DCHECK(rk.immediate() != std::numeric_limits::min()); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(-rk.immediate())); ++ add_d(rd, rj, scratch); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, rk); ++ sub_d(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Mul_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mul_w(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mul_w(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mulh_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mulh_w(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mulh_w(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mulh_wu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mulh_wu(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mulh_wu(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mul_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mul_d(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mul_d(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mulh_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mulh_d(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mulh_d(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Div_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ div_w(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ div_w(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mod_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mod_w(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mod_w(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mod_wu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mod_wu(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mod_wu(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Div_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ div_d(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ div_d(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Div_wu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ div_wu(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ div_wu(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Div_du(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ div_du(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ div_du(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mod_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mod_d(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mod_d(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Mod_du(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ mod_du(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ mod_du(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::And(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ and_(rd, rj, rk.rm()); ++ } else { ++ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ andi(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ and_(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Or(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ or_(rd, rj, rk.rm()); ++ } else { ++ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ ori(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ or_(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Xor(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ xor_(rd, rj, rk.rm()); ++ } else { ++ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ xori(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ xor_(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Nor(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ nor(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ nor(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Andn(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ andn(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ andn(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Orn(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ orn(rd, rj, rk.rm()); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ orn(rd, rj, scratch); ++ } ++} ++ ++void TurboAssembler::Neg(Register rj, const Operand& rk) { ++ DCHECK(rk.is_reg()); ++ sub_d(rj, zero_reg, rk.rm()); ++} ++ ++void TurboAssembler::Slt(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ slt(rd, rj, rk.rm()); ++ } else { ++ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ slti(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ slt(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Sltu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ sltu(rd, rj, rk.rm()); ++ } else { ++ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { ++ sltui(rd, rj, static_cast(rk.immediate())); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ sltu(rd, rj, scratch); ++ } ++ } ++} ++ ++void TurboAssembler::Sle(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ slt(rd, rk.rm(), rj); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ slt(rd, scratch, rj); ++ } ++ xori(rd, rd, 1); ++} ++ ++void TurboAssembler::Sleu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ sltu(rd, rk.rm(), rj); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ sltu(rd, scratch, rj); ++ } ++ xori(rd, rd, 1); ++} ++ ++void TurboAssembler::Sge(Register rd, Register rj, const Operand& rk) { ++ Slt(rd, rj, rk); ++ xori(rd, rd, 1); ++} ++ ++void TurboAssembler::Sgeu(Register rd, Register rj, const Operand& rk) { ++ Sltu(rd, rj, rk); ++ xori(rd, rd, 1); ++} ++ ++void TurboAssembler::Sgt(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ slt(rd, rk.rm(), rj); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ slt(rd, scratch, rj); ++ } ++} ++ ++void TurboAssembler::Sgtu(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ sltu(rd, rk.rm(), rj); ++ } else { ++ // li handles the relocation. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ DCHECK(rj != scratch); ++ li(scratch, rk); ++ sltu(rd, scratch, rj); ++ } ++} ++ ++void TurboAssembler::Rotr_w(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ rotr_w(rd, rj, rk.rm()); ++ } else { ++ int64_t ror_value = rk.immediate() % 32; ++ if (ror_value < 0) { ++ ror_value += 32; ++ } ++ rotri_w(rd, rj, ror_value); ++ } ++} ++ ++void TurboAssembler::Rotr_d(Register rd, Register rj, const Operand& rk) { ++ if (rk.is_reg()) { ++ rotr_d(rd, rj, rk.rm()); ++ } else { ++ int64_t dror_value = rk.immediate() % 64; ++ if (dror_value < 0) dror_value += 64; ++ rotri_d(rd, rj, dror_value); ++ } ++} ++ ++void MacroAssembler::Pref(int32_t hint, const MemOperand& rj) { ++ // TODO ++ //pref(hint); ++} ++ ++void TurboAssembler::Alsl_w(Register rd, Register rj, Register rk, uint8_t sa, ++ Register scratch) { ++ DCHECK(sa >= 1 && sa <= 31); ++ if (sa <= 4) { ++ alsl_w(rd, rj, rk, sa); ++ } else { ++ Register tmp = rd == rk ? scratch : rd; ++ DCHECK(tmp != rk); ++ slli_w(tmp, rj, sa); ++ add_w(rd, rk, tmp); ++ } ++} ++ ++void TurboAssembler::Alsl_d(Register rd, Register rj, Register rk, uint8_t sa, ++ Register scratch) { ++ DCHECK(sa >= 1 && sa <= 31); ++ if (sa <= 4) { ++ alsl_d(rd, rj, rk, sa); ++ } else { ++ Register tmp = rd == rk ? scratch : rd; ++ DCHECK(tmp != rk); ++ slli_d(tmp, rj, sa); ++ add_d(rd, rk, tmp); ++ } ++} ++ ++// ------------Pseudo-instructions------------- ++// Change endianness ++void TurboAssembler::ByteSwapSigned(Register dest, Register src, ++ int operand_size) { ++ DCHECK(operand_size == 1 || operand_size == 2 || operand_size == 4 ++ || operand_size == 8); ++ if (operand_size == 1) { ++ ext_w_b(src, src); ++ slli_w(src, src, 0); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } else if (operand_size == 2) { ++ ext_w_h(src, src); ++ slli_w(src, src, 0); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } else if (operand_size == 4) { ++ slli_w(src, src, 0); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } else { ++ revb_d(dest, dest); ++ } ++} ++ ++void TurboAssembler::ByteSwapUnsigned(Register dest, Register src, ++ int operand_size) { ++ DCHECK(operand_size == 1 || operand_size == 2 || operand_size == 4); ++ if (operand_size == 1) { ++ bstrins_d(src, zero_reg, 63, 8); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } else if (operand_size == 2) { ++ bstrins_d(dest, zero_reg, 63, 16); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } else { ++ slli_w(src, src, 0); ++ revb_4h(dest, src); ++ revh_d(dest, dest); ++ } ++} ++ ++void TurboAssembler::Ld_b(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_b(rd, source.base(), source.index()); ++ } else { ++ ld_b(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_bu(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_bu(rd, source.base(), source.index()); ++ } else { ++ ld_bu(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::St_b(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ stx_b(rd, source.base(), source.index()); ++ } else { ++ st_b(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_h(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_h(rd, source.base(), source.index()); ++ } else { ++ ld_h(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_hu(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_hu(rd, source.base(), source.index()); ++ } else { ++ ld_hu(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::St_h(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ stx_h(rd, source.base(), source.index()); ++ } else { ++ st_h(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_w(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); // TODO ldptr_w ?? ++ if (source.hasIndexReg()) { ++ ldx_w(rd, source.base(), source.index()); ++ } else { ++ ld_w(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_wu(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_wu(rd, source.base(), source.index()); ++ } else { ++ ld_wu(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::St_w(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ stx_w(rd, source.base(), source.index()); ++ } else { ++ st_w(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Ld_d(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ ldx_d(rd, source.base(), source.index()); ++ } else { ++ ld_d(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::St_d(Register rd, const MemOperand& rj) { ++ MemOperand source = rj; ++ AdjustBaseAndOffset(&source); ++ if (source.hasIndexReg()) { ++ stx_d(rd, source.base(), source.index()); ++ } else { ++ st_d(rd, source.base(), source.offset()); ++ } ++} ++ ++void TurboAssembler::Fld_s(FPURegister fd, const MemOperand& src) { ++ MemOperand tmp = src; ++ AdjustBaseAndOffset(&tmp); ++ if (tmp.hasIndexReg()) { ++ fldx_s(fd, tmp.base(), tmp.index()); ++ } else { ++ fld_s(fd, tmp.base(), tmp.offset()); ++ } ++} ++ ++void TurboAssembler::Fst_s(FPURegister fs, const MemOperand& src) { ++ MemOperand tmp = src; ++ AdjustBaseAndOffset(&tmp); ++ if (tmp.hasIndexReg()) { ++ fstx_s(fs, tmp.base(), tmp.index()); ++ } else { ++ fst_s(fs, tmp.base(), tmp.offset()); ++ } ++} ++ ++void TurboAssembler::Fld_d(FPURegister fd, const MemOperand& src) { ++ MemOperand tmp = src; ++ AdjustBaseAndOffset(&tmp); ++ if (tmp.hasIndexReg()) { ++ fldx_d(fd, tmp.base(), tmp.index()); ++ } else { ++ fld_d(fd, tmp.base(), tmp.offset()); ++ } ++} ++ ++void TurboAssembler::Fst_d(FPURegister fs, const MemOperand& src) { ++ MemOperand tmp = src; ++ AdjustBaseAndOffset(&tmp); ++ if (tmp.hasIndexReg()) { ++ fstx_d(fs, tmp.base(), tmp.index()); ++ } else { ++ fst_d(fs, tmp.base(), tmp.offset()); ++ } ++} ++ ++void TurboAssembler::Ll_w(Register rd, const MemOperand& rj) { ++ DCHECK(!rj.hasIndexReg()); ++ bool is_one_instruction = is_int14(rj.offset()); ++ if (is_one_instruction) { ++ ll_w(rd, rj.base(), rj.offset()); ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, rj.offset()); ++ add_d(scratch, scratch, rj.base()); ++ ll_w(rd, scratch, 0); ++ } ++} ++ ++void TurboAssembler::Ll_d(Register rd, const MemOperand& rj) { ++ DCHECK(!rj.hasIndexReg()); ++ bool is_one_instruction = is_int14(rj.offset()); ++ if (is_one_instruction) { ++ ll_d(rd, rj.base(), rj.offset()); ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, rj.offset()); ++ add_d(scratch, scratch, rj.base()); ++ ll_d(rd, scratch, 0); ++ } ++} ++ ++void TurboAssembler::Sc_w(Register rd, const MemOperand& rj) { ++ DCHECK(!rj.hasIndexReg()); ++ bool is_one_instruction = is_int14(rj.offset()); ++ if (is_one_instruction) { ++ sc_w(rd, rj.base(), rj.offset()); ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, rj.offset()); ++ add_d(scratch, scratch, rj.base()); ++ sc_w(rd, scratch, 0); ++ } ++} ++ ++void TurboAssembler::Sc_d(Register rd, const MemOperand& rj) { ++ DCHECK(!rj.hasIndexReg()); ++ bool is_one_instruction = is_int14(rj.offset()); ++ if (is_one_instruction) { ++ sc_d(rd, rj.base(), rj.offset()); ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, rj.offset()); ++ add_d(scratch, scratch, rj.base()); ++ sc_d(rd, scratch, 0); ++ } ++} ++ ++void TurboAssembler::li(Register dst, Handle value, LiFlags mode) { ++ // TODO(jgruber,v8:8887): Also consider a root-relative load when generating ++ // non-isolate-independent code. In many cases it might be cheaper than ++ // embedding the relocatable value. ++#ifdef V8_EMBEDDED_BUILTINS ++ if (root_array_available_ && isolate()->ShouldLoadConstantsFromRootList()) { ++ LookupConstant(dst, value); ++ return; ++ } ++#endif // V8_EMBEDDED_BUILTINS ++ li(dst, Operand(value), mode); ++} ++ ++void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) { ++ // TODO(jgruber,v8:8887): Also consider a root-relative load when generating ++ // non-isolate-independent code. In many cases it might be cheaper than ++ // embedding the relocatable value. ++#ifdef V8_EMBEDDED_BUILTINS ++ if (root_array_available_ && isolate()->ShouldLoadConstantsFromRootList()) { ++ LookupExternalReference(dst, value); ++ return; ++ } ++#endif // V8_EMBEDDED_BUILTINS ++ li(dst, Operand(value), mode); ++} ++ ++static inline int InstrCountForLiLower32Bit(int64_t value) { ++ if (is_int12(static_cast(value)) || ++ is_uint12(static_cast(value)) || !(value & kImm12Mask)) { ++ return 1; ++ } else { ++ return 2; ++ } ++} ++ ++void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) { ++ if (is_int12(static_cast(j.immediate()))) { ++ addi_d(rd, zero_reg, j.immediate()); ++ } else if (is_uint12(static_cast(j.immediate()))) { ++ ori(rd, zero_reg, j.immediate() & kImm12Mask); ++ } else { ++ lu12i_w(rd, j.immediate() >> 12 & 0xfffff); ++ if (j.immediate() & kImm12Mask) { ++ ori(rd, rd, j.immediate() & kImm12Mask); ++ } ++ } ++} ++ ++int TurboAssembler::InstrCountForLi64Bit(int64_t value) { ++ if (is_int32(value)) { ++ return InstrCountForLiLower32Bit(value); ++ } else if (is_int52(value)) { ++ return InstrCountForLiLower32Bit(value) + 1; ++ } else if ((value & 0xffffffffL) == 0) { ++ // 32 LSBs (Least Significant Bits) all set to zero. ++ uint8_t tzc = base::bits::CountTrailingZeros32(value >> 32); ++ uint8_t lzc = base::bits::CountLeadingZeros32(value >> 32); ++ if (tzc >= 20) { ++ return 1; ++ } else if (tzc + lzc > 12) { ++ return 2; ++ } else { ++ return 3; ++ } ++ } else { ++ int64_t imm21 = (value >> 31) & 0x1fffffL; ++ if (imm21 != 0x1fffffL && imm21 != 0) { ++ return InstrCountForLiLower32Bit(value) + 2; ++ } else { ++ return InstrCountForLiLower32Bit(value) + 1; ++ } ++ } ++ UNREACHABLE(); ++ return INT_MAX; ++} ++ ++// All changes to if...else conditions here must be added to ++// InstrCountForLi64Bit as well. ++void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) { ++ DCHECK(!j.is_reg()); ++ DCHECK(!MustUseReg(j.rmode())); ++ DCHECK(mode == OPTIMIZE_SIZE); ++ int64_t imm = j.immediate(); ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ // Normal load of an immediate value which does not need Relocation Info. ++ if (is_int32(imm)) { ++ LiLower32BitHelper(rd, j); ++ } else if (is_int52(imm)) { ++ LiLower32BitHelper(rd, j); ++ lu32i_d(rd, imm >> 32 & 0xfffff); ++ } else if ((imm & 0xffffffffL) == 0) { ++ // 32 LSBs (Least Significant Bits) all set to zero. ++ uint8_t tzc = base::bits::CountTrailingZeros32(imm >> 32); ++ uint8_t lzc = base::bits::CountLeadingZeros32(imm >> 32); ++ if (tzc >= 20) { ++ lu52i_d(rd, zero_reg, imm >> 52 & kImm12Mask); ++ } else if (tzc + lzc > 12) { ++ int32_t mask = (1 << (32 - tzc)) - 1; ++ lu12i_w(rd, imm >> (tzc + 32) & mask); ++ slli_d(rd, rd, tzc + 20); ++ } else { ++ xor_(rd, rd, rd); ++ lu32i_d(rd, imm >> 32 & 0xfffff); ++ lu52i_d(rd, rd, imm >> 52 & kImm12Mask); ++ } ++ } else { ++ int64_t imm21 = (imm >> 31) & 0x1fffffL; ++ LiLower32BitHelper(rd, j); ++ if (imm21 != 0x1fffffL && imm21 != 0) lu32i_d(rd, imm >> 32 & 0xfffff); ++ lu52i_d(rd, rd, imm >> 52 & kImm12Mask); ++ } ++} ++ ++void TurboAssembler::li(Register rd, Operand j, LiFlags mode) { ++ DCHECK(!j.is_reg()); ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) { ++ li_optimized(rd, j, mode); ++ } else if (MustUseReg(j.rmode())) { ++ int64_t immediate; ++ if (j.IsHeapObjectRequest()) { ++ RequestHeapObject(j.heap_object_request()); ++ immediate = 0; ++ } else { ++ immediate = j.immediate(); ++ } ++ ++ RecordRelocInfo(j.rmode(), immediate); ++ lu12i_w(rd, immediate >> 12 & 0xfffff); ++ ori(rd, rd, immediate & kImm12Mask); ++ lu32i_d(rd, immediate >> 32 & 0xfffff); ++ } else if (mode == ADDRESS_LOAD) { ++ // We always need the same number of instructions as we may need to patch ++ // this code to load another value which may need all 3 instructions. ++ lu12i_w(rd, j.immediate() >> 12 & 0xfffff); ++ ori(rd, rd, j.immediate() & kImm12Mask); ++ lu32i_d(rd, j.immediate() >> 32 & 0xfffff); ++ } else { // mode == CONSTANT_SIZE - always emit the same instruction ++ // sequence. ++ lu12i_w(rd, j.immediate() >> 12 & 0xfffff); ++ ori(rd, rd, j.immediate() & kImm12Mask); ++ lu32i_d(rd, j.immediate() >> 32 & 0xfffff); ++ lu52i_d(rd, rd, j.immediate() >> 52 & kImm12Mask); ++ } ++} ++ ++void TurboAssembler::MultiPush(RegList regs) { ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPush(RegList regs1, RegList regs2) { ++ DCHECK_EQ(regs1 & regs2, 0); ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs1 & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs2 & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPush(RegList regs1, RegList regs2, RegList regs3) { ++ DCHECK_EQ(regs1 & regs2, 0); ++ DCHECK_EQ(regs1 & regs3, 0); ++ DCHECK_EQ(regs2 & regs3, 0); ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs1 & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs2 & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs3 & (1 << i)) != 0) { ++ stack_offset -= kPointerSize; ++ St_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPop(RegList regs) { ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPop(RegList regs1, RegList regs2) { ++ DCHECK_EQ(regs1 & regs2, 0); ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs2 & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs1 & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPop(RegList regs1, RegList regs2, RegList regs3) { ++ DCHECK_EQ(regs1 & regs2, 0); ++ DCHECK_EQ(regs1 & regs3, 0); ++ DCHECK_EQ(regs2 & regs3, 0); ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs3 & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs2 & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs1 & (1 << i)) != 0) { ++ Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); ++ stack_offset += kPointerSize; ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::MultiPushFPU(RegList regs) { ++ int16_t num_to_push = base::bits::CountPopulation(regs); ++ int16_t stack_offset = num_to_push * kDoubleSize; ++ ++ Sub_d(sp, sp, Operand(stack_offset)); ++ for (int16_t i = kNumRegisters - 1; i >= 0; i--) { ++ if ((regs & (1 << i)) != 0) { ++ stack_offset -= kDoubleSize; ++ Fst_d(FPURegister::from_code(i), MemOperand(sp, stack_offset)); ++ } ++ } ++} ++ ++void TurboAssembler::MultiPopFPU(RegList regs) { ++ int16_t stack_offset = 0; ++ ++ for (int16_t i = 0; i < kNumRegisters; i++) { ++ if ((regs & (1 << i)) != 0) { ++ Fld_d(FPURegister::from_code(i), MemOperand(sp, stack_offset)); ++ stack_offset += kDoubleSize; ++ } ++ } ++ addi_d(sp, sp, stack_offset); ++} ++ ++void TurboAssembler::Bstrpick_w(Register rk, Register rj, uint16_t msbw, ++ uint16_t lsbw) { ++ DCHECK_LT(lsbw, msbw); ++ DCHECK_LT(lsbw, 32); ++ DCHECK_LT(msbw, 32); ++ bstrpick_w(rk, rj, msbw, lsbw); ++} ++ ++void TurboAssembler::Bstrpick_d(Register rk, Register rj, uint16_t msbw, ++ uint16_t lsbw) { ++ DCHECK_LT(lsbw, msbw); ++ DCHECK_LT(lsbw, 64); ++ DCHECK_LT(msbw, 64); ++ bstrpick_d(rk, rj, msbw, lsbw); ++} ++ ++void TurboAssembler::Neg_s(FPURegister fd, FPURegister fj) { ++ fneg_s(fd, fj); ++} ++ ++void TurboAssembler::Neg_d(FPURegister fd, FPURegister fj) { ++ fneg_d(fd, fj); ++} ++ ++void TurboAssembler::Ffint_d_uw(FPURegister fd, FPURegister fj) { ++ // Move the data from fs to t8. ++ movfr2gr_s(t8, fj); ++ Ffint_d_uw(fd, t8); ++} ++ ++void TurboAssembler::Ffint_d_uw(FPURegister fd, Register rj) { ++ ++ // Convert rj to a FP value in fd. ++ DCHECK(rj != t7); ++ ++ // Zero extend int32 in rj. ++ Bstrpick_d(t7, rj, 31, 0); ++ movgr2fr_d(fd, t7); ++ ffint_d_l(fd, fd); ++} ++ ++void TurboAssembler::Ffint_d_ul(FPURegister fd, FPURegister fj) { ++ // Move the data from fs to t8. ++ movfr2gr_d(t8, fj); ++ Ffint_d_ul(fd, t8); ++} ++ ++void TurboAssembler::Ffint_d_ul(FPURegister fd, Register rj) { ++ // Convert rj to a FP value in fd. ++ ++ DCHECK(rj != t7); ++ ++ Label msb_clear, conversion_done; ++ ++ Branch(&msb_clear, ge, rj, Operand(zero_reg)); ++ ++ // Rj >= 2^63 ++ andi(t7, rj, 1); ++ srli_d(rj, rj, 1); ++ or_(t7, t7, rj); ++ movgr2fr_d(fd, t7); ++ ffint_d_l(fd, fd); ++ fadd_d(fd, fd, fd); ++ Branch(&conversion_done); ++ ++ bind(&msb_clear); ++ // Rs < 2^63, we can do simple conversion. ++ movgr2fr_d(fd, rj); ++ ffint_d_l(fd, fd); ++ ++ bind(&conversion_done); ++} ++ ++void TurboAssembler::Ffint_s_uw(FPURegister fd, FPURegister fj) { ++ // Move the data from fs to t8. ++ movfr2gr_d(t8, fj); ++ Ffint_s_uw(fd, t8); ++} ++ ++void TurboAssembler::Ffint_s_uw(FPURegister fd, Register rj) { ++ // Convert rj to a FP value in fd. ++ DCHECK(rj != t7); ++ ++ // Zero extend int32 in rj. ++ bstrpick_d(t7, rj, 31, 0); ++ movgr2fr_d(fd, t7); ++ ffint_s_l(fd, fd); ++} ++ ++void TurboAssembler::Ffint_s_ul(FPURegister fd, FPURegister fj) { ++ // Move the data from fs to t8. ++ movfr2gr_d(t8, fj); ++ Ffint_s_ul(fd, t8); ++} ++ ++void TurboAssembler::Ffint_s_ul(FPURegister fd, Register rj) { ++ // Convert rj to a FP value in fd. ++ ++ DCHECK(rj != t7); ++ ++ Label positive, conversion_done; ++ ++ Branch(&positive, ge, rj, Operand(zero_reg)); ++ ++ // Rs >= 2^31. ++ andi(t7, rj, 1); ++ srli_d(rj, rj, 1); ++ or_(t7, t7, rj); ++ movgr2fr_d(fd, t7); ++ ffint_s_l(fd, fd); ++ fadd_s(fd, fd, fd); ++ Branch(&conversion_done); ++ ++ bind(&positive); ++ // Rs < 2^31, we can do simple conversion. ++ movgr2fr_d(fd, rj); ++ ffint_s_l(fd, fd); ++ ++ bind(&conversion_done); ++} ++ ++void MacroAssembler::Ftintrne_l_d(FPURegister fd, FPURegister fj) { ++ ftintrne_l_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrm_l_d(FPURegister fd, FPURegister fj) { ++ ftintrm_l_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrp_l_d(FPURegister fd, FPURegister fj) { ++ ftintrp_l_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrz_l_d(FPURegister fd, FPURegister fj) { ++ ftintrz_l_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrz_l_ud(FPURegister fd, FPURegister fj, ++ FPURegister scratch) { ++ // Load to GPR. ++ movfr2gr_d(t8, fj); ++ // Reset sign bit. ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ li(scratch1, 0x7FFFFFFFFFFFFFFFl); ++ and_(t8, t8, scratch1); ++ } ++ movgr2fr_d(scratch, t8); ++ Ftintrz_l_d(fd, scratch); ++} ++ ++void TurboAssembler::Ftintrz_uw_d(FPURegister fd, FPURegister fj, ++ FPURegister scratch) { ++ Ftintrz_uw_d(t8, fj, scratch); ++ movgr2fr_w(fd, t8); ++} ++ ++void TurboAssembler::Ftintrz_uw_s(FPURegister fd, FPURegister fj, ++ FPURegister scratch) { ++ Ftintrz_uw_s(t8, fj, scratch); ++ movgr2fr_w(fd, t8); ++} ++ ++void TurboAssembler::Ftintrz_ul_d(FPURegister fd, FPURegister fj, ++ FPURegister scratch, Register result) { ++ Ftintrz_ul_d(t8, fj, scratch, result); ++ movgr2fr_d(fd, t8); ++} ++ ++void TurboAssembler::Ftintrz_ul_s(FPURegister fd, FPURegister fj, ++ FPURegister scratch, Register result) { ++ Ftintrz_ul_s(t8, fj, scratch, result); ++ movgr2fr_d(fd, t8); ++} ++ ++void MacroAssembler::Ftintrz_w_d(FPURegister fd, FPURegister fj) { ++ ftintrz_w_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrne_w_d(FPURegister fd, FPURegister fj) { ++ ftintrne_w_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrm_w_d(FPURegister fd, FPURegister fj) { ++ ftintrm_w_d(fd, fj); ++} ++ ++void MacroAssembler::Ftintrp_w_d(FPURegister fd, FPURegister fj) { ++ ftintrp_w_d(fd, fj); ++} ++ ++void TurboAssembler::Ftintrz_uw_d(Register rd, FPURegister fj, ++ FPURegister scratch) { ++ DCHECK(fj != scratch); ++ DCHECK(rd != t7); ++ ++ { ++ // Load 2^31 into scratch as its float representation. ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ li(scratch1, 0x41E00000); ++ movgr2fr_w(scratch, zero_reg); ++ movgr2frh_w(scratch, scratch1); ++ } ++ // Test if scratch > fd. ++ // If fd < 2^31 we can convert it normally. ++ Label simple_convert; ++ CompareF64(fj, scratch, CLT); ++ BranchTrueShortF(&simple_convert); ++ ++ // First we subtract 2^31 from fd, then trunc it to rs ++ // and add 2^31 to rj. ++ fsub_d(scratch, fj, scratch); ++ ftintrz_w_d(scratch, scratch); ++ movfr2gr_s(rd, scratch); ++ Or(rd, rd, 1 << 31); ++ ++ Label done; ++ Branch(&done); ++ // Simple conversion. ++ bind(&simple_convert); ++ ftintrz_w_d(scratch, fj); ++ movfr2gr_s(rd, scratch); ++ ++ bind(&done); ++} ++ ++void TurboAssembler::Ftintrz_uw_s(Register rd, FPURegister fj, ++ FPURegister scratch) { ++ DCHECK(fj != scratch); ++ DCHECK(rd != t7); ++ { ++ // Load 2^31 into scratch as its float representation. ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ li(scratch1, 0x4F000000); ++ movgr2fr_w(scratch, scratch1); ++ } ++ // Test if scratch > fs. ++ // If fs < 2^31 we can convert it normally. ++ Label simple_convert; ++ CompareF32(fj, scratch, CLT); ++ BranchTrueShortF(&simple_convert); ++ ++ // First we subtract 2^31 from fs, then trunc it to rd ++ // and add 2^31 to rd. ++ fsub_s(scratch, fj, scratch); ++ ftintrz_w_s(scratch, scratch); ++ movfr2gr_s(rd, scratch); ++ Or(rd, rd, 1 << 31); ++ ++ Label done; ++ Branch(&done); ++ // Simple conversion. ++ bind(&simple_convert); ++ ftintrz_w_s(scratch, fj); ++ movfr2gr_s(rd, scratch); ++ ++ bind(&done); ++} ++ ++void TurboAssembler::Ftintrz_ul_d(Register rd, FPURegister fj, ++ FPURegister scratch, Register result) { ++ DCHECK(fj != scratch); ++ DCHECK(!AreAliased(rd, result, t7)); ++ ++ Label simple_convert, done, fail; ++ if (result.is_valid()) { ++ mov(result, zero_reg); ++ Move(scratch, -1.0); ++ // If fd =< -1 or unordered, then the conversion fails. ++ CompareF64(fj, scratch, CLE); ++ BranchTrueShortF(&fail); ++ CompareIsNanF64(fj, scratch); ++ BranchTrueShortF(&fail); ++ } ++ ++ // Load 2^63 into scratch as its double representation. ++ li(t7, 0x43E0000000000000); ++ movgr2fr_d(scratch, t7); ++ ++ // Test if scratch > fs. ++ // If fs < 2^63 we can convert it normally. ++ CompareF64(fj, scratch, CLT); ++ BranchTrueShortF(&simple_convert); ++ ++ // First we subtract 2^63 from fs, then trunc it to rd ++ // and add 2^63 to rd. ++ fsub_d(scratch, fj, scratch); ++ ftintrz_l_d(scratch, scratch); ++ movfr2gr_d(rd, scratch); ++ Or(rd, rd, Operand(1UL << 63)); ++ Branch(&done); ++ ++ // Simple conversion. ++ bind(&simple_convert); ++ ftintrz_l_d(scratch, fj); ++ movfr2gr_d(rd, scratch); ++ ++ bind(&done); ++ if (result.is_valid()) { ++ // Conversion is failed if the result is negative. ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ addi_d(scratch1, zero_reg, -1); ++ srli_d(scratch1, scratch1, 1); // Load 2^62. ++ movfr2gr_d(result, scratch); ++ xor_(result, result, scratch1); ++ } ++ Slt(result, zero_reg, result); ++ } ++ ++ bind(&fail); ++} ++ ++void TurboAssembler::Ftintrz_ul_s(Register rd, FPURegister fj, ++ FPURegister scratch, Register result) { ++ DCHECK(fj != scratch); ++ DCHECK(!AreAliased(rd, result, t7)); ++ ++ Label simple_convert, done, fail; ++ if (result.is_valid()) { ++ mov(result, zero_reg); ++ Move(scratch, -1.0f); ++ // If fd =< -1 or unordered, then the conversion fails. ++ CompareF32(fj, scratch, CLE); ++ BranchTrueShortF(&fail); ++ CompareIsNanF32(fj, scratch); ++ BranchTrueShortF(&fail); ++ } ++ ++ { ++ // Load 2^63 into scratch as its float representation. ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ li(scratch1, 0x5F000000); ++ movgr2fr_w(scratch, scratch1); ++ } ++ ++ // Test if scratch > fs. ++ // If fs < 2^63 we can convert it normally. ++ CompareF32(fj, scratch, CLT); ++ BranchTrueShortF(&simple_convert); ++ ++ // First we subtract 2^63 from fs, then trunc it to rd ++ // and add 2^63 to rd. ++ fsub_s(scratch, fj, scratch); ++ ftintrz_l_s(scratch, scratch); ++ movfr2gr_d(rd, scratch); ++ Or(rd, rd, Operand(1UL << 63)); ++ Branch(&done); ++ ++ // Simple conversion. ++ bind(&simple_convert); ++ ftintrz_l_s(scratch, fj); ++ movfr2gr_d(rd, scratch); ++ ++ bind(&done); ++ if (result.is_valid()) { ++ // Conversion is failed if the result is negative or unordered. ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch1 = temps.Acquire(); ++ addi_d(scratch1, zero_reg, -1); ++ srli_d(scratch1, scratch1, 1); // Load 2^62. ++ movfr2gr_d(result, scratch); ++ xor_(result, result, scratch1); ++ } ++ Slt(result, zero_reg, result); ++ } ++ ++ bind(&fail); ++} ++ ++void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src, ++ FPURoundingMode mode) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ Register scratch = t8; ++ movfcsr2gr(scratch); ++ li(t7, Operand(mode)); ++ movgr2fcsr(t7); ++ frint_d(dst, src); ++ movgr2fcsr(scratch); ++} ++ ++void TurboAssembler::Floor_d(FPURegister dst, FPURegister src) { ++ RoundDouble(dst, src, mode_floor); ++} ++ ++void TurboAssembler::Ceil_d(FPURegister dst, FPURegister src) { ++ RoundDouble(dst, src, mode_ceil); ++} ++ ++void TurboAssembler::Trunc_d(FPURegister dst, FPURegister src) { ++ RoundDouble(dst, src, mode_trunc); ++} ++ ++void TurboAssembler::Round_d(FPURegister dst, FPURegister src) { ++ RoundDouble(dst, src, mode_round); ++} ++ ++void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src, ++ FPURoundingMode mode) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ Register scratch = t8; ++ movfcsr2gr(scratch); ++ li(t7, Operand(mode)); ++ movgr2fcsr(t7); ++ frint_s(dst, src); ++ movgr2fcsr(scratch); ++} ++ ++void TurboAssembler::Floor_s(FPURegister dst, FPURegister src) { ++ RoundFloat(dst, src, mode_floor); ++} ++ ++void TurboAssembler::Ceil_s(FPURegister dst, FPURegister src) { ++ RoundFloat(dst, src, mode_ceil); ++} ++ ++void TurboAssembler::Trunc_s(FPURegister dst, FPURegister src) { ++ RoundFloat(dst, src, mode_trunc); ++} ++ ++void TurboAssembler::Round_s(FPURegister dst, FPURegister src) { ++ RoundFloat(dst, src, mode_round); ++} ++ ++void TurboAssembler::CompareF(FPURegister cmp1, FPURegister cmp2, ++ FPUCondition cc, CFRegister cd, bool f32) { ++ if (f32) { ++ fcmp_cond_s(cc, cmp1, cmp2, cd); ++ } else { ++ fcmp_cond_d(cc, cmp1, cmp2, cd); ++ } ++} ++ ++void TurboAssembler::CompareIsNanF(FPURegister cmp1, FPURegister cmp2, ++ CFRegister cd, bool f32) { ++ CompareF(cmp1, cmp2, CUN, cd, f32); ++} ++ ++void TurboAssembler::BranchTrueShortF(Label* target, CFRegister cj) { ++ bcnez(cj, target); ++} ++ ++void TurboAssembler::BranchFalseShortF(Label* target, CFRegister cj) { ++ bceqz(cj, target); ++} ++ ++void TurboAssembler::BranchTrueF(Label* target, CFRegister cj) { ++ // TODO can be optimzed ++ bool long_branch = ++ target->is_bound() ? !is_near(target, OffsetSize::kOffset21) : ++ is_trampoline_emitted(); ++ if (long_branch) { ++ Label skip; ++ BranchFalseShortF(&skip, cj); ++ Branch(target); ++ bind(&skip); ++ } else { ++ BranchTrueShortF(target, cj); ++ } ++} ++ ++void TurboAssembler::BranchFalseF(Label* target, CFRegister cj) { ++ bool long_branch = ++ target->is_bound() ? !is_near(target, OffsetSize::kOffset21) : ++ is_trampoline_emitted(); ++ if (long_branch) { ++ Label skip; ++ BranchTrueShortF(&skip, cj); ++ Branch(target); ++ bind(&skip); ++ } else { ++ BranchFalseShortF(target, cj); ++ } ++} ++ ++void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ DCHECK(src_low != scratch); ++ movfrh2gr_s(scratch, dst); ++ movgr2fr_w(dst, src_low); ++ movgr2frh_w(dst, scratch); ++} ++ ++void TurboAssembler::Move(FPURegister dst, uint32_t src) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(static_cast(src))); ++ movgr2fr_w(dst, scratch); ++} ++ ++void TurboAssembler::Move(FPURegister dst, uint64_t src) { ++ // Handle special values first. ++ if (src == bit_cast(0.0) && has_double_zero_reg_set_) { ++ fmov_d(dst, kDoubleRegZero); ++ } else if (src == bit_cast(-0.0) && has_double_zero_reg_set_) { ++ Neg_d(dst, kDoubleRegZero); ++ } else { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(static_cast(src))); ++ movgr2fr_d(dst, scratch); ++ if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true; ++ } ++} ++ ++void TurboAssembler::Movz(Register rd, Register rj, Register rk) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ maskeqz(scratch, rj, rk); ++ masknez(rd, rd, rk); ++ or_(rd, rd, scratch); ++} ++ ++void TurboAssembler::Movn(Register rd, Register rj, Register rk) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ masknez(scratch, rj, rk); ++ maskeqz(rd, rd, rk); ++ or_(rd, rd, scratch); ++} ++ ++void TurboAssembler::LoadZeroOnCondition(Register rd, Register rj, ++ const Operand& rk, Condition cond) { ++ switch (cond) { ++ case cc_always: ++ mov(rd, zero_reg); ++ break; ++ case eq: ++ if (rj == zero_reg) { ++ if (rk.is_reg()) { ++ LoadZeroIfConditionZero(rd, rk.rm()); ++ } else { ++ if (rk.immediate() == 0) { ++ mov(rd, zero_reg); ++ } else { ++ //nop(); ++ } ++ } ++ } else if (IsZero(rk)) { ++ LoadZeroIfConditionZero(rd, rj); ++ } else { ++ Sub_d(t7, rj, rk); ++ LoadZeroIfConditionZero(rd, t7); ++ } ++ break; ++ case ne: ++ if (rj == zero_reg) { ++ if (rk.is_reg()) { ++ LoadZeroIfConditionNotZero(rd, rk.rm()); ++ } else { ++ if (rk.immediate() != 0) { ++ mov(rd, zero_reg); ++ } else { ++ //nop(); ++ } ++ } ++ } else if (IsZero(rk)) { ++ LoadZeroIfConditionNotZero(rd, rj); ++ } else { ++ Sub_d(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ } ++ break; ++ ++ // Signed comparison. ++ case greater: ++ Sgt(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ break; ++ case greater_equal: ++ Sge(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj >= rk ++ break; ++ case less: ++ Slt(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj < rk ++ break; ++ case less_equal: ++ Sle(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj <= rk ++ break; ++ ++ // Unsigned comparison. ++ case Ugreater: ++ Sgtu(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj > rk ++ break; ++ ++ case Ugreater_equal: ++ Sgeu(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj >= rk ++ break; ++ case Uless: ++ Sltu(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj < rk ++ break; ++ case Uless_equal: ++ Sleu(t7, rj, rk); ++ LoadZeroIfConditionNotZero(rd, t7); ++ // rj <= rk ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void TurboAssembler::LoadZeroIfConditionNotZero(Register dest, ++ Register condition) { ++ maskeqz(dest, dest, condition); ++} ++ ++void TurboAssembler::LoadZeroIfConditionZero(Register dest, ++ Register condition) { ++ masknez(dest, dest, condition); ++} ++ ++void TurboAssembler::LoadZeroIfFPUCondition(Register dest, CFRegister cc) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ movcf2gr(scratch, cc); ++ LoadZeroIfConditionNotZero(dest, scratch); ++} ++ ++void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest, CFRegister cc) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ movcf2gr(scratch, cc); ++ LoadZeroIfConditionZero(dest, scratch); ++} ++ ++void TurboAssembler::Clz_w(Register rd, Register rj) { clz_w(rd, rj); } ++ ++void TurboAssembler::Clz_d(Register rd, Register rj) { clz_d(rd, rj); } ++ ++void TurboAssembler::Ctz_w(Register rd, Register rj) { ctz_w(rd, rj);} ++ ++void TurboAssembler::Ctz_d(Register rd, Register rj) { ctz_d(rd , rj);} ++ ++// TODO: Optimize like arm64, use simd instruction ++void TurboAssembler::Popcnt_w(Register rd, Register rj) { ++ // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel ++ // ++ // A generalization of the best bit counting method to integers of ++ // bit-widths up to 128 (parameterized by type T) is this: ++ // ++ // v = v - ((v >> 1) & (T)~(T)0/3); // temp ++ // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp ++ // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp ++ // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count ++ // ++ // For comparison, for 32-bit quantities, this algorithm can be executed ++ // using 20 MIPS instructions (the calls to LoadConst32() generate two ++ // machine instructions each for the values being used in this algorithm). ++ // A(n unrolled) loop-based algorithm requires 25 instructions. ++ // ++ // For a 64-bit operand this can be performed in 24 instructions compared ++ // to a(n unrolled) loop based algorithm which requires 38 instructions. ++ // ++ // There are algorithms which are faster in the cases where very few ++ // bits are set but the algorithm here attempts to minimize the total ++ // number of instructions executed even when a large number of bits ++ // are set. ++ int32_t B0 = 0x55555555; // (T)~(T)0/3 ++ int32_t B1 = 0x33333333; // (T)~(T)0/15*3 ++ int32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15 ++ int32_t value = 0x01010101; // (T)~(T)0/255 ++ uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE ++ ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Register scratch2 = t8; ++ srli_w(scratch, rj, 1); ++ li(scratch2, B0); ++ And(scratch, scratch, scratch2); ++ Sub_w(scratch, rj, scratch); ++ li(scratch2, B1); ++ And(rd, scratch, scratch2); ++ srli_w(scratch, scratch, 2); ++ And(scratch, scratch, scratch2); ++ Add_w(scratch, rd, scratch); ++ srli_w(rd, scratch, 4); ++ Add_w(rd, rd, scratch); ++ li(scratch2, B2); ++ And(rd, rd, scratch2); ++ li(scratch, value); ++ Mul_w(rd, rd, scratch); ++ srli_w(rd, rd, shift); ++} ++ ++void TurboAssembler::Popcnt_d(Register rd, Register rj) { ++ int64_t B0 = 0x5555555555555555l; // (T)~(T)0/3 ++ int64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3 ++ int64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15 ++ int64_t value = 0x0101010101010101l; // (T)~(T)0/255 ++ uint32_t shift = 56; // (sizeof(T) - 1) * BITS_PER_BYTE ++ ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Register scratch2 = t8; ++ srli_d(scratch, rj, 1); ++ li(scratch2, B0); ++ And(scratch, scratch, scratch2); ++ Sub_d(scratch, rj, scratch); ++ li(scratch2, B1); ++ And(rd, scratch, scratch2); ++ srli_d(scratch, scratch, 2); ++ And(scratch, scratch, scratch2); ++ Add_d(scratch, rd, scratch); ++ srli_d(rd, scratch, 4); ++ Add_d(rd, rd, scratch); ++ li(scratch2, B2); ++ And(rd, rd, scratch2); ++ li(scratch, value); ++ Mul_d(rd, rd, scratch); ++ srli_d(rd, rd, shift); ++} ++ ++void TurboAssembler::ExtractBits(Register dest, Register source, Register pos, ++ int size, bool sign_extend) { ++ sra_d(dest, source, pos); ++ bstrpick_d(dest, dest, size - 1, 0); ++ if (sign_extend) { ++ switch (size) { ++ case 8: ++ ext_w_b(dest, dest); ++ break; ++ case 16: ++ ext_w_h(dest, dest); ++ break; ++ case 32: ++ // sign-extend word ++ slli_w(dest, dest, 0); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++void TurboAssembler::InsertBits(Register dest, Register source, Register pos, ++ int size) { ++ Rotr_d(dest, dest, pos); ++ bstrins_d(dest, source, size -1, 0); ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Sub_d(scratch, zero_reg, pos); ++ Rotr_d(dest, dest, scratch); ++ } ++} ++ ++void MacroAssembler::EmitFPUTruncate( ++ FPURoundingMode rounding_mode, Register result, DoubleRegister double_input, ++ Register scratch, DoubleRegister double_scratch, Register except_flag, ++ CheckForInexactConversion check_inexact) { ++ DCHECK(result != scratch); ++ DCHECK(double_input != double_scratch); ++ DCHECK(except_flag != scratch); ++ ++ int32_t except_mask = kFCSRFlagMask << 8; // Assume interested in all exceptions. ++ if (check_inexact == kDontCheckForInexactConversion) { ++ // Ignore inexact exceptions. ++ except_mask &= ~(kFCSRInexactFlagMask << 8); ++ } ++ ++ // Do operation based on rounding mode. ++ switch (rounding_mode) { ++ case kRoundToNearest: ++ Ftintrne_w_d(double_scratch, double_input); ++ break; ++ case kRoundToZero: ++ Ftintrz_w_d(double_scratch, double_input); ++ break; ++ case kRoundToPlusInf: ++ Ftintrp_w_d(double_scratch, double_input); ++ break; ++ case kRoundToMinusInf: ++ Ftintrm_w_d(double_scratch, double_input); ++ break; ++ } // End of switch-statement. ++ ++ movfcsr2gr(except_flag); ++ movfr2gr_s(result, double_scratch); ++ ++ // Check for fpu exceptions. ++ And(except_flag, except_flag, Operand(except_mask)); ++} ++ ++void TurboAssembler::TryInlineTruncateDoubleToI(Register result, ++ DoubleRegister double_input, ++ Label* done) { ++ DoubleRegister single_scratch = kScratchDoubleReg.low(); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Register scratch2 = t7; ++ ++ // Clear cumulative exception flags and save the FCSR. ++/* movfcsr2gr(scratch2, FCSR); ++ movgr2fcsr(FCSR, zero_reg); ++ // Try a conversion to a signed integer. ++ ftintrz_w_d(single_scratch, double_input); ++ movfr2gr_w(result, single_scratch); ++ // Retrieve and restore the FCSR. ++ movfcsr2gr(scratch, FCSR); ++ movgr2fcsr(FCSR, scratch2); ++ // Check for overflow and NaNs. ++ And(scratch, scratch, ++ kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); ++ // If we had no exceptions we are done. ++ Branch(done, eq, scratch, Operand(zero_reg));*/ ++ ++ CompareIsNanF64(double_input, double_input); ++ Move(result, zero_reg); ++ bcnez(FCC0, done); ++ ftintrz_l_d(single_scratch, double_input); ++ movfr2gr_d(scratch2, single_scratch); ++ li(scratch, 1L << 63); ++ Xor(scratch, scratch, scratch2); ++ rotri_d(scratch2, scratch, 1); ++ movfr2gr_s(result, single_scratch); ++ Branch(done, ne, scratch, Operand(scratch2)); ++} ++ ++void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, ++ Register result, ++ DoubleRegister double_input) { ++ Label done; ++ ++ TryInlineTruncateDoubleToI(result, double_input, &done); ++ ++ // If we fell through then inline version didn't succeed - call stub instead. ++ Sub_d(sp, sp, ++ Operand(kDoubleSize + kPointerSize)); // Put input on stack. ++ St_d(ra, MemOperand(sp, kPointerSize)); ++ Fst_d(double_input, MemOperand(sp, 0)); ++ ++ Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); ++ Pop(ra, result); ++ bind(&done); ++} ++ ++// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. ++#define BRANCH_ARGS_CHECK(cond, rj, rk) \ ++ DCHECK((cond == cc_always && rj == zero_reg && rk.rm() == zero_reg) || \ ++ (cond != cc_always && (rj != zero_reg || rk.rm() != zero_reg))) ++ ++void TurboAssembler::Branch(Label* L, bool need_link) { ++ int offset = GetOffset(L, OffsetSize::kOffset26); ++ if (need_link) { ++ bl(offset); ++ } else { ++ b(offset); ++ } ++} ++ ++void TurboAssembler::Branch(Label* L, Condition cond, ++ Register rj, const Operand& rk, ++ bool need_link) { ++ if (L->is_bound()) { ++ BRANCH_ARGS_CHECK(cond, rj, rk); ++ if (!BranchShortOrFallback(L, cond, rj, rk, need_link)) { ++ if (cond != cc_always) { ++ Label skip; ++ Condition neg_cond = NegateCondition(cond); ++ BranchShort(&skip, neg_cond, rj, rk, need_link); ++ Branch(L, need_link); ++ bind(&skip); ++ } else { ++ Branch(L); ++ } ++ } ++ } else { ++ if (is_trampoline_emitted()) { ++ if (cond != cc_always) { ++ Label skip; ++ Condition neg_cond = NegateCondition(cond); ++ BranchShort(&skip, neg_cond, rj, rk, need_link); ++ Branch(L, need_link); ++ bind(&skip); ++ } else { ++ Branch(L); ++ } ++ } else { ++ BranchShort(L, cond, rj, rk, need_link); ++ } ++ } ++} ++ ++void TurboAssembler::Branch(Label* L, Condition cond, ++ Register rj, Heap::RootListIndex index) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ LoadRoot(scratch, index); ++ Branch(L, cond, rj, Operand(scratch)); ++} ++ ++int32_t TurboAssembler::GetOffset(Label* L, OffsetSize bits) { ++ return branch_offset_helper(L, bits) >> 2; ++} ++ ++Register TurboAssembler::GetRkAsRegisterHelper(const Operand& rk, ++ Register scratch) { ++ Register r2 = no_reg; ++ if (rk.is_reg()) { ++ r2 = rk.rm(); ++ } else { ++ r2 = scratch; ++ li(r2, rk); ++ } ++ ++ return r2; ++} ++ ++bool TurboAssembler::BranchShortOrFallback(Label* L, Condition cond, ++ Register rj, const Operand& rk, ++ bool need_link) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; ++ ++ // Be careful to always use shifted_branch_offset only just before the ++ // branch instruction, as the location will be remember for patching the ++ // target. ++ { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ int offset = 0; ++ switch (cond) { ++ case cc_always: ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ if (need_link) { ++ bl(offset); ++ } else { ++ b(offset); ++ } ++ break; ++ case eq: ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ // beq is used here to make the code patchable. Otherwise b should ++ // be used which has no condition field so is not patchable. ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ beq(rj, rj, offset); ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset21); ++ beqz(rj, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ // We don't want any other register but scratch clobbered. ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ beq(rj, sc, offset); ++ } ++ break; ++ case ne: ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ // bne is used here to make the code patchable. Otherwise we ++ // should not generate any instruction. ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bne(rj, rj, offset); ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset21); ++ bnez(rj, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ // We don't want any other register but scratch clobbered. ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bne(rj, sc, offset); ++ } ++ break; ++ ++ // Signed comparison. ++ case greater: ++ // rj > rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ // No code needs to be emitted. ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ blt(zero_reg, rj, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ blt(sc, rj, offset); ++ } ++ break; ++ case greater_equal: ++ // rj >= rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bge(rj, zero_reg, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bge(rj, sc, offset); ++ } ++ break; ++ case less: ++ // rj < rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ // No code needs to be emitted. ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ blt(rj, zero_reg, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ blt(rj, sc, offset); ++ } ++ break; ++ case less_equal: ++ // rj <= rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bge(zero_reg, rj, offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bge(sc, rj, offset); ++ } ++ break; ++ ++ // Unsigned comparison. ++ case Ugreater: ++ // rj > rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ // No code needs to be emitted. ++ } else if (rj == zero_reg) { ++ // No code needs to be emitted. ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bltu(sc, rj, offset); ++ } ++ break; ++ case Ugreater_equal: ++ // rj >= rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (IsZero(rk)) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (rj == zero_reg) { ++ // No code needs to be emitted. ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bgeu(rj, sc, offset); ++ } ++ break; ++ case Uless: ++ // rj < rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ // No code needs to be emitted. ++ } else if (IsZero(rk)) { ++ // No code needs to be emitted. ++ } else if (rj == zero_reg) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bltu(rj, sc, offset); ++ } ++ break; ++ case Uless_equal: ++ // rj <= rk ++ if (rk.is_reg() && rj.code() == rk.rm().code()) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (rj == zero_reg) { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; ++ if (need_link) pcaddi(ra, 2); ++ offset = GetOffset(L, OffsetSize::kOffset26); ++ b(offset); ++ } else if (IsZero(rk)) { ++ // No code needs to be emitted. ++ } else { ++ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; ++ if (need_link) pcaddi(ra, 2); ++ Register sc = GetRkAsRegisterHelper(rk, scratch); ++ DCHECK(rj != sc); ++ offset = GetOffset(L, OffsetSize::kOffset16); ++ bgeu(sc, rj, offset); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++ return true; ++} ++ ++void TurboAssembler::BranchShort(Label* L, Condition cond, ++ Register rj, const Operand& rk, ++ bool need_link) { ++ BRANCH_ARGS_CHECK(cond, rj, rk); ++ bool result = BranchShortOrFallback(L, cond, rj, rk, need_link); ++ DCHECK(result); ++ USE(result); ++} ++ ++#ifdef V8_EMBEDDED_BUILTINS ++void TurboAssembler::LookupConstant(Register destination, ++ Handle object) { ++ CHECK(isolate()->ShouldLoadConstantsFromRootList()); ++ CHECK(root_array_available_); ++ ++ // Ensure the given object is in the builtins constants table and fetch its ++ // index. ++ BuiltinsConstantsTableBuilder* builder = ++ isolate()->builtins_constants_table_builder(); ++ uint32_t index = builder->AddObject(object); ++ ++ // TODO(jgruber): Load builtins from the builtins table. ++ // TODO(jgruber): Ensure that code generation can recognize constant targets ++ // in kArchCallCodeObject. ++ ++ DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant( ++ Heap::kBuiltinsConstantsTableRootIndex)); ++ LoadRoot(destination, Heap::kBuiltinsConstantsTableRootIndex); ++ Ld_d(destination, FieldMemOperand(destination, FixedArray::kHeaderSize + ++ index * kPointerSize)); ++} ++ ++void TurboAssembler::LookupExternalReference(Register destination, ++ ExternalReference reference) { ++ CHECK(reference.address() != ++ ExternalReference::roots_array_start(isolate()).address()); ++ CHECK(isolate()->ShouldLoadConstantsFromRootList()); ++ CHECK(root_array_available_); ++ ++ // Encode as an index into the external reference table stored on the isolate. ++ ++ ExternalReferenceEncoder encoder(isolate()); ++ ExternalReferenceEncoder::Value v = encoder.Encode(reference.address()); ++ CHECK(!v.is_from_api()); ++ uint32_t index = v.index(); ++ ++ // Generate code to load from the external reference table. ++ ++ int32_t roots_to_external_reference_offset = ++ Heap::roots_to_external_reference_table_offset() + ++ ExternalReferenceTable::OffsetOfEntry(index); ++ ++ Ld_d(destination, ++ MemOperand(kRootRegister, roots_to_external_reference_offset)); ++} ++#endif // V8_EMBEDDED_BUILTINS ++ ++void TurboAssembler::Jump(Register target, Condition cond, ++ Register rj, const Operand& rk) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ if (cond == cc_always) { ++ jirl(zero_reg, target, 0); ++ } else { ++ BRANCH_ARGS_CHECK(cond, rj, rk); ++ Label skip; ++ Branch(&skip, NegateCondition(cond), rj, rk); ++ jirl(zero_reg, target, 0); ++ bind(&skip); ++ } ++} ++ ++void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, ++ Condition cond, Register rj, const Operand& rk) { ++ Label skip; ++ if (cond != cc_always) { ++ Branch(&skip, NegateCondition(cond), rj, rk); ++ } ++ li(t7, Operand(target, rmode)); ++ jirl(zero_reg, t7, 0); ++ nop(); ++ bind(&skip); ++} ++ ++void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, ++ Register rj, const Operand& rk) { ++ DCHECK(!RelocInfo::IsCodeTarget(rmode)); ++ Jump(static_cast(target), rmode, cond, rj, rk); ++} ++ ++void TurboAssembler::Jump(Handle code, RelocInfo::Mode rmode, ++ Condition cond, Register rj, const Operand& rk) { ++ DCHECK(RelocInfo::IsCodeTarget(rmode)); ++#ifdef V8_EMBEDDED_BUILTINS ++ if (root_array_available_ && isolate()->ShouldLoadConstantsFromRootList()) { ++ LookupConstant(t7, code); ++ Add_d(t7, t7, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ Jump(t7, cond, rj, rk); ++ return; ++ } ++#endif // V8_EMBEDDED_BUILTINS ++ Jump(static_cast(code.address()), rmode, cond, rj, rk); ++} ++ ++int TurboAssembler::CallSize(Register target, Condition cond, Register rj, ++ const Operand& rk) { ++ int size = 0; ++ if (cond == cc_always) { ++ size += 1; ++ } else { ++ size += 3; ++ } ++ return size * kInstrSize; ++} ++ ++// Note: To call gcc-compiled C code on loonarch, you must call through t[0-8]. ++void TurboAssembler::Call(Register target, Condition cond, ++ Register rj, const Operand& rk) { ++ ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ Label start; ++ bind(&start); ++ if (cond == cc_always) { ++ jirl(ra, target, 0); ++ } else { ++ BRANCH_ARGS_CHECK(cond, rj, rk); ++ Label skip; ++ Branch(&skip, NegateCondition(cond), rj, rk); ++ jirl(ra, target, 0); ++ bind(&skip); ++ } ++ ++ DCHECK_EQ(CallSize(target, cond, rj, rk), ++ SizeOfCodeGeneratedSince(&start)); ++} ++ ++int TurboAssembler::CallSize(Address target, RelocInfo::Mode rmode, ++ Condition cond, Register rj, const Operand& rk) { ++ int size = CallSize(t7, cond, rj, rk); ++ return size + 3 * kInstrSize; ++} ++ ++void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, ++ Register rj, const Operand& rk) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ Label start; ++ bind(&start); ++ li(t7, Operand(static_cast(target), rmode), ADDRESS_LOAD); ++ Call(t7, cond, rj, rk); ++ DCHECK_EQ(CallSize(target, rmode, cond, rj, rk), ++ SizeOfCodeGeneratedSince(&start)); ++} ++ ++int TurboAssembler::CallSize(Handle code, RelocInfo::Mode rmode, ++ Condition cond, Register rj, const Operand& rk) { ++ return CallSize(code.address(), rmode, cond, rj, rk); ++} ++ ++void TurboAssembler::Call(Handle code, RelocInfo::Mode rmode, ++ Condition cond, Register rj, const Operand& rk) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++#ifdef V8_EMBEDDED_BUILTINS ++ if (root_array_available_ && isolate()->ShouldLoadConstantsFromRootList()) { ++ LookupConstant(t7, code); ++ Add_d(t7, t7, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ Call(t7, cond, rj, rk); ++ return; ++ } ++#endif // V8_EMBEDDED_BUILTINS ++ Label start; ++ bind(&start); ++ DCHECK(RelocInfo::IsCodeTarget(rmode)); ++ Call(code.address(), rmode, cond, rj, rk); ++ DCHECK_EQ(CallSize(code, rmode, cond, rj, rk), ++ SizeOfCodeGeneratedSince(&start)); ++} ++ ++void TurboAssembler::PatchAndJump(Address target) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ pcaddi(scratch, 4); ++ Ld_d(t7, MemOperand(scratch, 0)); ++ jirl(zero_reg, t7, 0); ++ nop(); ++ DCHECK_EQ(reinterpret_cast(pc_) % 8, 0); ++ *reinterpret_cast(pc_) = target; // pc_ should be align. ++ pc_ += sizeof(uint64_t); ++} ++ ++void TurboAssembler::Ret(Condition cond, Register rj, const Operand& rk) { ++ Jump(ra, cond, rj, rk); ++} ++ ++void TurboAssembler::DropAndRet(int drop) { ++ DCHECK(is_int16(drop * kPointerSize)); ++ addi_d(sp, sp, drop * kPointerSize); ++ Ret(); ++} ++ ++void TurboAssembler::DropAndRet(int drop, Condition cond, Register r1, ++ const Operand& r2) { ++ // Both Drop and Ret need to be conditional. ++ Label skip; ++ if (cond != cc_always) { ++ Branch(&skip, NegateCondition(cond), r1, r2); ++ } ++ ++ Drop(drop); ++ Ret(); ++ ++ if (cond != cc_always) { ++ bind(&skip); ++ } ++} ++ ++void TurboAssembler::Drop(int count, Condition cond, Register reg, ++ const Operand& op) { ++ if (count <= 0) { ++ return; ++ } ++ ++ Label skip; ++ ++ if (cond != al) { ++ Branch(&skip, NegateCondition(cond), reg, op); ++ } ++ ++ Add_d(sp, sp, Operand(count * kPointerSize)); ++ ++ if (cond != al) { ++ bind(&skip); ++ } ++} ++ ++void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { ++ if (scratch == no_reg) { ++ Xor(reg1, reg1, Operand(reg2)); ++ Xor(reg2, reg2, Operand(reg1)); ++ Xor(reg1, reg1, Operand(reg2)); ++ } else { ++ mov(scratch, reg1); ++ mov(reg1, reg2); ++ mov(reg2, scratch); ++ } ++} ++ ++void TurboAssembler::Call(Label* target) { Branch(target, true); } ++ ++void TurboAssembler::Push(Smi* smi) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(smi)); ++ push(scratch); ++} ++ ++void TurboAssembler::Push(Handle handle) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(handle)); ++ push(scratch); ++} ++ ++void MacroAssembler::MaybeDropFrames() { ++ // Check whether we need to drop frames to restart a function on the stack. ++ li(a1, ExternalReference::debug_restart_fp_address(isolate())); ++ Ld_d(a1, MemOperand(a1, 0)); ++ Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, ++ ne, a1, Operand(zero_reg)); ++} ++ ++// --------------------------------------------------------------------------- ++// Exception handling. ++ ++void MacroAssembler::PushStackHandler() { ++ // Adjust this code if not the case. ++ STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); ++ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); ++ ++ Push(Smi::kZero); // Padding. ++ ++ // Link the current handler as the next handler. ++ li(a6, ++ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); ++ Ld_d(a5, MemOperand(a6, 0)); ++ push(a5); ++ ++ // Set this new handler as the current one. ++ St_d(sp, MemOperand(a6, 0)); ++} ++ ++void MacroAssembler::PopStackHandler() { ++ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); ++ pop(a1); ++ Add_d(sp, sp, ++ Operand( ++ static_cast(StackHandlerConstants::kSize - kPointerSize))); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, ++ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); ++ St_d(a1, MemOperand(scratch,0)); ++} ++ ++void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst, ++ const DoubleRegister src) { ++ fsub_d(dst, src, kDoubleRegZero); ++} ++ ++void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) { ++ Move(dst, f0); // Reg f0 is loongarch return value ++} ++ ++void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) { ++ Move(dst, f0); // Reg f0 is loongarch first argument value. ++} ++ ++void TurboAssembler::MovToFloatParameter(DoubleRegister src) { ++ Move(f0, src); ++} ++ ++void TurboAssembler::MovToFloatResult(DoubleRegister src) { ++ Move(f0, src); ++} ++ ++void TurboAssembler::MovToFloatParameters(DoubleRegister src1, ++ DoubleRegister src2) { ++ const DoubleRegister fparg2 = f1; ++ if (src2 == f0) { ++ DCHECK(src1 != fparg2); ++ Move(fparg2, src2); ++ Move(f0, src1); ++ } else { ++ Move(f0, src1); ++ Move(fparg2, src2); ++ } ++} ++ ++// ----------------------------------------------------------------------------- ++// JavaScript invokes. ++ ++void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, ++ Register caller_args_count_reg, ++ Register scratch0, Register scratch1) { ++#if DEBUG ++ if (callee_args_count.is_reg()) { ++ DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, ++ scratch1)); ++ } else { ++ DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); ++ } ++#endif ++ // Calculate the end of destination area where we will put the arguments ++ // after we drop current frame. We add kPointerSize to count the receiver ++ // argument which is not included into formal parameters count. ++ Register dst_reg = scratch0; ++ Alsl_d(dst_reg, caller_args_count_reg, fp, kPointerSizeLog2, t7); ++ Add_d(dst_reg, dst_reg, ++ Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); ++ ++ Register src_reg = caller_args_count_reg; ++ // Calculate the end of source area. +kPointerSize is for the receiver. ++ if (callee_args_count.is_reg()) { ++ Alsl_d(src_reg, callee_args_count.reg(), fp, kPointerSizeLog2, t7); ++ Add_d(src_reg, src_reg, Operand(kPointerSize)); ++ } else { ++ Add_d(src_reg, sp, ++ Operand((callee_args_count.immediate() + 1) * kPointerSize)); ++ } ++ ++ if (FLAG_debug_code) { ++ Check(lo, AbortReason::kStackAccessBelowStackPointer, src_reg, ++ Operand(dst_reg)); ++ } ++ ++ // Restore caller's frame pointer and return address now as they will be ++ // overwritten by the copying loop. ++ Ld_d(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); ++ Ld_d(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); ++ ++ // Now copy callee arguments to the caller frame going backwards to avoid ++ // callee arguments corruption (source and destination areas could overlap). ++ ++ // Both src_reg and dst_reg are pointing to the word after the one to copy, ++ // so they must be pre-decremented in the loop. ++ Register tmp_reg = scratch1; ++ Label loop, entry; ++ Branch(&entry); ++ bind(&loop); ++ Sub_d(src_reg, src_reg, Operand(kPointerSize)); ++ Sub_d(dst_reg, dst_reg, Operand(kPointerSize)); ++ Ld_d(tmp_reg, MemOperand(src_reg, 0)); ++ St_d(tmp_reg, MemOperand(dst_reg, 0)); ++ bind(&entry); ++ Branch(&loop, ne, sp, Operand(src_reg)); ++ ++ // Leave current frame. ++ mov(sp, dst_reg); ++} ++ ++void MacroAssembler::InvokePrologue(const ParameterCount& expected, ++ const ParameterCount& actual, Label* done, ++ bool* definitely_mismatches, ++ InvokeFlag flag) { ++ bool definitely_matches = false; ++ *definitely_mismatches = false; ++ Label regular_invoke; ++ ++ // Check whether the expected and actual arguments count match. If not, ++ // setup registers according to contract with ArgumentsAdaptorTrampoline: ++ // a0: actual arguments count ++ // a1: function (passed through to callee) ++ // a2: expected arguments count ++ ++ // The code below is made a lot easier because the calling code already sets ++ // up actual and expected registers according to the contract if values are ++ // passed in registers. ++ ++ DCHECK(actual.is_immediate() || actual.reg() == a0); ++ DCHECK(expected.is_immediate() || expected.reg() == a2); ++ ++ if (expected.is_immediate()) { ++ DCHECK(actual.is_immediate()); ++ li(a0, Operand(actual.immediate())); ++ if (expected.immediate() == actual.immediate()) { ++ definitely_matches = true; ++ } else { ++ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; ++ if (expected.immediate() == sentinel) { ++ // Don't worry about adapting arguments for builtins that ++ // don't want that done. Skip adaption code by making it look ++ // like we have a match between expected and actual number of ++ // arguments. ++ definitely_matches = true; ++ } else { ++ *definitely_mismatches = true; ++ li(a2, Operand(expected.immediate())); ++ } ++ } ++ } else if (actual.is_immediate()) { ++ li(a0, Operand(actual.immediate())); ++ Branch(®ular_invoke, eq, expected.reg(), Operand(a0)); ++ } else { ++ Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); ++ } ++ ++ if (!definitely_matches) { ++ Handle adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); ++ if (flag == CALL_FUNCTION) { ++ Call(adaptor); ++ if (!*definitely_mismatches) { ++ Branch(done); ++ } ++ } else { ++ Jump(adaptor, RelocInfo::CODE_TARGET); ++ } ++ bind(®ular_invoke); ++ } ++} ++ ++void MacroAssembler::CheckDebugHook(Register fun, Register new_target, ++ const ParameterCount& expected, ++ const ParameterCount& actual) { ++ Label skip_hook; ++ li(t0, ExternalReference::debug_hook_on_function_call_address(isolate())); ++ Ld_b(t0, MemOperand(t0, 0)); ++ Branch(&skip_hook, eq, t0, Operand(zero_reg)); ++ ++ { ++ // Load receiver to pass it later to DebugOnFunctionCall hook. ++ if (actual.is_reg()) { ++ Alsl_d(t0, actual.reg(), sp, kPointerSizeLog2, t7); ++ Ld_d(t0, MemOperand(t0, 0)); ++ } else { ++ Ld_d(t0, MemOperand(sp, actual.immediate() << kPointerSizeLog2)); ++ } ++ FrameScope frame(this, ++ has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); ++ if (expected.is_reg()) { ++ SmiTag(expected.reg()); ++ Push(expected.reg()); ++ } ++ if (actual.is_reg()) { ++ SmiTag(actual.reg()); ++ Push(actual.reg()); ++ } ++ ++ if (new_target.is_valid()) { ++ Push(new_target); ++ } ++ // TODO: MultiPush/Pop ++ Push(fun); ++ Push(fun); ++ Push(t0); ++ CallRuntime(Runtime::kDebugOnFunctionCall); ++ Pop(fun); ++ if (new_target.is_valid()) { ++ Pop(new_target); ++ } ++ if (actual.is_reg()) { ++ Pop(actual.reg()); ++ SmiUntag(actual.reg()); ++ } ++ if (expected.is_reg()) { ++ Pop(expected.reg()); ++ SmiUntag(expected.reg()); ++ } ++ } ++ bind(&skip_hook); ++} ++ ++void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, ++ const ParameterCount& expected, ++ const ParameterCount& actual, ++ InvokeFlag flag) { ++ // You can't call a function without a valid frame. ++ DCHECK(flag == JUMP_FUNCTION || has_frame()); ++ DCHECK(function == a1); ++ DCHECK_IMPLIES(new_target.is_valid(), new_target == a3); ++ ++ // On function call, call into the debugger if necessary. ++ CheckDebugHook(function, new_target, expected, actual); ++ ++ // Clear the new.target register if not given. ++ if (!new_target.is_valid()) { ++ LoadRoot(a3, Heap::kUndefinedValueRootIndex); ++ } ++ ++ Label done; ++ bool definitely_mismatches = false; ++ InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); ++ if (!definitely_mismatches) { ++ // We call indirectly through the code field in the function to ++ // allow recompilation to take effect without changing any of the ++ // call sites. ++ Register code = kJavaScriptCallCodeStartRegister; ++ Ld_d(code, FieldMemOperand(function, JSFunction::kCodeOffset)); ++ if (flag == CALL_FUNCTION) { ++ Add_d(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ Call(code); ++ } else { ++ DCHECK(flag == JUMP_FUNCTION); ++ Add_d(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); ++ Jump(code); ++ } ++ // Continue here if InvokePrologue does handle the invocation due to ++ // mismatched parameter counts. ++ bind(&done); ++ } ++} ++ ++void MacroAssembler::InvokeFunction(Register function, Register new_target, ++ const ParameterCount& actual, ++ InvokeFlag flag) { ++ // You can't call a function without a valid frame. ++ DCHECK(flag == JUMP_FUNCTION || has_frame()); ++ ++ // Contract with called JS functions requires that function is passed in a1. ++ DCHECK(function == a1); ++ Register expected_reg = a2; ++ Register temp_reg = t0; ++ Ld_d(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ++ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ++ // The argument count is stored as int32_t on 64-bit platforms. ++ // TODO(plind): Smi on 32-bit platforms. ++ Ld_w(expected_reg, ++ FieldMemOperand(temp_reg, ++ SharedFunctionInfo::kFormalParameterCountOffset)); ++ ++ ParameterCount expected(expected_reg); ++ InvokeFunctionCode(a1, new_target, expected, actual, flag); ++} ++ ++void MacroAssembler::InvokeFunction(Register function, ++ const ParameterCount& expected, ++ const ParameterCount& actual, ++ InvokeFlag flag) { ++ // You can't call a function without a valid frame. ++ DCHECK(flag == JUMP_FUNCTION || has_frame()); ++ ++ // Contract with called JS functions requires that function is passed in a1. ++ DCHECK(function == a1); ++ ++ // Get the function and setup the context. ++ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ++ ++ InvokeFunctionCode(a1, no_reg, expected, actual, flag); ++} ++ ++// --------------------------------------------------------------------------- ++// Support functions. ++ ++void MacroAssembler::GetObjectType(Register object, Register map, ++ Register type_reg) { ++ Ld_d(map, FieldMemOperand(object, HeapObject::kMapOffset)); ++ Ld_hu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); ++} ++ ++// ----------------------------------------------------------------------------- ++// Runtime calls. ++ ++void MacroAssembler::CallStub(CodeStub* stub, ++ Condition cond, ++ Register r1, ++ const Operand& r2) { ++ DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. ++ Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2); ++} ++ ++void TurboAssembler::CallStubDelayed(CodeStub* stub, Condition cond, ++ Register r1, const Operand& r2) { ++ DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. ++ ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand::EmbeddedCode(stub)); ++ Call(scratch); ++} ++ ++void MacroAssembler::TailCallStub(CodeStub* stub, ++ Condition cond, ++ Register r1, ++ const Operand& r2) { ++ Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2); ++} ++ ++bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { ++ return has_frame() || !stub->SometimesSetsUpAFrame(); ++} ++ ++void TurboAssembler::AdddOverflow(Register dst, Register left, ++ const Operand& right, Register overflow) { ++ Register right_reg = no_reg; ++ Register scratch = t8; ++ if (!right.is_reg()) { ++ li(t7, Operand(right)); ++ right_reg = t7; ++ } else { ++ right_reg = right.rm(); ++ } ++ ++ DCHECK(left != scratch && right_reg != scratch && dst != scratch && ++ overflow != scratch); ++ DCHECK(overflow != left && overflow != right_reg); ++ ++ if (dst == left || dst == right_reg) { ++ add_d(scratch, left, right_reg); ++ xor_(overflow, scratch, left); ++ xor_(t7, scratch, right_reg); ++ and_(overflow, overflow, t7); ++ mov(dst, scratch); ++ } else { ++ add_d(dst, left, right_reg); ++ xor_(overflow, dst, left); ++ xor_(t7, dst, right_reg); ++ and_(overflow, overflow, t7); ++ } ++} ++ ++void TurboAssembler::SubdOverflow(Register dst, Register left, ++ const Operand& right, Register overflow) { ++ Register right_reg = no_reg; ++ Register scratch = t8; ++ if (!right.is_reg()) { ++ li(t7, Operand(right)); ++ right_reg = t7; ++ } else { ++ right_reg = right.rm(); ++ } ++ ++ DCHECK(left != scratch && right_reg != scratch && dst != scratch && ++ overflow != scratch); ++ DCHECK(overflow != left && overflow != right_reg); ++ ++ if (dst == left || dst == right_reg) { ++ Sub_d(scratch, left, right_reg); ++ xor_(overflow, left, scratch); ++ xor_(t7, left, right_reg); ++ and_(overflow, overflow, t7); ++ mov(dst, scratch); ++ } else { ++ sub_d(dst, left, right_reg); ++ xor_(overflow, left, dst); ++ xor_(t7, left, right_reg); ++ and_(overflow, overflow, t7); ++ } ++} ++ ++void TurboAssembler::MulOverflow(Register dst, Register left, ++ const Operand& right, Register overflow) { ++ Register right_reg = no_reg; ++ Register scratch = t8; ++ if (!right.is_reg()) { ++ li(t7, Operand(right)); ++ right_reg = t7; ++ } else { ++ right_reg = right.rm(); ++ } ++ ++ DCHECK(left != scratch && right_reg != scratch && dst != scratch && ++ overflow != scratch); ++ DCHECK(overflow != left && overflow != right_reg); ++ ++ if (dst == left || dst == right_reg) { ++ Mul_w(scratch, left, right_reg); ++ Mulh_w(overflow, left, right_reg); ++ mov(dst, scratch); ++ } else { ++ Mul_w(dst, left, right_reg); ++ Mulh_w(overflow, left, right_reg); ++ } ++ ++ srai_d(scratch, dst, 32); ++ xor_(overflow, overflow, scratch); ++} ++ ++void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, ++ SaveFPRegsMode save_doubles) { ++ const Runtime::Function* f = Runtime::FunctionForId(fid); ++ // TODO(1236192): Most runtime routines don't need the number of ++ // arguments passed in because it is constant. At some point we ++ // should remove this need and make the runtime routine entry code ++ // smarter. ++ PrepareCEntryArgs(f->nargs); ++ PrepareCEntryFunction(ExternalReference::Create(f)); ++ Handle code = ++ CodeFactory::CEntry(isolate(), f->result_size, save_doubles); ++ Call(code, RelocInfo::CODE_TARGET); ++} ++ ++void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, ++ SaveFPRegsMode save_doubles) { ++ // All parameters are on the stack. v0 has the return value after call. ++ ++ // If the expected number of arguments of the runtime function is ++ // constant, we check that the actual number of arguments match the ++ // expectation. ++ CHECK(f->nargs < 0 || f->nargs == num_arguments); ++ ++ // TODO(1236192): Most runtime routines don't need the number of ++ // arguments passed in because it is constant. At some point we ++ // should remove this need and make the runtime routine entry code ++ // smarter. ++ PrepareCEntryArgs(num_arguments); ++ PrepareCEntryFunction(ExternalReference::Create(f)); ++ Handle code = ++ CodeFactory::CEntry(isolate(), f->result_size, save_doubles); ++ Call(code, RelocInfo::CODE_TARGET); ++} ++ ++void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { ++ const Runtime::Function* function = Runtime::FunctionForId(fid); ++ DCHECK_EQ(1, function->result_size); ++ if (function->nargs >= 0) { ++ PrepareCEntryArgs(function->nargs); ++ } ++ JumpToExternalReference(ExternalReference::Create(fid)); ++} ++ ++void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, ++ bool builtin_exit_frame) { ++ PrepareCEntryFunction(builtin); ++ Handle code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, ++ kArgvOnStack, builtin_exit_frame); ++ Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg)); ++} ++ ++void MacroAssembler::JumpToInstructionStream(Address entry) { ++ li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); ++ Jump(kOffHeapTrampolineRegister); ++} ++ ++void MacroAssembler::LoadWeakValue(Register out, Register in, ++ Label* target_if_cleared) { ++ Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObject)); ++ ++ And(out, in, Operand(~kWeakHeapObjectMask)); ++} ++ ++void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, ++ Register scratch1, Register scratch2) { ++ DCHECK_GT(value, 0); ++ if (FLAG_native_code_counters && counter->Enabled()) { ++ li(scratch2, ExternalReference::Create(counter)); ++ Ld_w(scratch1, MemOperand(scratch2, 0)); ++ Add_w(scratch1, scratch1, Operand(value)); ++ St_w(scratch1, MemOperand(scratch2, 0)); ++ } ++} ++ ++void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, ++ Register scratch1, Register scratch2) { ++ DCHECK_GT(value, 0); ++ if (FLAG_native_code_counters && counter->Enabled()) { ++ li(scratch2, ExternalReference::Create(counter)); ++ Ld_w(scratch1, MemOperand(scratch2, 0)); ++ Sub_w(scratch1, scratch1, Operand(value)); ++ St_w(scratch1, MemOperand(scratch2, 0)); ++ } ++} ++ ++// ----------------------------------------------------------------------------- ++// Debugging. ++ ++void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs, ++ Operand rk) { ++ if (emit_debug_code()) Check(cc, reason, rs, rk); ++} ++ ++void TurboAssembler::Check(Condition cc, AbortReason reason, Register rj, ++ Operand rk) { ++ Label L; ++ Branch(&L, cc, rj, rk); ++ Abort(reason); ++ // Will not return here. ++ bind(&L); ++} ++ ++void TurboAssembler::Abort(AbortReason reason) { ++ Label abort_start; ++ bind(&abort_start); ++#ifdef DEBUG ++ const char* msg = GetAbortReason(reason); ++ if (msg != nullptr) { ++ RecordComment("Abort message: "); ++ RecordComment(msg); ++ } ++ ++ if (FLAG_trap_on_abort) { ++ stop(msg); ++ return; ++ } ++#endif ++ ++ Move(a0, Smi::FromInt(static_cast(reason))); ++ ++ // Disable stub call restrictions to always allow calls to abort. ++ if (!has_frame()) { ++ // We don't actually want to generate a pile of code for this, so just ++ // claim there is a stack frame, without generating one. ++ FrameScope scope(this, StackFrame::NONE); ++ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); ++ } else { ++ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); ++ } ++ // Will not return here. ++ if (is_trampoline_pool_blocked()) { ++ // If the calling code cares about the exact number of ++ // instructions generated, we insert padding here to keep the size ++ // of the Abort macro constant. ++ // Currently in debug mode with debug_code enabled the number of ++ // generated instructions is 10, so we use this as a maximum value. ++ static const int kExpectedAbortInstructions = 10; ++ int abort_instructions = InstructionsGeneratedSince(&abort_start); ++ DCHECK_LE(abort_instructions, kExpectedAbortInstructions); ++ while (abort_instructions++ < kExpectedAbortInstructions) { ++ nop(); ++ } ++ } ++} ++ ++void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { ++ Ld_d(dst, NativeContextMemOperand()); ++ Ld_d(dst, ContextMemOperand(dst, index)); ++} ++ ++void TurboAssembler::StubPrologue(StackFrame::Type type) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(StackFrame::TypeToMarker(type))); ++ PushCommonFrame(scratch); ++} ++ ++void TurboAssembler::Prologue() { PushStandardFrame(a1); } ++ ++//=========================stack_offset fp_offset==================== ++void TurboAssembler::EnterFrame(StackFrame::Type type) { ++ int stack_offset, fp_offset; ++ if (type == StackFrame::INTERNAL) { ++ stack_offset = -4 * kPointerSize; ++ fp_offset = 2 * kPointerSize; ++ } else { ++ stack_offset = -3 * kPointerSize; ++ fp_offset = 1 * kPointerSize; ++ } ++ addi_d(sp, sp, stack_offset); ++ stack_offset = -stack_offset - kPointerSize; ++ St_d(ra, MemOperand(sp, stack_offset)); ++ stack_offset -= kPointerSize; ++ St_d(fp, MemOperand(sp, stack_offset)); ++ stack_offset -= kPointerSize; ++ li(t7, Operand(StackFrame::TypeToMarker(type))); ++ St_d(t7, MemOperand(sp, stack_offset)); ++ if (type == StackFrame::INTERNAL) { ++ DCHECK_EQ(stack_offset, kPointerSize); ++ li(t7, CodeObject()); ++ St_d(t7, MemOperand(sp, 0)); ++ } else { ++ DCHECK_EQ(stack_offset, 0); ++ } ++ // Adjust FP to point to saved FP. ++ Add_d(fp, sp, Operand(fp_offset)); ++} ++ ++void TurboAssembler::LeaveFrame(StackFrame::Type type) { ++ addi_d(sp, fp, 2 * kPointerSize); ++ Ld_d(ra, MemOperand(fp, 1 * kPointerSize)); ++ Ld_d(fp, MemOperand(fp, 0 * kPointerSize)); ++} ++ ++void MacroAssembler::EnterBuiltinFrame(Register context, Register target, ++ Register argc) { ++ Push(ra, fp); ++ Move(fp, sp); ++ Push(context, target, argc); ++} ++ ++void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, ++ Register argc) { ++ Pop(context, target, argc); ++ Pop(ra, fp); ++} ++ ++void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, ++ StackFrame::Type frame_type) { ++ DCHECK(frame_type == StackFrame::EXIT || ++ frame_type == StackFrame::BUILTIN_EXIT); ++ ++ // Set up the frame structure on the stack. ++ STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); ++ STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); ++ STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); ++ ++ // This is how the stack will look: ++ // fp + 2 (==kCallerSPDisplacement) - old stack's end ++ // [fp + 1 (==kCallerPCOffset)] - saved old ra ++ // [fp + 0 (==kCallerFPOffset)] - saved old fp ++ // [fp - 1 StackFrame::EXIT Smi ++ // [fp - 2 (==kSPOffset)] - sp of the called function ++ // [fp - 3 (==kCodeOffset)] - CodeObject ++ // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the ++ // new stack (will contain saved ra) ++ ++ // Save registers and reserve room for saved entry sp and code object. ++ addi_d(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp); ++ St_d(ra, MemOperand(sp, 4 * kPointerSize)); ++ St_d(fp, MemOperand(sp, 3 * kPointerSize)); ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ li(scratch, Operand(StackFrame::TypeToMarker(frame_type))); ++ St_d(scratch, MemOperand(sp, 2 * kPointerSize)); ++ } ++ // Set up new frame pointer. ++ addi_d(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp); ++ ++ if (emit_debug_code()) { ++ St_d(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); ++ } ++ ++ // Accessed from ExitFrame::code_slot. ++ li(t8, CodeObject(), CONSTANT_SIZE); ++ St_d(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); ++ ++ // Save the frame pointer and the context in top. ++ li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, ++ isolate())); ++ St_d(fp, MemOperand(t8, 0)); ++ li(t8, ++ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); ++ St_d(cp, MemOperand(t8, 0)); ++ ++ const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); ++ if (save_doubles) { ++ // The stack is already aligned to 0 modulo 8 for stores with sdc1. ++ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; ++ int space = kNumOfSavedRegisters * kDoubleSize; ++ Sub_d(sp, sp, Operand(space)); ++ // Remember: we only need to save every 2nd double FPU value. ++ for (int i = 0; i < kNumOfSavedRegisters; i++) { ++ FPURegister reg = FPURegister::from_code(2 * i); ++ Fst_d(reg, MemOperand(sp, i * kDoubleSize)); ++ } ++ } ++ ++ // Reserve place for the return address, stack space and an optional slot ++ // (used by the DirectCEntryStub to hold the return value if a struct is ++ // returned) and align the frame preparing for calling the runtime function. ++ DCHECK_GE(stack_space, 0); ++ Sub_d(sp, sp, Operand((stack_space + 2) * kPointerSize)); ++ if (frame_alignment > 0) { ++ DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); ++ And(sp, sp, Operand(-frame_alignment)); // Align stack. ++ } ++ ++ // Set the exit frame sp value to point just before the return address ++ // location. ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ addi_d(scratch, sp, kPointerSize); ++ St_d(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); ++} ++ ++void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, ++ bool do_return, ++ bool argument_count_is_length) { ++ // Optionally restore all double registers. ++ if (save_doubles) { ++ // Remember: we only need to restore every 2nd double FPU value. ++ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; ++ Sub_d(t8, fp, ++ Operand(ExitFrameConstants::kFixedFrameSizeFromFp + ++ kNumOfSavedRegisters * kDoubleSize)); ++ for (int i = 0; i < kNumOfSavedRegisters; i++) { ++ FPURegister reg = FPURegister::from_code(2 * i); ++ Fld_d(reg, MemOperand(t8, i * kDoubleSize)); ++ } ++ } ++ ++ // Clear top frame. ++ li(t8, ++ ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); ++ St_d(zero_reg, MemOperand(t8, 0)); ++ ++ // Restore current context from top and clear it in debug mode. ++ li(t8, ++ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); ++ Ld_d(cp, MemOperand(t8, 0)); ++ ++#ifdef DEBUG ++ li(t8, ++ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); ++ St_d(a3, MemOperand(t8, 0)); ++#endif ++ ++ // Pop the arguments, restore registers, and return. ++ mov(sp, fp); // Respect ABI stack constraint. ++ Ld_d(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); ++ Ld_d(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); ++ ++ if (argument_count.is_valid()) { ++ if (argument_count_is_length) { ++ add_d(sp, sp, argument_count); ++ } else { ++ Alsl_d(sp, argument_count, sp, kPointerSizeLog2, t8); ++ } ++ } ++ ++ addi_d(sp, sp, 2 * kPointerSize); ++ if (do_return) { ++ Ret(); ++ } ++} ++ ++int TurboAssembler::ActivationFrameAlignment() { ++#if V8_HOST_ARCH_LOONG64 ++ // Running on the real platform. Use the alignment as mandated by the local ++ // environment. ++ // Note: This will break if we ever start generating snapshots on one Mips ++ // platform for another Mips platform with a different alignment. ++ return base::OS::ActivationFrameAlignment(); ++#else // V8_HOST_ARCH_LOONG64 ++ // If we are using the simulator then we should always align to the expected ++ // alignment. As the simulator is used to generate snapshots we do not know ++ // if the target platform will need alignment, so this is controlled from a ++ // flag. ++ return FLAG_sim_stack_alignment; ++#endif // V8_HOST_ARCH_LOONG64 ++} ++ ++void MacroAssembler::AssertStackIsAligned() { ++ if (emit_debug_code()) { ++ const int frame_alignment = ActivationFrameAlignment(); ++ const int frame_alignment_mask = frame_alignment - 1; ++ ++ if (frame_alignment > kPointerSize) { ++ Label alignment_as_expected; ++ DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ andi(scratch, sp, frame_alignment_mask); ++ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); ++ } ++ // Don't use Check here, as it will call Runtime_Abort re-entering here. ++ stop("Unexpected stack alignment"); ++ bind(&alignment_as_expected); ++ } ++ } ++} ++ ++void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) { ++ if (SmiValuesAre32Bits()) { ++ Ld_w(dst, UntagSmiMemOperand(src.base(), src.offset())); ++ } else { ++ Ld_w(dst, src); ++ SmiUntag(dst); ++ } ++} ++ ++void MacroAssembler::UntagAndJumpIfSmi(Register dst, ++ Register src, ++ Label* smi_case) { ++ // DCHECK(dst!=src); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ SmiUntag(dst, src); ++ JumpIfSmi(src, smi_case, scratch); ++ //SmiUntag(dst, src); ++} ++ ++void TurboAssembler::JumpIfSmi(Register value, Label* smi_label, ++ Register scratch) { ++ DCHECK_EQ(0, kSmiTag); ++ andi(scratch, value, kSmiTagMask); ++ Branch(smi_label, eq, scratch, Operand(zero_reg)); ++} ++ ++void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label, ++ Register scratch) { ++ DCHECK_EQ(0, kSmiTag); ++ andi(scratch, value, kSmiTagMask); ++ Branch(not_smi_label, ne, scratch, Operand(zero_reg)); ++} ++ ++void MacroAssembler::JumpIfEitherSmi(Register reg1, ++ Register reg2, ++ Label* on_either_smi) { ++ STATIC_ASSERT(kSmiTag == 0); ++ // TODO(plind): Find some better to fix this assert issue. ++#if defined(__APPLE__) ++ DCHECK_EQ(1, kSmiTagMask); ++#else ++ DCHECK_EQ((int64_t)1, kSmiTagMask); ++#endif ++ // Both Smi tags must be 1 (not Smi). ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ and_(scratch, reg1, reg2); ++ JumpIfSmi(scratch, on_either_smi); ++} ++ ++void MacroAssembler::AssertNotSmi(Register object) { ++ if (emit_debug_code()) { ++ STATIC_ASSERT(kSmiTag == 0); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ andi(scratch, object, kSmiTagMask); ++ Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); ++ } ++} ++ ++void MacroAssembler::AssertSmi(Register object) { ++ if (emit_debug_code()) { ++ STATIC_ASSERT(kSmiTag == 0); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ andi(scratch, object, kSmiTagMask); ++ Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); ++ } ++} ++ ++void MacroAssembler::AssertFixedArray(Register object) { ++ if (emit_debug_code()) { ++ STATIC_ASSERT(kSmiTag == 0); ++ SmiTst(object, t8); ++ Check(ne, AbortReason::kOperandIsASmiAndNotAFixedArray, t8, ++ Operand(zero_reg)); ++ GetObjectType(object, t8, t8); ++ Check(eq, AbortReason::kOperandIsNotAFixedArray, t8, ++ Operand(FIXED_ARRAY_TYPE)); ++ } ++} ++ ++void MacroAssembler::AssertConstructor(Register object) { ++ if (emit_debug_code()) { ++ BlockTrampolinePoolScope block_trampoline_pool(this); ++ STATIC_ASSERT(kSmiTag == 0); ++ SmiTst(object, t8); ++ Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8, ++ Operand(zero_reg)); ++ ++ Ld_d(t8, FieldMemOperand(object, HeapObject::kMapOffset)); ++ Ld_bu(t8, FieldMemOperand(t8, Map::kBitFieldOffset)); ++ And(t8, t8, Operand(Map::IsConstructorBit::kMask)); ++ Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg)); ++ } ++} ++ ++void MacroAssembler::AssertFunction(Register object) { ++ if (emit_debug_code()) { ++ STATIC_ASSERT(kSmiTag == 0); ++ SmiTst(object, t8); ++ Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8, ++ Operand(zero_reg)); ++ GetObjectType(object, t8, t8); ++ Check(eq, AbortReason::kOperandIsNotAFunction, t8, ++ Operand(JS_FUNCTION_TYPE)); ++ } ++} ++ ++void MacroAssembler::AssertBoundFunction(Register object) { ++ if (emit_debug_code()) { ++ STATIC_ASSERT(kSmiTag == 0); ++ SmiTst(object, t8); ++ Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8, ++ Operand(zero_reg)); ++ GetObjectType(object, t8, t8); ++ Check(eq, AbortReason::kOperandIsNotABoundFunction, t8, ++ Operand(JS_BOUND_FUNCTION_TYPE)); ++ } ++} ++ ++void MacroAssembler::AssertGeneratorObject(Register object) { ++ if (!emit_debug_code()) return; ++ STATIC_ASSERT(kSmiTag == 0); ++ SmiTst(object, t8); ++ Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8, ++ Operand(zero_reg)); ++ ++ GetObjectType(object, t8, t8); ++ ++ Label done; ++ ++ // Check if JSGeneratorObject ++ Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE)); ++ ++ // Check if JSAsyncGeneratorObject ++ Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); ++ ++ Abort(AbortReason::kOperandIsNotAGeneratorObject); ++ ++ bind(&done); ++} ++ ++void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, ++ Register scratch) { ++ if (emit_debug_code()) { ++ Label done_checking; ++ AssertNotSmi(object); ++ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); ++ Branch(&done_checking, eq, object, Operand(scratch)); ++ Ld_d(t8, FieldMemOperand(object, HeapObject::kMapOffset)); ++ LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex); ++ Assert(eq, AbortReason::kExpectedUndefinedOrCell, t8, Operand(scratch)); ++ bind(&done_checking); ++ } ++} ++ ++void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1, ++ FPURegister src2, Label* out_of_line) { ++ if (src1 == src2) { ++ Move_s(dst, src1); ++ return; ++ } ++ ++ // Check if one of operands is NaN. ++ CompareIsNanF32(src1, src2); ++ BranchTrueF(out_of_line); ++ ++ fmax_s(dst, src1, src2); ++} ++ ++void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1, ++ FPURegister src2) { ++ fadd_s(dst, src1, src2); ++} ++ ++void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1, ++ FPURegister src2, Label* out_of_line) { ++ if (src1 == src2) { ++ Move_s(dst, src1); ++ return; ++ } ++ ++ // Check if one of operands is NaN. ++ CompareIsNanF32(src1, src2); ++ BranchTrueF(out_of_line); ++ ++ fmin_s(dst, src1, src2); ++} ++ ++void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1, ++ FPURegister src2) { ++ fadd_s(dst, src1, src2); ++} ++ ++void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1, ++ FPURegister src2, Label* out_of_line) { ++ if (src1 == src2) { ++ Move_d(dst, src1); ++ return; ++ } ++ ++ // Check if one of operands is NaN. ++ CompareIsNanF64(src1, src2); ++ BranchTrueF(out_of_line); ++ ++ fmax_d(dst, src1, src2); ++} ++ ++void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1, ++ FPURegister src2) { ++ fadd_d(dst, src1, src2); ++} ++ ++void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1, ++ FPURegister src2, Label* out_of_line) { ++ if (src1 == src2) { ++ Move_d(dst, src1); ++ return; ++ } ++ ++ // Check if one of operands is NaN. ++ CompareIsNanF64(src1, src2); ++ BranchTrueF(out_of_line); ++ ++ fmin_d(dst, src1, src2); ++} ++ ++void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1, ++ FPURegister src2) { ++ fadd_d(dst, src1, src2); ++} ++ ++static const int kRegisterPassedArguments = 8; ++ ++int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, ++ int num_double_arguments) { ++ int stack_passed_words = 0; ++ num_reg_arguments += 2 * num_double_arguments; ++ ++ // O32: Up to four simple arguments are passed in registers a0..a3. ++ // N64: Up to eight simple arguments are passed in registers a0..a7. ++ if (num_reg_arguments > kRegisterPassedArguments) { ++ stack_passed_words += num_reg_arguments - kRegisterPassedArguments; ++ } ++ stack_passed_words += kCArgSlotCount; ++ return stack_passed_words; ++} ++ ++void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, ++ int num_double_arguments, ++ Register scratch) { ++ int frame_alignment = ActivationFrameAlignment(); ++ ++ // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots. ++ // O32: Up to four simple arguments are passed in registers a0..a3. ++ // Those four arguments must have reserved argument slots on the stack for ++ // mips, even though those argument slots are not normally used. ++ // Both ABIs: Remaining arguments are pushed on the stack, above (higher ++ // address than) the (O32) argument slots. (arg slot calculation handled by ++ // CalculateStackPassedWords()). ++ int stack_passed_arguments = ++ CalculateStackPassedWords(num_reg_arguments, num_double_arguments); ++ if (frame_alignment > kPointerSize) { ++ // Make stack end at alignment and make room for num_arguments - 4 words ++ // and the original value of sp. ++ mov(scratch, sp); ++ Sub_d(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); ++ DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); ++ bstrins_d(sp, zero_reg, std::log2(frame_alignment) - 1, 0); ++ St_d(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); ++ } else { ++ Sub_d(sp, sp, Operand(stack_passed_arguments * kPointerSize)); ++ } ++} ++ ++void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, ++ Register scratch) { ++ PrepareCallCFunction(num_reg_arguments, 0, scratch); ++} ++ ++void TurboAssembler::CallCFunction(ExternalReference function, ++ int num_reg_arguments, ++ int num_double_arguments) { ++ li(t7, function); ++ CallCFunctionHelper(t7, num_reg_arguments, num_double_arguments); ++} ++ ++void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, ++ int num_double_arguments) { ++ CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); ++} ++ ++void TurboAssembler::CallCFunction(ExternalReference function, ++ int num_arguments) { ++ CallCFunction(function, num_arguments, 0); ++} ++ ++void TurboAssembler::CallCFunction(Register function, int num_arguments) { ++ CallCFunction(function, num_arguments, 0); ++} ++ ++void TurboAssembler::CallCFunctionHelper(Register function, ++ int num_reg_arguments, ++ int num_double_arguments) { ++ DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); ++ DCHECK(has_frame()); ++ // Make sure that the stack is aligned before calling a C function unless ++ // running in the simulator. The simulator has its own alignment check which ++ // provides more information. ++ // The argument stots are presumed to have been set up by ++ // PrepareCallCFunction. The C function must be called via t7, for loong64 ABI. ++ ++#if V8_HOST_ARCH_LOONG64 ++ if (emit_debug_code()) { ++ int frame_alignment = base::OS::ActivationFrameAlignment(); ++ int frame_alignment_mask = frame_alignment - 1; ++ if (frame_alignment > kPointerSize) { ++ DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); ++ Label alignment_as_expected; ++ { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ And(scratch, sp, Operand(frame_alignment_mask)); ++ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); ++ } ++ // Don't use Check here, as it will call Runtime_Abort possibly ++ // re-entering here. ++ stop("Unexpected alignment in CallCFunction"); ++ bind(&alignment_as_expected); ++ } ++ } ++#endif // V8_HOST_ARCH_LOONG64 ++ ++ // Just call directly. The function called cannot cause a GC, or ++ // allow preemption, so the return address in the link register ++ // stays correct. ++ if (function != t7) { ++ mov(t7, function); ++ function = t7; ++ } ++ ++ Call(function); ++ int stack_passed_arguments = ++ CalculateStackPassedWords(num_reg_arguments, num_double_arguments); ++ ++ if (base::OS::ActivationFrameAlignment() > kPointerSize) { ++ Ld_d(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); ++ } else { ++ Add_d(sp, sp, Operand(stack_passed_arguments * kPointerSize)); ++ } ++} ++ ++#undef BRANCH_ARGS_CHECK ++ ++void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, ++ Condition cc, Label* condition_met) { ++ And(scratch, object, Operand(~Page::kPageAlignmentMask)); ++ Ld_d(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); ++ And(scratch, scratch, Operand(mask)); ++ Branch(condition_met, cc, scratch, Operand(zero_reg)); ++} ++ ++Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, ++ Register reg4, Register reg5, ++ Register reg6) { ++ RegList regs = 0; ++ if (reg1.is_valid()) regs |= reg1.bit(); ++ if (reg2.is_valid()) regs |= reg2.bit(); ++ if (reg3.is_valid()) regs |= reg3.bit(); ++ if (reg4.is_valid()) regs |= reg4.bit(); ++ if (reg5.is_valid()) regs |= reg5.bit(); ++ if (reg6.is_valid()) regs |= reg6.bit(); ++ ++ const RegisterConfiguration* config = RegisterConfiguration::Default(); ++ for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { ++ int code = config->GetAllocatableGeneralCode(i); ++ Register candidate = Register::from_code(code); ++ if (regs & candidate.bit()) continue; ++ return candidate; ++ } ++ UNREACHABLE(); ++} ++ ++bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, ++ Register reg5, Register reg6, Register reg7, Register reg8, ++ Register reg9, Register reg10) { ++ int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + ++ reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + ++ reg7.is_valid() + reg8.is_valid() + reg9.is_valid() + ++ reg10.is_valid(); ++ ++ RegList regs = 0; ++ if (reg1.is_valid()) regs |= reg1.bit(); ++ if (reg2.is_valid()) regs |= reg2.bit(); ++ if (reg3.is_valid()) regs |= reg3.bit(); ++ if (reg4.is_valid()) regs |= reg4.bit(); ++ if (reg5.is_valid()) regs |= reg5.bit(); ++ if (reg6.is_valid()) regs |= reg6.bit(); ++ if (reg7.is_valid()) regs |= reg7.bit(); ++ if (reg8.is_valid()) regs |= reg8.bit(); ++ if (reg9.is_valid()) regs |= reg9.bit(); ++ if (reg10.is_valid()) regs |= reg10.bit(); ++ int n_of_non_aliasing_regs = NumRegs(regs); ++ ++ return n_of_valid_regs != n_of_non_aliasing_regs; ++} ++ ++void TurboAssembler::ComputeCodeStartAddress(Register dst) { ++ // TODO: range check, add Pcadd macro function? ++ pcaddi(dst, -pc_offset() >> 2); ++} ++ ++void TurboAssembler::ResetSpeculationPoisonRegister() { ++ li(kSpeculationPoisonRegister, -1); ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/macro-assembler-loong64.h b/deps/v8/src/loong64/macro-assembler-loong64.h +new file mode 100644 +index 0000000..bf9ae7c +--- /dev/null ++++ b/deps/v8/src/loong64/macro-assembler-loong64.h +@@ -0,0 +1,1231 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_loong64_MACRO_ASSEMBLER_loong64_H_ ++#define V8_loong64_MACRO_ASSEMBLER_loong64_H_ ++ ++#include "src/assembler.h" ++#include "src/globals.h" ++#include "src/loong64/assembler-loong64.h" ++ ++namespace v8 { ++namespace internal { ++ ++// Give alias names to registers for calling conventions. ++constexpr Register kReturnRegister0 = a0; ++constexpr Register kReturnRegister1 = a1; ++constexpr Register kReturnRegister2 = a2; ++constexpr Register kJSFunctionRegister = a1; ++constexpr Register kContextRegister = s7; ++constexpr Register kAllocateSizeRegister = a0; ++constexpr Register kSpeculationPoisonRegister = a7; ++constexpr Register kInterpreterAccumulatorRegister = a0; ++constexpr Register kInterpreterBytecodeOffsetRegister = t0; ++constexpr Register kInterpreterBytecodeArrayRegister = t1; ++constexpr Register kInterpreterDispatchTableRegister = t2; ++constexpr Register kJavaScriptCallArgCountRegister = a0; ++constexpr Register kJavaScriptCallCodeStartRegister = a2; ++constexpr Register kJavaScriptCallNewTargetRegister = a3; ++constexpr Register kOffHeapTrampolineRegister = t7; ++constexpr Register kRuntimeCallFunctionRegister = a1; ++constexpr Register kRuntimeCallArgCountRegister = a0; ++constexpr Register kWasmInstanceRegister = a0; ++ ++// Forward declarations. ++enum class AbortReason; ++class JumpTarget; ++ ++// Reserved Register Usage Summary. ++// ++// Registers t8, t9, and at are reserved for use by the MacroAssembler. ++// ++// The programmer should know that the MacroAssembler may clobber these three, ++// but won't touch other registers except in special cases. ++// ++// Per the MIPS ABI, register t9 must be used for indirect function call ++// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when ++// trying to update gp register for position-independent-code. Whenever ++// MIPS generated code calls C code, it must be via t9 register. ++ ++ ++// Flags used for LeaveExitFrame function. ++enum LeaveExitFrameMode { ++ EMIT_RETURN = true, ++ NO_EMIT_RETURN = false ++}; ++ ++// Flags used for AllocateHeapNumber ++enum TaggingMode { ++ // Tag the result. ++ TAG_RESULT, ++ // Don't tag ++ DONT_TAG_RESULT ++}; ++ ++// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. ++enum BranchDelaySlot { ++ USE_DELAY_SLOT, ++ PROTECT ++}; ++ ++// Flags used for the li macro-assembler function. ++enum LiFlags { ++ // If the constant value can be represented in just 16 bits, then ++ // optimize the li to use a single instruction, rather than lui/ori/dsll ++ // sequence. A number of other optimizations that emits less than ++ // maximum number of instructions exists. ++ OPTIMIZE_SIZE = 0, ++ // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4 ++ // instructions for release 6 (lui/ori/dahi/dati), even if the constant ++ // could be loaded with just one, so that this value is patchable later. ++ CONSTANT_SIZE = 1, ++ // For address loads only 4 instruction are required. Used to mark ++ // constant load that will be used as address without relocation ++ // information. It ensures predictable code size, so specific sites ++ // in code are patchable. ++ ADDRESS_LOAD = 2 ++}; ++ ++enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; ++enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; ++enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; ++ ++Register GetRegisterThatIsNotOneOf(Register reg1, ++ Register reg2 = no_reg, ++ Register reg3 = no_reg, ++ Register reg4 = no_reg, ++ Register reg5 = no_reg, ++ Register reg6 = no_reg); ++ ++bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, ++ Register reg4 = no_reg, Register reg5 = no_reg, ++ Register reg6 = no_reg, Register reg7 = no_reg, ++ Register reg8 = no_reg, Register reg9 = no_reg, ++ Register reg10 = no_reg); ++ ++ ++// ----------------------------------------------------------------------------- ++// Static helper functions. ++ ++#if defined(V8_TARGET_LITTLE_ENDIAN) ++#define SmiWordOffset(offset) (offset + kPointerSize / 2) ++#else ++#define SmiWordOffset(offset) offset ++#endif ++ ++ ++inline MemOperand ContextMemOperand(Register context, int index) { ++ return MemOperand(context, Context::SlotOffset(index)); ++} ++ ++ ++inline MemOperand NativeContextMemOperand() { ++ return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); ++} ++ ++ ++// Generate a MemOperand for loading a field from an object. ++inline MemOperand FieldMemOperand(Register object, int offset) { ++ return MemOperand(object, offset - kHeapObjectTag); ++} ++ ++ ++inline MemOperand UntagSmiMemOperand(Register rm, int offset) { ++ // Assumes that Smis are shifted by 32 bits. ++ STATIC_ASSERT(kSmiShift == 32); ++ return MemOperand(rm, SmiWordOffset(offset)); ++} ++ ++ ++inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) { ++ return UntagSmiMemOperand(rm, offset - kHeapObjectTag); ++} ++ ++ ++// Generate a MemOperand for storing arguments 5..N on the stack ++// when calling CallCFunction(). ++// TODO(plind): Currently ONLY used for O32. Should be fixed for ++// n64, and used in RegExp code, and other places ++// with more than 8 arguments. ++inline MemOperand CFunctionArgumentOperand(int index) { ++ DCHECK_GT(index, kCArgSlotCount); ++ // Argument 5 takes the slot just past the four Arg-slots. ++ int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; ++ return MemOperand(sp, offset); ++} ++ ++class TurboAssembler : public Assembler { ++ public: ++ TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, ++ CodeObjectRequired create_code_object); ++ ++ void set_has_frame(bool value) { has_frame_ = value; } ++ bool has_frame() const { return has_frame_; } ++ ++ Isolate* isolate() const { return isolate_; } ++ ++ Handle CodeObject() { ++ DCHECK(!code_object_.is_null()); ++ return code_object_; ++ } ++ ++ // Activation support. ++ void EnterFrame(StackFrame::Type type); ++ void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { ++ // Out-of-line constant pool not implemented on mips. ++ UNREACHABLE(); ++ } ++ void LeaveFrame(StackFrame::Type type); ++ ++ // Generates function and stub prologue code. ++ void StubPrologue(StackFrame::Type type); ++ void Prologue(); ++ ++ void InitializeRootRegister() { ++ ExternalReference roots_array_start = ++ ExternalReference::roots_array_start(isolate()); ++ li(kRootRegister, Operand(roots_array_start)); ++ } ++ ++ // Jump unconditionally to given label. ++ // We NEED a nop in the branch delay slot, as it used by v8, for example in ++ // CodeGenerator::ProcessDeferred(). ++ // Currently the branch delay slot is filled by the MacroAssembler. ++ // Use rather b(Label) for code generation. ++ void jmp(Label* L) { Branch(L); } ++ ++ // ------------------------------------------------------------------------- ++ // Debugging. ++ ++ // Calls Abort(msg) if the condition cc is not satisfied. ++ // Use --debug_code to enable. ++ void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); ++ ++ // Like Assert(), but always enabled. ++ void Check(Condition cc, AbortReason reason, Register rs, Operand rt); ++ ++ // Print a message to stdout and abort execution. ++ void Abort(AbortReason msg); ++ ++ inline bool AllowThisStubCall(CodeStub* stub); ++ ++ void Branch(Label* label, bool need_link = false); ++ void Branch(Label* label, Condition cond, Register r1, const Operand &r2, ++ bool need_link = false); ++ void BranchShort(Label* label, Condition cond, Register r1, const Operand &r2, ++ bool need_link = false); ++ ++ // Floating point branches ++ void CompareF32(FPURegister cmp1, FPURegister cmp2, ++ FPUCondition cc, CFRegister cd = FCC0) { ++ CompareF(cmp1, cmp2, cc, cd, true); ++ } ++ ++ void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2, ++ CFRegister cd = FCC0) { ++ CompareIsNanF(cmp1, cmp2, cd, true); ++ } ++ ++ void CompareF64(FPURegister cmp1, FPURegister cmp2, ++ FPUCondition cc, CFRegister cd = FCC0) { ++ CompareF(cmp1, cmp2, cc, cd, false); ++ } ++ ++ void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2, ++ CFRegister cd = FCC0) { ++ CompareIsNanF(cmp1, cmp2, cd, false); ++ } ++ ++ void BranchTrueShortF(Label* target, CFRegister cc = FCC0); ++ void BranchFalseShortF(Label* target, CFRegister cc = FCC0); ++ ++ void BranchTrueF(Label* target, CFRegister cc = FCC0); ++ void BranchFalseF(Label* target, CFRegister cc = FCC0); ++ ++ void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index); ++ ++ static int InstrCountForLi64Bit(int64_t value); ++ inline void LiLower32BitHelper(Register rd, Operand j); ++ void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); ++ // Load int32 in the rd register. ++ void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); ++ inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { ++ li(rd, Operand(j), mode); ++ } ++ void li(Register dst, Handle value, LiFlags mode = OPTIMIZE_SIZE); ++ void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE); ++ ++#ifdef V8_EMBEDDED_BUILTINS ++ void LookupConstant(Register destination, Handle object); ++ void LookupExternalReference(Register destination, ++ ExternalReference reference); ++#endif // V8_EMBEDDED_BUILTINS ++ ++// Jump, Call, and Ret pseudo instructions implementing inter-working. ++#define COND_ARGS Condition cond = al, Register rj = zero_reg, \ ++ const Operand& rk = Operand(zero_reg) ++ ++ void Jump(Register target, COND_ARGS); ++ void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); ++ void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); ++ void Jump(Handle code, RelocInfo::Mode rmode, COND_ARGS); ++ void PatchAndJump(Address target); ++ static int CallSize(Register target, COND_ARGS); ++ void Call(Register target, COND_ARGS); ++ static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS); ++ void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); ++ int CallSize(Handle code, ++ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, ++ COND_ARGS); ++ void Call(Handle code, ++ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, ++ COND_ARGS); ++ void Call(Label* target); ++ ++ void CallForDeoptimization(Address target, RelocInfo::Mode rmode) { ++ Call(target, rmode); ++ } ++ ++ void Ret(COND_ARGS); ++ ++ // Emit code to discard a non-negative number of pointer-sized elements ++ // from the stack, clobbering only the sp register. ++ void Drop(int count, ++ Condition cond = cc_always, ++ Register reg = no_reg, ++ const Operand& op = Operand(no_reg)); ++ ++ // Trivial case of DropAndRet that utilizes the delay slot and only emits ++ // 2 instructions. ++ void DropAndRet(int drop); ++ ++ void DropAndRet(int drop, ++ Condition cond, ++ Register reg, ++ const Operand& op); ++ ++ void Ld_d(Register rd, const MemOperand& rs); ++ void St_d(Register rd, const MemOperand& rs); ++ ++ void push(Register src) { ++ Add_d(sp, sp, Operand(-kPointerSize)); ++ St_d(src, MemOperand(sp, 0)); ++ } ++ void Push(Register src) { push(src); } ++ void Push(Handle handle); ++ void Push(Smi* smi); ++ ++ // Push two registers. Pushes leftmost register first (to highest address). ++ void Push(Register src1, Register src2) { ++ Sub_d(sp, sp, Operand(2 * kPointerSize)); ++ St_d(src1, MemOperand(sp, 1 * kPointerSize)); ++ St_d(src2, MemOperand(sp, 0 * kPointerSize)); ++ } ++ ++ // Push three registers. Pushes leftmost register first (to highest address). ++ void Push(Register src1, Register src2, Register src3) { ++ Sub_d(sp, sp, Operand(3 * kPointerSize)); ++ St_d(src1, MemOperand(sp, 2 * kPointerSize)); ++ St_d(src2, MemOperand(sp, 1 * kPointerSize)); ++ St_d(src3, MemOperand(sp, 0 * kPointerSize)); ++ } ++ ++ // Push four registers. Pushes leftmost register first (to highest address). ++ void Push(Register src1, Register src2, Register src3, Register src4) { ++ Sub_d(sp, sp, Operand(4 * kPointerSize)); ++ St_d(src1, MemOperand(sp, 3 * kPointerSize)); ++ St_d(src2, MemOperand(sp, 2 * kPointerSize)); ++ St_d(src3, MemOperand(sp, 1 * kPointerSize)); ++ St_d(src4, MemOperand(sp, 0 * kPointerSize)); ++ } ++ ++ // Push five registers. Pushes leftmost register first (to highest address). ++ void Push(Register src1, Register src2, Register src3, Register src4, ++ Register src5) { ++ Sub_d(sp, sp, Operand(5 * kPointerSize)); ++ St_d(src1, MemOperand(sp, 4 * kPointerSize)); ++ St_d(src2, MemOperand(sp, 3 * kPointerSize)); ++ St_d(src3, MemOperand(sp, 2 * kPointerSize)); ++ St_d(src4, MemOperand(sp, 1 * kPointerSize)); ++ St_d(src5, MemOperand(sp, 0 * kPointerSize)); ++ } ++ ++ void Push(Register src, Condition cond, Register tst1, Register tst2) { ++ // Since we don't have conditional execution we use a Branch. ++ Label skip; ++ Branch(&skip, cond, tst1, Operand(tst2)); ++ addi_d(sp, sp, -kPointerSize); ++ st_d(src, sp, 0); ++ bind(&skip); ++ } ++ ++ void SaveRegisters(RegList registers); ++ void RestoreRegisters(RegList registers); ++ ++ void CallRecordWriteStub(Register object, Register address, ++ RememberedSetAction remembered_set_action, ++ SaveFPRegsMode fp_mode); ++ ++ // Push multiple registers on the stack. ++ // Registers are saved in numerical order, with higher numbered registers ++ // saved in higher memory addresses. ++ void MultiPush(RegList regs); ++ void MultiPush(RegList regs1, RegList regs2); ++ void MultiPush(RegList regs1, RegList regs2, RegList regs3); ++ void MultiPushFPU(RegList regs); ++ ++ // Calculate how much stack space (in bytes) are required to store caller ++ // registers excluding those specified in the arguments. ++ int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, ++ Register exclusion1 = no_reg, ++ Register exclusion2 = no_reg, ++ Register exclusion3 = no_reg) const; ++ ++ // Push caller saved registers on the stack, and return the number of bytes ++ // stack pointer is adjusted. ++ int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, ++ Register exclusion2 = no_reg, ++ Register exclusion3 = no_reg); ++ // Restore caller saved registers from the stack, and return the number of ++ // bytes stack pointer is adjusted. ++ int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, ++ Register exclusion2 = no_reg, ++ Register exclusion3 = no_reg); ++ ++ void pop(Register dst) { ++ Ld_d(dst, MemOperand(sp, 0)); ++ Add_d(sp, sp, Operand(kPointerSize)); ++ } ++ void Pop(Register dst) { pop(dst); } ++ ++ // Pop two registers. Pops rightmost register first (from lower address). ++ void Pop(Register src1, Register src2) { ++ DCHECK(src1 != src2); ++ Ld_d(src2, MemOperand(sp, 0 * kPointerSize)); ++ Ld_d(src1, MemOperand(sp, 1 * kPointerSize)); ++ Add_d(sp, sp, 2 * kPointerSize); ++ } ++ ++ // Pop three registers. Pops rightmost register first (from lower address). ++ void Pop(Register src1, Register src2, Register src3) { ++ Ld_d(src3, MemOperand(sp, 0 * kPointerSize)); ++ Ld_d(src2, MemOperand(sp, 1 * kPointerSize)); ++ Ld_d(src1, MemOperand(sp, 2 * kPointerSize)); ++ Add_d(sp, sp, 3 * kPointerSize); ++ } ++ ++ void Pop(uint32_t count = 1) { Add_d(sp, sp, Operand(count * kPointerSize)); } ++ ++ // Pops multiple values from the stack and load them in the ++ // registers specified in regs. Pop order is the opposite as in MultiPush. ++ void MultiPop(RegList regs); ++ void MultiPop(RegList regs1, RegList regs2); ++ void MultiPop(RegList regs1, RegList regs2, RegList regs3); ++ void MultiPopFPU(RegList regs); ++ ++#define DEFINE_INSTRUCTION(instr) \ ++ void instr(Register rd, Register rj, const Operand& rk); \ ++ void instr(Register rd, Register rj, Register rk) { \ ++ instr(rd, rj, Operand(rk)); \ ++ } \ ++ void instr(Register rj, Register rk, int32_t j) { instr(rj, rk, Operand(j)); } ++ ++#define DEFINE_INSTRUCTION2(instr) \ ++ void instr(Register rj, const Operand& rk); \ ++ void instr(Register rj, Register rk) { instr(rj, Operand(rk)); } \ ++ void instr(Register rj, int32_t j) { instr(rj, Operand(j)); } ++ ++ DEFINE_INSTRUCTION(Add_w); ++ DEFINE_INSTRUCTION(Add_d); ++ DEFINE_INSTRUCTION(Div_w); ++ DEFINE_INSTRUCTION(Div_wu); ++ DEFINE_INSTRUCTION(Div_du); ++ DEFINE_INSTRUCTION(Mod_w); ++ DEFINE_INSTRUCTION(Mod_wu); ++ DEFINE_INSTRUCTION(Div_d); ++ DEFINE_INSTRUCTION(Sub_w); ++ DEFINE_INSTRUCTION(Sub_d); ++ DEFINE_INSTRUCTION(Mod_d); ++ DEFINE_INSTRUCTION(Mod_du); ++ DEFINE_INSTRUCTION(Mul_w); ++ DEFINE_INSTRUCTION(Mulh_w); ++ DEFINE_INSTRUCTION(Mulh_wu); ++ DEFINE_INSTRUCTION(Mul_d); ++ DEFINE_INSTRUCTION(Mulh_d); ++ DEFINE_INSTRUCTION2(Div_w); ++ DEFINE_INSTRUCTION2(Div_d); ++ DEFINE_INSTRUCTION2(Div_wu); ++ DEFINE_INSTRUCTION2(Div_du); ++ ++ DEFINE_INSTRUCTION(And); ++ DEFINE_INSTRUCTION(Or); ++ DEFINE_INSTRUCTION(Xor); ++ DEFINE_INSTRUCTION(Nor); ++ DEFINE_INSTRUCTION2(Neg); ++ DEFINE_INSTRUCTION(Andn) ++ DEFINE_INSTRUCTION(Orn) ++ ++ DEFINE_INSTRUCTION(Slt); ++ DEFINE_INSTRUCTION(Sltu); ++ DEFINE_INSTRUCTION(Sle); ++ DEFINE_INSTRUCTION(Sleu); ++ DEFINE_INSTRUCTION(Sgt); ++ DEFINE_INSTRUCTION(Sgtu); ++ DEFINE_INSTRUCTION(Sge); ++ DEFINE_INSTRUCTION(Sgeu); ++ ++ DEFINE_INSTRUCTION(Rotr_w); ++ DEFINE_INSTRUCTION(Rotr_d); ++ ++#undef DEFINE_INSTRUCTION ++#undef DEFINE_INSTRUCTION2 ++#undef DEFINE_INSTRUCTION3 ++ ++ void SmiUntag(Register dst, Register src) { ++ if (SmiValuesAre32Bits()) { ++ STATIC_ASSERT(kSmiShift == 32); ++ srai_d(dst, src, 32); ++ } else { ++ srai_w(dst, src, kSmiTagSize); ++ } ++ } ++ ++ void SmiUntag(Register reg) { SmiUntag(reg, reg); } ++ ++ // Removes current frame and its arguments from the stack preserving ++ // the arguments and a return address pushed to the stack for the next call. ++ // Both |callee_args_count| and |caller_args_count_reg| do not include ++ // receiver. |callee_args_count| is not modified, |caller_args_count_reg| ++ // is trashed. ++ void PrepareForTailCall(const ParameterCount& callee_args_count, ++ Register caller_args_count_reg, Register scratch0, ++ Register scratch1); ++ ++ int CalculateStackPassedWords(int num_reg_arguments, ++ int num_double_arguments); ++ ++ // Before calling a C-function from generated code, align arguments on stack ++ // and add space for the four mips argument slots. ++ // After aligning the frame, non-register arguments must be stored on the ++ // stack, after the argument-slots using helper: CFunctionArgumentOperand(). ++ // The argument count assumes all arguments are word sized. ++ // Some compilers/platforms require the stack to be aligned when calling ++ // C++ code. ++ // Needs a scratch register to do some arithmetic. This register will be ++ // trashed. ++ void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, ++ Register scratch); ++ void PrepareCallCFunction(int num_reg_arguments, Register scratch); ++ ++ // Arguments 1-4 are placed in registers a0 through a3 respectively. ++ // Arguments 5..n are stored to stack using following: ++ // Sw(a4, CFunctionArgumentOperand(5)); ++ ++ // Calls a C function and cleans up the space for arguments allocated ++ // by PrepareCallCFunction. The called function is not allowed to trigger a ++ // garbage collection, since that might move the code and invalidate the ++ // return address (unless this is somehow accounted for by the called ++ // function). ++ void CallCFunction(ExternalReference function, int num_arguments); ++ void CallCFunction(Register function, int num_arguments); ++ void CallCFunction(ExternalReference function, int num_reg_arguments, ++ int num_double_arguments); ++ void CallCFunction(Register function, int num_reg_arguments, ++ int num_double_arguments); ++ void MovFromFloatResult(DoubleRegister dst); ++ void MovFromFloatParameter(DoubleRegister dst); ++ ++ // There are two ways of passing double arguments on MIPS, depending on ++ // whether soft or hard floating point ABI is used. These functions ++ // abstract parameter passing for the three different ways we call ++ // C functions from generated code. ++ void MovToFloatParameter(DoubleRegister src); ++ void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); ++ void MovToFloatResult(DoubleRegister src); ++ ++ // See comments at the beginning of Builtins::Generate_CEntry. ++ inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } ++ inline void PrepareCEntryFunction(const ExternalReference& ref) { ++ li(a1, ref); ++ } ++ ++ void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, ++ Label* condition_met); ++ ++ void CallStubDelayed(CodeStub* stub, COND_ARGS); ++#undef COND_ARGS ++ ++ // TODO(jgruber): Remove in favor of MacroAssembler::CallRuntime. ++ void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, ++ SaveFPRegsMode save_doubles = kDontSaveFPRegs); ++ ++ // Performs a truncating conversion of a floating point number as used by ++ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it ++ // succeeds, otherwise falls through if result is saturated. On return ++ // 'result' either holds answer, or is clobbered on fall through. ++ // ++ // Only public for the test code in test-code-stubs-arm.cc. ++ void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, ++ Label* done); ++ ++ // Performs a truncating conversion of a floating point number as used by ++ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. ++ // Exits with 'result' holding the answer. ++ void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, ++ DoubleRegister double_input); ++ ++ // Conditional move. ++ void Movz(Register rd, Register rj, Register rk); ++ void Movn(Register rd, Register rj, Register rk); ++ void Movt(Register rd, Register rs, uint16_t cc = 0); ++ void Movf(Register rd, Register rs, uint16_t cc = 0); ++ ++ void LoadZeroIfFPUCondition(Register dest, CFRegister = FCC0); ++ void LoadZeroIfNotFPUCondition(Register dest, CFRegister = FCC0); ++ ++ void LoadZeroIfConditionNotZero(Register dest, Register condition); ++ void LoadZeroIfConditionZero(Register dest, Register condition); ++ void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt, ++ Condition cond); ++ ++ void Clz_w(Register rd, Register rj); ++ void Clz_d(Register rd, Register rj); ++ void Ctz_w(Register rd, Register rj); ++ void Ctz_d(Register rd, Register rj); ++ void Popcnt_w(Register rd, Register rj); ++ void Popcnt_d(Register rd, Register rj); ++ ++ void ExtractBits(Register dest, Register source, Register pos, int size, ++ bool sign_extend = false); ++ void InsertBits(Register dest, Register source, Register pos, int size); ++ ++ void Bstrins_w(Register rk, Register rj, uint16_t msbw, uint16_t lswb); ++ void Bstrins_d(Register rk, Register rj, uint16_t msbw, uint16_t lsbw); ++ void Bstrpick_w(Register rk, Register rj, uint16_t msbw, uint16_t lsbw); ++ void Bstrpick_d(Register rk, Register rj, uint16_t msbw, uint16_t lsbw); ++ void Neg_s(FPURegister fd, FPURegister fj); ++ void Neg_d(FPURegister fd, FPURegister fk); ++ ++ // Convert single to unsigned word. ++ void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); ++ void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch); ++ ++ // Change endianness ++ void ByteSwapSigned(Register dest, Register src, int operand_size); ++ void ByteSwapUnsigned(Register dest, Register src, int operand_size); ++ ++ void Ld_b(Register rd, const MemOperand& rs); ++ void Ld_bu(Register rd, const MemOperand& rs); ++ void St_b(Register rd, const MemOperand& rs); ++ ++ void Ld_h(Register rd, const MemOperand& rs); ++ void Ld_hu(Register rd, const MemOperand& rs); ++ void St_h(Register rd, const MemOperand& rs); ++ ++ void Ld_w(Register rd, const MemOperand& rs); ++ void Ld_wu(Register rd, const MemOperand& rs); ++ void St_w(Register rd, const MemOperand& rs); ++ ++ void Fld_s(FPURegister fd, const MemOperand& src); ++ void Fst_s(FPURegister fs, const MemOperand& dst); ++ ++ void Fld_d(FPURegister fd, const MemOperand& src); ++ void Fst_d(FPURegister fs, const MemOperand& dst); ++ ++ void Ll_w(Register rd, const MemOperand& rs); ++ void Sc_w(Register rd, const MemOperand& rs); ++ ++ void Ll_d(Register rd, const MemOperand& rs); ++ void Sc_d(Register rd, const MemOperand& rs); ++ ++ // Perform a floating-point min or max operation with the ++ // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt. ++ // Some cases, typically NaNs or +/-0.0, are expected to be rare and are ++ // handled in out-of-line code. The specific behaviour depends on supported ++ // instructions. ++ // ++ // These functions assume (and assert) that src1!=src2. It is permitted ++ // for the result to alias either input register. ++ void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, ++ Label* out_of_line); ++ void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, ++ Label* out_of_line); ++ void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2, ++ Label* out_of_line); ++ void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2, ++ Label* out_of_line); ++ ++ // Generate out-of-line cases for the macros above. ++ void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); ++ void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); ++ void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); ++ void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); ++ ++ bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } ++ ++ void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } ++ ++ inline void Move(Register dst, Handle handle) { li(dst, handle); } ++ inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); } ++ ++ inline void Move(Register dst, Register src) { ++ if (dst != src) { ++ mov(dst, src); ++ } ++ } ++ ++ inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); } ++ ++ inline void Move(Register dst_low, Register dst_high, FPURegister src) { ++ movfr2gr_s(dst_low, src); ++ movfrh2gr_s(dst_high, src); ++ } ++ ++ inline void Move(Register dst, FPURegister src) { movfr2gr_d(dst, src); } ++ ++ inline void Move(FPURegister dst, Register src) { movgr2fr_d(dst, src); } ++ ++ inline void FmoveHigh(Register dst_high, FPURegister src) { ++ movfrh2gr_s(dst_high, src); ++ } ++ ++ inline void FmoveHigh(FPURegister dst, Register src_high) { ++ movgr2frh_w(dst, src_high); ++ } ++ ++ inline void FmoveLow(Register dst_low, FPURegister src) { ++ movfr2gr_s(dst_low, src); ++ } ++ ++ void FmoveLow(FPURegister dst, Register src_low); ++ ++ inline void Move(FPURegister dst, Register src_low, Register src_high) { ++ movgr2fr_w(dst, src_low); ++ movgr2frh_w(dst, src_high); ++ } ++ ++ inline void Move_d(FPURegister dst, FPURegister src) { ++ if (dst != src) { ++ fmov_d(dst, src); ++ } ++ } ++ ++ inline void Move_s(FPURegister dst, FPURegister src) { ++ if (dst != src) { ++ fmov_s(dst, src); ++ } ++ } ++ ++ void Move(FPURegister dst, float imm) { Move(dst, bit_cast(imm)); } ++ void Move(FPURegister dst, double imm) { Move(dst, bit_cast(imm)); } ++ void Move(FPURegister dst, uint32_t src); ++ void Move(FPURegister dst, uint64_t src); ++ ++ // DaddOverflow sets overflow register to a negative value if ++ // overflow occured, otherwise it is zero or positive ++ void AdddOverflow(Register dst, Register left, const Operand& right, ++ Register overflow); ++ // DsubOverflow sets overflow register to a negative value if ++ // overflow occured, otherwise it is zero or positive ++ void SubdOverflow(Register dst, Register left, const Operand& right, ++ Register overflow); ++ // MulOverflow sets overflow register to zero if no overflow occured ++ void MulOverflow(Register dst, Register left, const Operand& right, ++ Register overflow); ++ ++ static const int kSwitchTablePrologueSize = 5; ++ ++ // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a ++ // functor/function with 'Label *func(size_t index)' declaration. ++ template ++ void GenerateSwitchTable(Register index, size_t case_count, ++ Func GetLabelFunction); ++ ++ // Load an object from the root table. ++ void LoadRoot(Register destination, Heap::RootListIndex index); ++ void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, ++ Register src1, const Operand& src2); ++ ++ // If the value is a NaN, canonicalize the value else, do nothing. ++ void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); ++ ++ // --------------------------------------------------------------------------- ++ // FPU macros. These do not handle special cases like NaN or +- inf. ++ ++ // Convert unsigned word to double. ++ void Ffint_d_uw(FPURegister fd, FPURegister fj); ++ void Ffint_d_uw(FPURegister fd, Register rj); ++ ++ // Convert unsigned long to double. ++ void Ffint_d_ul(FPURegister fd, FPURegister fj); ++ void Ffint_d_ul(FPURegister fd, Register rj); ++ ++ // Convert unsigned word to float. ++ void Ffint_s_uw(FPURegister fd, FPURegister fj); ++ void Ffint_s_uw(FPURegister fd, Register rj); ++ ++ // Convert unsigned long to float. ++ void Ffint_s_ul(FPURegister fd, FPURegister fj); ++ void Ffint_s_ul(FPURegister fd, Register rj); ++ ++ // Convert double to unsigned word. ++ void Ftintrz_uw_d(FPURegister fd, FPURegister fj, FPURegister scratch); ++ void Ftintrz_uw_d(Register rd, FPURegister fj, FPURegister scratch); ++ ++ // Convert single to unsigned word. ++ void Ftintrz_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); ++ void Ftintrz_uw_s(Register rd, FPURegister fs, FPURegister scratch); ++ ++ // Convert double to unsigned long. ++ void Ftintrz_ul_d(FPURegister fd, FPURegister fj, FPURegister scratch, ++ Register result = no_reg); ++ void Ftintrz_ul_d(Register rd, FPURegister fj, FPURegister scratch, ++ Register result = no_reg); ++ ++ // Convert single to unsigned long. ++ void Ftintrz_ul_s(FPURegister fd, FPURegister fj, FPURegister scratch, ++ Register result = no_reg); ++ void Ftintrz_ul_s(Register rd, FPURegister fj, FPURegister scratch, ++ Register result = no_reg); ++ ++ ++ // Round double functions ++ void Trunc_d(FPURegister fd, FPURegister fj); ++ void Round_d(FPURegister fd, FPURegister fj); ++ void Floor_d(FPURegister fd, FPURegister fj); ++ void Ceil_d(FPURegister fd, FPURegister fj); ++ ++ // Round float functions ++ void Trunc_s(FPURegister fd, FPURegister fj); ++ void Round_s(FPURegister fd, FPURegister fj); ++ void Floor_s(FPURegister fd, FPURegister fj); ++ void Ceil_s(FPURegister fd, FPURegister fj); ++ ++ // Jump the register contains a smi. ++ void JumpIfSmi(Register value, Label* smi_label, Register scratch = t7); ++ ++ // Push a standard frame, consisting of ra, fp, context and JS function. ++ void PushStandardFrame(Register function_reg); ++ ++ // Get the actual activation frame alignment for target environment. ++ static int ActivationFrameAlignment(); ++ ++ // Load Scaled Address instructions. Parameter sa (shift argument) must be ++ // between [1, 31] (inclusive). The scratch register may be clobbered. ++ void Alsl_w(Register rd, Register rj, Register rk, uint8_t sa, ++ Register scratch = t7); ++ void Alsl_d(Register rd, Register rj, Register rk, uint8_t sa, ++ Register scratch = t7); ++ ++ // Compute the start of the generated instruction stream from the current PC. ++ // This is an alternative to embedding the {CodeObject} handle as a reference. ++ void ComputeCodeStartAddress(Register dst); ++ ++ void ResetSpeculationPoisonRegister(); ++ ++ bool root_array_available() const { return root_array_available_; } ++ void set_root_array_available(bool v) { root_array_available_ = v; } ++ ++ protected: ++ inline Register GetRkAsRegisterHelper(const Operand& rt, Register scratch); ++ inline int32_t GetOffset(Label* L, OffsetSize bits); ++ ++ // This handle will be patched with the code object on installation. ++ Handle code_object_; ++ ++ private: ++ bool has_frame_ = false; ++ bool root_array_available_ = true; ++ Isolate* const isolate_; ++ bool has_double_zero_reg_set_; ++ ++ bool BranchShortOrFallback(Label* L, Condition cond, Register rj, ++ const Operand& rk, bool need_link); ++ ++ // f32 or f64 ++ void CompareF(FPURegister cmp1, FPURegister cmp2, ++ FPUCondition cc, CFRegister cd, bool f32 = true); ++ ++ void CompareIsNanF(FPURegister cmp1, FPURegister cmp2, ++ CFRegister cd, bool f32 = true); ++ ++ void CallCFunctionHelper(Register function, int num_reg_arguments, ++ int num_double_arguments); ++ ++ bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits); ++ bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits, ++ Register& scratch, const Operand& rt); ++ ++ void BranchShortHelper(int16_t offset, Label* L); ++ bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, ++ const Operand& rt); ++ bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, ++ const Operand& rt); ++ ++ void BranchAndLinkShortHelper(int16_t offset, Label* L); ++ void BranchAndLinkShort(int32_t offset); ++ void BranchAndLinkShort(Label* L); ++ bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, ++ Register rs, const Operand& rt); ++ bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, ++ Register rs, const Operand& rt); ++ void BranchLong(Label* L); ++ void BranchAndLinkLong(Label* L); ++ ++ void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode); ++ ++ void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode); ++ ++ // Push a fixed frame, consisting of ra, fp. ++ void PushCommonFrame(Register marker_reg = no_reg); ++}; ++ ++// MacroAssembler implements a collection of frequently used macros. ++class MacroAssembler : public TurboAssembler { ++ public: ++ MacroAssembler(Isolate* isolate, void* buffer, int size, ++ CodeObjectRequired create_code_object); ++ ++ bool IsNear(Label* L, Condition cond, int rs_reg); ++ ++ // Swap two registers. If the scratch register is omitted then a slightly ++ // less efficient form using xor instead of mov is emitted. ++ void Swap(Register reg1, Register reg2, Register scratch = no_reg); ++ ++ void PushRoot(Heap::RootListIndex index) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ LoadRoot(scratch, index); ++ Push(scratch); ++ } ++ ++ // Compare the object in a register to a value and jump if they are equal. ++ void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ LoadRoot(scratch, index); ++ Branch(if_equal, eq, with, Operand(scratch)); ++ } ++ ++ // Compare the object in a register to a value and jump if they are not equal. ++ void JumpIfNotRoot(Register with, Heap::RootListIndex index, ++ Label* if_not_equal) { ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ LoadRoot(scratch, index); ++ Branch(if_not_equal, ne, with, Operand(scratch)); ++ } ++ ++ // --------------------------------------------------------------------------- ++ // GC Support ++ ++ // Notify the garbage collector that we wrote a pointer into an object. ++ // |object| is the object being stored into, |value| is the object being ++ // stored. value and scratch registers are clobbered by the operation. ++ // The offset is the offset from the start of the object, not the offset from ++ // the tagged HeapObject pointer. For use with FieldOperand(reg, off). ++ void RecordWriteField( ++ Register object, int offset, Register value, Register scratch, ++ RAStatus ra_status, SaveFPRegsMode save_fp, ++ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, ++ SmiCheck smi_check = INLINE_SMI_CHECK); ++ ++ // For a given |object| notify the garbage collector that the slot |address| ++ // has been written. |value| is the object being stored. The value and ++ // address registers are clobbered by the operation. ++ void RecordWrite( ++ Register object, Register address, Register value, RAStatus ra_status, ++ SaveFPRegsMode save_fp, ++ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, ++ SmiCheck smi_check = INLINE_SMI_CHECK); ++ ++ void Pref(int32_t hint, const MemOperand& rs); ++ ++ // --------------------------------------------------------------------------- ++ // Pseudo-instructions. ++ ++ void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = t7); ++ void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = t7); ++ ++ // Push and pop the registers that can hold pointers, as defined by the ++ // RegList constant kSafepointSavedRegisters. ++ void PushSafepointRegisters(); ++ void PopSafepointRegisters(); ++ ++ // Convert double to unsigned long. ++ void Ftintrz_l_ud(FPURegister fd, FPURegister fj, FPURegister scratch); ++ ++ void Ftintrz_l_d(FPURegister fd, FPURegister fj); ++ void Ftintrne_l_d(FPURegister fd, FPURegister fj); ++ void Ftintrm_l_d(FPURegister fd, FPURegister fj); ++ void Ftintrp_l_d(FPURegister fd, FPURegister fj); ++ ++ void Ftintrz_w_d(FPURegister fd, FPURegister fj); ++ void Ftintrne_w_d(FPURegister fd, FPURegister fj); ++ void Ftintrm_w_d(FPURegister fd, FPURegister fj); ++ void Ftintrp_w_d(FPURegister fd, FPURegister fj); ++ ++ void Madd_s(FPURegister fd, FPURegister fa, FPURegister fj, FPURegister fk); ++ void Madd_d(FPURegister fd, FPURegister fa, FPURegister fj, FPURegister fk); ++ void Msub_s(FPURegister fd, FPURegister fa, FPURegister fj, FPURegister fk); ++ void Msub_d(FPURegister fd, FPURegister fa, FPURegister fj, FPURegister fk); ++ ++ // Truncates a double using a specific rounding mode, and writes the value ++ // to the result register. ++ // The except_flag will contain any exceptions caused by the instruction. ++ // If check_inexact is kDontCheckForInexactConversion, then the inexact ++ // exception is masked. ++ void EmitFPUTruncate( ++ FPURoundingMode rounding_mode, Register result, ++ DoubleRegister double_input, Register scratch, ++ DoubleRegister double_scratch, Register except_flag, ++ CheckForInexactConversion check_inexact = kDontCheckForInexactConversion); ++ ++ // Enter exit frame. ++ // argc - argument count to be dropped by LeaveExitFrame. ++ // save_doubles - saves FPU registers on stack, currently disabled. ++ // stack_space - extra stack space. ++ void EnterExitFrame(bool save_doubles, int stack_space = 0, ++ StackFrame::Type frame_type = StackFrame::EXIT); ++ ++ // Leave the current exit frame. ++ void LeaveExitFrame(bool save_doubles, Register arg_count, ++ bool do_return = NO_EMIT_RETURN, ++ bool argument_count_is_length = false); ++ ++ // Make sure the stack is aligned. Only emits code in debug mode. ++ void AssertStackIsAligned(); ++ ++ // Load the global proxy from the current context. ++ void LoadGlobalProxy(Register dst) { ++ LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); ++ } ++ ++ void LoadNativeContextSlot(int index, Register dst); ++ ++ // Load the initial map from the global function. The registers ++ // function and map can be the same, function is then overwritten. ++ void LoadGlobalFunctionInitialMap(Register function, ++ Register map, ++ Register scratch); ++ ++ // ------------------------------------------------------------------------- ++ // JavaScript invokes. ++ ++ // Invoke the JavaScript function code by either calling or jumping. ++ void InvokeFunctionCode(Register function, Register new_target, ++ const ParameterCount& expected, ++ const ParameterCount& actual, InvokeFlag flag); ++ ++ // On function call, call into the debugger if necessary. ++ void CheckDebugHook(Register fun, Register new_target, ++ const ParameterCount& expected, ++ const ParameterCount& actual); ++ ++ // Invoke the JavaScript function in the given register. Changes the ++ // current context to the context in the function before invoking. ++ void InvokeFunction(Register function, Register new_target, ++ const ParameterCount& actual, InvokeFlag flag); ++ ++ void InvokeFunction(Register function, const ParameterCount& expected, ++ const ParameterCount& actual, InvokeFlag flag); ++ ++ // Frame restart support. ++ void MaybeDropFrames(); ++ ++ // Exception handling. ++ ++ // Push a new stack handler and link into stack handler chain. ++ void PushStackHandler(); ++ ++ // Unlink the stack handler on top of the stack from the stack handler chain. ++ // Must preserve the result register. ++ void PopStackHandler(); ++ ++ // ------------------------------------------------------------------------- ++ // Support functions. ++ ++ void GetObjectType(Register function, ++ Register map, ++ Register type_reg); ++ ++ // ------------------------------------------------------------------------- ++ // Runtime calls. ++ ++#define COND_ARGS Condition cond = al, Register rs = zero_reg, \ ++const Operand& rt = Operand(zero_reg) ++ ++ // Call a code stub. ++ void CallStub(CodeStub* stub, COND_ARGS); ++ ++ // Tail call a code stub (jump). ++ void TailCallStub(CodeStub* stub, COND_ARGS); ++ ++#undef COND_ARGS ++ ++ // Call a runtime routine. ++ void CallRuntime(const Runtime::Function* f, int num_arguments, ++ SaveFPRegsMode save_doubles = kDontSaveFPRegs); ++ ++ // Convenience function: Same as above, but takes the fid instead. ++ void CallRuntime(Runtime::FunctionId fid, ++ SaveFPRegsMode save_doubles = kDontSaveFPRegs) { ++ const Runtime::Function* function = Runtime::FunctionForId(fid); ++ CallRuntime(function, function->nargs, save_doubles); ++ } ++ ++ // Convenience function: Same as above, but takes the fid instead. ++ void CallRuntime(Runtime::FunctionId fid, int num_arguments, ++ SaveFPRegsMode save_doubles = kDontSaveFPRegs) { ++ CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); ++ } ++ ++ // Convenience function: tail call a runtime routine (jump). ++ void TailCallRuntime(Runtime::FunctionId fid); ++ ++ // Jump to the builtin routine. ++ void JumpToExternalReference(const ExternalReference& builtin, ++ bool builtin_exit_frame = false); ++ ++ // Generates a trampoline to jump to the off-heap instruction stream. ++ void JumpToInstructionStream(Address entry); ++ ++ // --------------------------------------------------------------------------- ++ // In-place weak references. ++ void LoadWeakValue(Register out, Register in, Label* target_if_cleared); ++ ++ // ------------------------------------------------------------------------- ++ // StatsCounter support. ++ ++ void IncrementCounter(StatsCounter* counter, int value, ++ Register scratch1, Register scratch2); ++ void DecrementCounter(StatsCounter* counter, int value, ++ Register scratch1, Register scratch2); ++ ++ // ------------------------------------------------------------------------- ++ // Smi utilities. ++ ++ void SmiTag(Register dst, Register src) { ++ STATIC_ASSERT(kSmiTag == 0); ++ if (SmiValuesAre32Bits()) { ++ slli_d(dst, src, 32); ++ } else { ++ DCHECK(SmiValuesAre31Bits()); ++ add_w(dst, src, src); ++ } ++ } ++ ++ void SmiTag(Register reg) { ++ SmiTag(reg, reg); ++ } ++ ++ // Left-shifted from int32 equivalent of Smi. ++ void SmiScale(Register dst, Register src, int scale) { ++ if (SmiValuesAre32Bits()) { ++ // The int portion is upper 32-bits of 64-bit word. ++ srai_d(dst, src, kSmiShift - scale); ++ } else { ++ DCHECK(SmiValuesAre31Bits()); ++ DCHECK_GE(scale, kSmiTagSize); ++ slli_w(dst, src, scale - kSmiTagSize); ++ } ++ } ++ ++ // Combine load with untagging or scaling. ++ void SmiLoadUntag(Register dst, MemOperand src); ++ ++ // Test if the register contains a smi. ++ inline void SmiTst(Register value, Register scratch) { ++ And(scratch, value, Operand(kSmiTagMask)); ++ } ++ // Untag the source value into destination and jump if source is a smi. ++ // Source and destination can be the same register. ++ void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); ++ ++ // Jump if the register contains a non-smi. ++ void JumpIfNotSmi(Register value, ++ Label* not_smi_label, ++ Register scratch); ++ ++ // Jump if either of the registers contain a smi. ++ void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); ++ ++ // Abort execution if argument is a smi, enabled via --debug-code. ++ void AssertNotSmi(Register object); ++ void AssertSmi(Register object); ++ ++ // Abort execution if argument is not a FixedArray, enabled via --debug-code. ++ void AssertFixedArray(Register object); ++ ++ // Abort execution if argument is not a Constructor, enabled via --debug-code. ++ void AssertConstructor(Register object); ++ ++ // Abort execution if argument is not a JSFunction, enabled via --debug-code. ++ void AssertFunction(Register object); ++ ++ // Abort execution if argument is not a JSBoundFunction, ++ // enabled via --debug-code. ++ void AssertBoundFunction(Register object); ++ ++ // Abort execution if argument is not a JSGeneratorObject (or subclass), ++ // enabled via --debug-code. ++ void AssertGeneratorObject(Register object); ++ ++ // Abort execution if argument is not undefined or an AllocationSite, enabled ++ // via --debug-code. ++ void AssertUndefinedOrAllocationSite(Register object, Register scratch); ++ ++ template ++ void DecodeField(Register dst, Register src) { ++ Bstrpick_d(dst, src, Field::kShift + Field::kSize - 1, Field::kShift); ++ } ++ ++ template ++ void DecodeField(Register reg) { ++ DecodeField(reg, reg); ++ } ++ ++ void EnterBuiltinFrame(Register context, Register target, Register argc); ++ void LeaveBuiltinFrame(Register context, Register target, Register argc); ++ ++ private: ++ // Helper functions for generating invokes. ++ void InvokePrologue(const ParameterCount& expected, ++ const ParameterCount& actual, Label* done, ++ bool* definitely_mismatches, InvokeFlag flag); ++ ++ // Compute memory operands for safepoint stack slots. ++ static int SafepointRegisterStackIndex(int reg_code); ++ ++ // Needs access to SafepointRegisterStackIndex for compiled frame ++ // traversal. ++ friend class StandardFrame; ++}; ++ ++template ++void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, ++ Func GetLabelFunction) { ++ // Ensure that dd-ed labels following this instruction use 8 bytes aligned ++ // addresses. ++ BlockTrampolinePoolFor(static_cast(case_count) * 2 + ++ kSwitchTablePrologueSize); ++ UseScratchRegisterScope temps(this); ++ Register scratch = temps.Acquire(); ++ Align(8); // next is 4 instrs. ++ pcaddi(scratch, 4); ++ // alsl_d will do sa ++ alsl_d(scratch, index, scratch, kPointerSizeLog2); ++ Ld_d(scratch, MemOperand(scratch, 0)); ++ jirl(zero_reg, scratch, 0); ++ for (size_t index = 0; index < case_count; ++index) { ++ dd(GetLabelFunction(index)); ++ } ++} ++ ++#define ACCESS_MASM(masm) masm-> ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_LOONG64_MACRO_ASSEMBLER_LOONG64_H_ +diff --git a/deps/v8/src/loong64/simulator-loong64.cc b/deps/v8/src/loong64/simulator-loong64.cc +new file mode 100644 +index 0000000..1b4b18f +--- /dev/null ++++ b/deps/v8/src/loong64/simulator-loong64.cc +@@ -0,0 +1,5158 @@ ++// Copyright 2020 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include ++#include ++#include ++#include ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/assembler-inl.h" ++#include "src/base/bits.h" ++#include "src/codegen.h" ++#include "src/disasm.h" ++#include "src/loong64/constants-loong64.h" ++#include "src/loong64/simulator-loong64.h" ++#include "src/macro-assembler.h" ++#include "src/ostreams.h" ++#include "src/runtime/runtime-utils.h" ++ ++// Only build the simulator if not compiling for real LOONG64 hardware. ++#if defined(USE_SIMULATOR) ++ ++namespace v8 { ++namespace internal { ++ ++// bool print_sim_log = true; ++bool print_sim_log = false; ++ ++// Util functions. ++inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); } ++ ++uint32_t get_fcsr_condition_bit(uint32_t cc) { ++ if (cc == 0) { ++ return 23; ++ } else { ++ return 24 + cc; ++ } ++} ++ ++static int64_t MultiplyHighSigned(int64_t u, int64_t v) { ++ uint64_t u0, v0, w0; ++ int64_t u1, v1, w1, w2, t; ++ ++ u0 = u & 0xFFFFFFFFL; ++ u1 = u >> 32; ++ v0 = v & 0xFFFFFFFFL; ++ v1 = v >> 32; ++ ++ w0 = u0 * v0; ++ t = u1 * v0 + (w0 >> 32); ++ w1 = t & 0xFFFFFFFFL; ++ w2 = t >> 32; ++ w1 = u0 * v1 + w1; ++ ++ return u1 * v1 + w2 + (w1 >> 32); ++} ++ ++static uint64_t MultiplyHighUnsigned(uint64_t u, uint64_t v) { ++ uint64_t u0, v0, w0; ++ uint64_t u1, v1, w1, w2, t; ++ ++ u0 = u & 0xFFFFFFFFL; ++ u1 = u >> 32; ++ v0 = v & 0xFFFFFFFFL; ++ v1 = v >> 32; ++ ++ w0 = u0 * v0; ++ t = u1 * v0 + (w0 >> 32); ++ w1 = t & 0xFFFFFFFFL; ++ w2 = t >> 32; ++ w1 = u0 * v1 + w1; ++ ++ return u1 * v1 + w2 + (w1 >> 32); ++} ++ ++void printf_instr(const char* _Format, ...) { ++ va_list varList; ++ va_start(varList, _Format); ++ if (print_sim_log) { ++ vprintf(_Format, varList); ++ } ++ va_end(varList); ++} ++ ++// This macro provides a platform independent use of sscanf. The reason for ++// SScanF not being implemented in a platform independent was through ++// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time ++// Library does not provide vsscanf. ++#define SScanF sscanf // NOLINT ++ ++// The Loong64Debugger class is used by the simulator while debugging simulated ++// code. ++class Loong64Debugger { ++ public: ++ explicit Loong64Debugger(Simulator* sim) : sim_(sim) {} ++ ++ void Stop(Instruction* instr); ++ void Debug(); ++ // Print all registers with a nice formatting. ++ void PrintAllRegs(); ++ void PrintAllRegsIncludingFPU(); ++ ++ private: ++ // We set the breakpoint code to 0xFFFF to easily recognize it. ++ static const Instr kBreakpointInstr = BREAK | 0xFFFF; ++ static const Instr kNopInstr = 0x0; ++ ++ Simulator* sim_; ++ ++ int64_t GetRegisterValue(int regnum); ++ int64_t GetFPURegisterValue(int regnum); ++ float GetFPURegisterValueFloat(int regnum); ++ double GetFPURegisterValueDouble(int regnum); ++ bool GetValue(const char* desc, int64_t* value); ++ ++ // Set or delete a breakpoint. Returns true if successful. ++ bool SetBreakpoint(Instruction* breakpc); ++ bool DeleteBreakpoint(Instruction* breakpc); ++ ++ // Undo and redo all breakpoints. This is needed to bracket disassembly and ++ // execution to skip past breakpoints when run from the debugger. ++ void UndoBreakpoints(); ++ void RedoBreakpoints(); ++}; ++ ++inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); } ++ ++void Loong64Debugger::Stop(Instruction* instr) { ++ // Get the stop code. ++ uint32_t code = instr->Bits(25, 6); ++ PrintF("Simulator hit (%u)\n", code); ++ Debug(); ++} ++ ++int64_t Loong64Debugger::GetRegisterValue(int regnum) { ++ if (regnum == kNumSimuRegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_register(regnum); ++ } ++} ++ ++int64_t Loong64Debugger::GetFPURegisterValue(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register(regnum); ++ } ++} ++ ++float Loong64Debugger::GetFPURegisterValueFloat(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register_float(regnum); ++ } ++} ++ ++double Loong64Debugger::GetFPURegisterValueDouble(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register_double(regnum); ++ } ++} ++ ++bool Loong64Debugger::GetValue(const char* desc, int64_t* value) { ++ int regnum = Registers::Number(desc); ++ int fpuregnum = FPURegisters::Number(desc); ++ ++ if (regnum != kInvalidRegister) { ++ *value = GetRegisterValue(regnum); ++ return true; ++ } else if (fpuregnum != kInvalidFPURegister) { ++ *value = GetFPURegisterValue(fpuregnum); ++ return true; ++ } else if (strncmp(desc, "0x", 2) == 0) { ++ return SScanF(desc + 2, "%" SCNx64, reinterpret_cast(value)) == ++ 1; ++ } else { ++ return SScanF(desc, "%" SCNu64, reinterpret_cast(value)) == 1; ++ } ++ return false; ++} ++ ++bool Loong64Debugger::SetBreakpoint(Instruction* breakpc) { ++ // Check if a breakpoint can be set. If not return without any side-effects. ++ if (sim_->break_pc_ != nullptr) { ++ return false; ++ } ++ ++ // Set the breakpoint. ++ sim_->break_pc_ = breakpc; ++ sim_->break_instr_ = breakpc->InstructionBits(); ++ // Not setting the breakpoint instruction in the code itself. It will be set ++ // when the debugger shell continues. ++ return true; ++} ++ ++bool Loong64Debugger::DeleteBreakpoint(Instruction* breakpc) { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); ++ } ++ ++ sim_->break_pc_ = nullptr; ++ sim_->break_instr_ = 0; ++ return true; ++} ++ ++void Loong64Debugger::UndoBreakpoints() { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); ++ } ++} ++ ++void Loong64Debugger::RedoBreakpoints() { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(kBreakpointInstr); ++ } ++} ++ ++void Loong64Debugger::PrintAllRegs() { ++#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) ++ ++ PrintF("\n"); ++ // at, v0, a0. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64 ++ "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n", ++ REG_INFO(1), REG_INFO(2), REG_INFO(4)); ++ // v1, a1. ++ PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ "", REG_INFO(3), REG_INFO(5)); ++ // a2. ++ PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", ++ REG_INFO(6)); ++ // a3. ++ PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", ++ REG_INFO(7)); ++ PrintF("\n"); ++ // a4-t3, s0-s7 ++ for (int i = 0; i < 8; i++) { ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ REG_INFO(8 + i), REG_INFO(16 + i)); ++ } ++ PrintF("\n"); ++ // t8, k0, LO. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(24), REG_INFO(26), REG_INFO(32)); ++ // t9, k1, HI. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(25), REG_INFO(27), REG_INFO(33)); ++ // sp, fp, gp. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(29), REG_INFO(30), REG_INFO(28)); ++ // pc. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ REG_INFO(31), REG_INFO(34)); ++ ++#undef REG_INFO ++} ++ ++void Loong64Debugger::PrintAllRegsIncludingFPU() { ++#define FPU_REG_INFO(n) \ ++ FPURegisters::Name(n), GetFPURegisterValue(n), GetFPURegisterValueDouble(n) ++ ++ PrintAllRegs(); ++ ++ PrintF("\n\n"); ++ // f0, f1, f2, ... f31. ++ // TODO(plind): consider printing 2 columns for space efficiency. ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31)); ++ ++#undef FPU_REG_INFO ++} ++ ++void Loong64Debugger::Debug() { ++ intptr_t last_pc = -1; ++ bool done = false; ++ ++#define COMMAND_SIZE 63 ++#define ARG_SIZE 255 ++ ++#define STR(a) #a ++#define XSTR(a) STR(a) ++ ++ char cmd[COMMAND_SIZE + 1]; ++ char arg1[ARG_SIZE + 1]; ++ char arg2[ARG_SIZE + 1]; ++ char* argv[3] = {cmd, arg1, arg2}; ++ ++ // Make sure to have a proper terminating character if reaching the limit. ++ cmd[COMMAND_SIZE] = 0; ++ arg1[ARG_SIZE] = 0; ++ arg2[ARG_SIZE] = 0; ++ ++ // Undo all set breakpoints while running in the debugger shell. This will ++ // make them invisible to all commands. ++ UndoBreakpoints(); ++ ++ while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { ++ if (last_pc != sim_->get_pc()) { ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ dasm.InstructionDecode(buffer, reinterpret_cast(sim_->get_pc())); ++ PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start()); ++ last_pc = sim_->get_pc(); ++ } ++ char* line = ReadLine("sim> "); ++ if (line == nullptr) { ++ break; ++ } else { ++ char* last_input = sim_->last_debugger_input(); ++ if (strcmp(line, "\n") == 0 && last_input != nullptr) { ++ line = last_input; ++ } else { ++ // Ownership is transferred to sim_; ++ sim_->set_last_debugger_input(line); ++ } ++ // Use sscanf to parse the individual parts of the command line. At the ++ // moment no command expects more than two parameters. ++ int argc = SScanF(line, ++ "%" XSTR(COMMAND_SIZE) "s " ++ "%" XSTR(ARG_SIZE) "s " ++ "%" XSTR(ARG_SIZE) "s", ++ cmd, arg1, arg2); ++ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { ++ Instruction* instr = reinterpret_cast(sim_->get_pc()); ++ if (!(instr->IsTrap()) || ++ instr->InstructionBits() == rtCallRedirInstr) { ++ sim_->InstructionDecode( ++ reinterpret_cast(sim_->get_pc())); ++ } else { ++ // Allow si to jump over generated breakpoints. ++ PrintF("/!\\ Jumping over generated breakpoint.\n"); ++ sim_->set_pc(sim_->get_pc() + kInstrSize); ++ } ++ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { ++ // Execute the one instruction we broke at with breakpoints disabled. ++ sim_->InstructionDecode(reinterpret_cast(sim_->get_pc())); ++ // Leave the debugger shell. ++ done = true; ++ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { ++ if (argc == 2) { ++ int64_t value; ++ double dvalue; ++ if (strcmp(arg1, "all") == 0) { ++ PrintAllRegs(); ++ } else if (strcmp(arg1, "allf") == 0) { ++ PrintAllRegsIncludingFPU(); ++ } else { ++ int regnum = Registers::Number(arg1); ++ int fpuregnum = FPURegisters::Number(arg1); ++ ++ if (regnum != kInvalidRegister) { ++ value = GetRegisterValue(regnum); ++ PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value, ++ value); ++ } else if (fpuregnum != kInvalidFPURegister) { ++ value = GetFPURegisterValue(fpuregnum); ++ dvalue = GetFPURegisterValueDouble(fpuregnum); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", ++ FPURegisters::Name(fpuregnum), value, dvalue); ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } ++ } else { ++ if (argc == 3) { ++ if (strcmp(arg2, "single") == 0) { ++ int64_t value; ++ float fvalue; ++ int fpuregnum = FPURegisters::Number(arg1); ++ ++ if (fpuregnum != kInvalidFPURegister) { ++ value = GetFPURegisterValue(fpuregnum); ++ value &= 0xFFFFFFFFUL; ++ fvalue = GetFPURegisterValueFloat(fpuregnum); ++ PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue); ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } else { ++ PrintF("print single\n"); ++ } ++ } else { ++ PrintF("print or print single\n"); ++ } ++ } ++ } else if ((strcmp(cmd, "po") == 0) || ++ (strcmp(cmd, "printobject") == 0)) { ++ if (argc == 2) { ++ int64_t value; ++ OFStream os(stdout); ++ if (GetValue(arg1, &value)) { ++ Object* obj = reinterpret_cast(value); ++ os << arg1 << ": \n"; ++#ifdef DEBUG ++ obj->Print(os); ++ os << "\n"; ++#else ++ os << Brief(obj) << "\n"; ++#endif ++ } else { ++ os << arg1 << " unrecognized\n"; ++ } ++ } else { ++ PrintF("printobject \n"); ++ } ++ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 || ++ strcmp(cmd, "dump") == 0) { ++ int64_t* cur = nullptr; ++ int64_t* end = nullptr; ++ int next_arg = 1; ++ ++ if (strcmp(cmd, "stack") == 0) { ++ cur = reinterpret_cast(sim_->get_register(Simulator::sp)); ++ } else { // Command "mem". ++ int64_t value; ++ if (!GetValue(arg1, &value)) { ++ PrintF("%s unrecognized\n", arg1); ++ continue; ++ } ++ cur = reinterpret_cast(value); ++ next_arg++; ++ } ++ ++ int64_t words; ++ if (argc == next_arg) { ++ words = 10; ++ } else { ++ if (!GetValue(argv[next_arg], &words)) { ++ words = 10; ++ } ++ } ++ end = cur + words; ++ ++ while (cur < end) { ++ PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ", ++ reinterpret_cast(cur), *cur, *cur); ++ HeapObject* obj = reinterpret_cast(*cur); ++ int64_t value = *cur; ++ Heap* current_heap = sim_->isolate_->heap(); ++ if (((value & 1) == 0) || ++ current_heap->ContainsSlow(obj->address())) { ++ PrintF(" ("); ++ if ((value & 1) == 0) { ++ PrintF("smi %d", static_cast(value >> 32)); ++ } else { ++ obj->ShortPrint(); ++ } ++ PrintF(")"); ++ } ++ PrintF("\n"); ++ cur++; ++ } ++ ++ } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || ++ (strcmp(cmd, "di") == 0)) { ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ ++ byte* cur = nullptr; ++ byte* end = nullptr; ++ ++ if (argc == 1) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ end = cur + (10 * kInstrSize); ++ } else if (argc == 2) { ++ int regnum = Registers::Number(arg1); ++ if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { ++ // The argument is an address or a register name. ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(value); ++ // Disassemble 10 instructions at . ++ end = cur + (10 * kInstrSize); ++ } ++ } else { ++ // The argument is the number of instructions. ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ // Disassemble instructions. ++ end = cur + (value * kInstrSize); ++ } ++ } ++ } else { ++ int64_t value1; ++ int64_t value2; ++ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { ++ cur = reinterpret_cast(value1); ++ end = cur + (value2 * kInstrSize); ++ } ++ } ++ ++ while (cur < end) { ++ dasm.InstructionDecode(buffer, cur); ++ PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast(cur), ++ buffer.start()); ++ cur += kInstrSize; ++ } ++ } else if (strcmp(cmd, "gdb") == 0) { ++ PrintF("relinquishing control to gdb\n"); ++ v8::base::OS::DebugBreak(); ++ PrintF("regaining control from gdb\n"); ++ } else if (strcmp(cmd, "break") == 0) { ++ if (argc == 2) { ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ if (!SetBreakpoint(reinterpret_cast(value))) { ++ PrintF("setting breakpoint failed\n"); ++ } ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } else { ++ PrintF("break
\n"); ++ } ++ } else if (strcmp(cmd, "del") == 0) { ++ if (!DeleteBreakpoint(nullptr)) { ++ PrintF("deleting breakpoint failed\n"); ++ } ++ } else if (strcmp(cmd, "flags") == 0) { ++ PrintF("No flags on LOONG64 !\n"); ++ } else if (strcmp(cmd, "stop") == 0) { ++ int64_t value; ++ intptr_t stop_pc = sim_->get_pc() - 2 * kInstrSize; ++ Instruction* stop_instr = reinterpret_cast(stop_pc); ++ Instruction* msg_address = ++ reinterpret_cast(stop_pc + kInstrSize); ++ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { ++ // Remove the current stop. ++ if (sim_->IsStopInstruction(stop_instr)) { ++ stop_instr->SetInstructionBits(kNopInstr); ++ msg_address->SetInstructionBits(kNopInstr); ++ } else { ++ PrintF("Not at debugger stop.\n"); ++ } ++ } else if (argc == 3) { ++ // Print information about all/the specified breakpoint(s). ++ if (strcmp(arg1, "info") == 0) { ++ if (strcmp(arg2, "all") == 0) { ++ PrintF("Stop information:\n"); ++ for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; ++ i++) { ++ sim_->PrintStopInfo(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->PrintStopInfo(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } else if (strcmp(arg1, "enable") == 0) { ++ // Enable all/the specified breakpoint(s). ++ if (strcmp(arg2, "all") == 0) { ++ for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; ++ i++) { ++ sim_->EnableStop(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->EnableStop(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } else if (strcmp(arg1, "disable") == 0) { ++ // Disable all/the specified breakpoint(s). ++ if (strcmp(arg2, "all") == 0) { ++ for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; ++ i++) { ++ sim_->DisableStop(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->DisableStop(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } ++ } else { ++ PrintF("Wrong usage. Use help command for more information.\n"); ++ } ++ } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { ++ // Print registers and disassemble. ++ PrintAllRegs(); ++ PrintF("\n"); ++ ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ ++ byte* cur = nullptr; ++ byte* end = nullptr; ++ ++ if (argc == 1) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ end = cur + (10 * kInstrSize); ++ } else if (argc == 2) { ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(value); ++ // no length parameter passed, assume 10 instructions ++ end = cur + (10 * kInstrSize); ++ } ++ } else { ++ int64_t value1; ++ int64_t value2; ++ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { ++ cur = reinterpret_cast(value1); ++ end = cur + (value2 * kInstrSize); ++ } ++ } ++ ++ while (cur < end) { ++ dasm.InstructionDecode(buffer, cur); ++ PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast(cur), ++ buffer.start()); ++ cur += kInstrSize; ++ } ++ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { ++ PrintF("cont\n"); ++ PrintF(" continue execution (alias 'c')\n"); ++ PrintF("stepi\n"); ++ PrintF(" step one instruction (alias 'si')\n"); ++ PrintF("print \n"); ++ PrintF(" print register content (alias 'p')\n"); ++ PrintF(" use register name 'all' to print all registers\n"); ++ PrintF("printobject \n"); ++ PrintF(" print an object from a register (alias 'po')\n"); ++ PrintF("stack []\n"); ++ PrintF(" dump stack content, default dump 10 words)\n"); ++ PrintF("mem
[]\n"); ++ PrintF(" dump memory content, default dump 10 words)\n"); ++ PrintF("dump []\n"); ++ PrintF( ++ " dump memory content without pretty printing JS objects, default " ++ "dump 10 words)\n"); ++ PrintF("flags\n"); ++ PrintF(" print flags\n"); ++ PrintF("disasm []\n"); ++ PrintF("disasm [
]\n"); ++ PrintF("disasm [[
] ]\n"); ++ PrintF(" disassemble code, default is 10 instructions\n"); ++ PrintF(" from pc (alias 'di')\n"); ++ PrintF("gdb\n"); ++ PrintF(" enter gdb\n"); ++ PrintF("break
\n"); ++ PrintF(" set a break point on the address\n"); ++ PrintF("del\n"); ++ PrintF(" delete the breakpoint\n"); ++ PrintF("stop feature:\n"); ++ PrintF(" Description:\n"); ++ PrintF(" Stops are debug instructions inserted by\n"); ++ PrintF(" the Assembler::stop() function.\n"); ++ PrintF(" When hitting a stop, the Simulator will\n"); ++ PrintF(" stop and give control to the Debugger.\n"); ++ PrintF(" All stop codes are watched:\n"); ++ PrintF(" - They can be enabled / disabled: the Simulator\n"); ++ PrintF(" will / won't stop when hitting them.\n"); ++ PrintF(" - The Simulator keeps track of how many times they \n"); ++ PrintF(" are met. (See the info command.) Going over a\n"); ++ PrintF(" disabled stop still increases its counter. \n"); ++ PrintF(" Commands:\n"); ++ PrintF(" stop info all/ : print infos about number \n"); ++ PrintF(" or all stop(s).\n"); ++ PrintF(" stop enable/disable all/ : enables / disables\n"); ++ PrintF(" all or number stop(s)\n"); ++ PrintF(" stop unstop\n"); ++ PrintF(" ignore the stop instruction at the current location\n"); ++ PrintF(" from now on\n"); ++ } else { ++ PrintF("Unknown command: %s\n", cmd); ++ } ++ } ++ } ++ ++ // Add all the breakpoints back to stop execution and enter the debugger ++ // shell when hit. ++ RedoBreakpoints(); ++ ++#undef COMMAND_SIZE ++#undef ARG_SIZE ++ ++#undef STR ++#undef XSTR ++} ++ ++bool Simulator::ICacheMatch(void* one, void* two) { ++ DCHECK_EQ(reinterpret_cast(one) & CachePage::kPageMask, 0); ++ DCHECK_EQ(reinterpret_cast(two) & CachePage::kPageMask, 0); ++ return one == two; ++} ++ ++static uint32_t ICacheHash(void* key) { ++ return static_cast(reinterpret_cast(key)) >> 2; ++} ++ ++static bool AllOnOnePage(uintptr_t start, size_t size) { ++ intptr_t start_page = (start & ~CachePage::kPageMask); ++ intptr_t end_page = ((start + size) & ~CachePage::kPageMask); ++ return start_page == end_page; ++} ++ ++void Simulator::set_last_debugger_input(char* input) { ++ DeleteArray(last_debugger_input_); ++ last_debugger_input_ = input; ++} ++ ++void Simulator::SetRedirectInstruction(Instruction* instruction) { ++ instruction->SetInstructionBits(rtCallRedirInstr); ++} ++ ++void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, ++ void* start_addr, size_t size) { ++ int64_t start = reinterpret_cast(start_addr); ++ int64_t intra_line = (start & CachePage::kLineMask); ++ start -= intra_line; ++ size += intra_line; ++ size = ((size - 1) | CachePage::kLineMask) + 1; ++ int offset = (start & CachePage::kPageMask); ++ while (!AllOnOnePage(start, size - 1)) { ++ int bytes_to_flush = CachePage::kPageSize - offset; ++ FlushOnePage(i_cache, start, bytes_to_flush); ++ start += bytes_to_flush; ++ size -= bytes_to_flush; ++ DCHECK_EQ((int64_t)0, start & CachePage::kPageMask); ++ offset = 0; ++ } ++ if (size != 0) { ++ FlushOnePage(i_cache, start, size); ++ } ++} ++ ++CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, ++ void* page) { ++ base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); ++ if (entry->value == nullptr) { ++ CachePage* new_page = new CachePage(); ++ entry->value = new_page; ++ } ++ return reinterpret_cast(entry->value); ++} ++ ++// Flush from start up to and not including start + size. ++void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, ++ intptr_t start, size_t size) { ++ DCHECK_LE(size, CachePage::kPageSize); ++ DCHECK(AllOnOnePage(start, size - 1)); ++ DCHECK_EQ(start & CachePage::kLineMask, 0); ++ DCHECK_EQ(size & CachePage::kLineMask, 0); ++ void* page = reinterpret_cast(start & (~CachePage::kPageMask)); ++ int offset = (start & CachePage::kPageMask); ++ CachePage* cache_page = GetCachePage(i_cache, page); ++ char* valid_bytemap = cache_page->ValidityByte(offset); ++ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); ++} ++ ++void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, ++ Instruction* instr) { ++ int64_t address = reinterpret_cast(instr); ++ void* page = reinterpret_cast(address & (~CachePage::kPageMask)); ++ void* line = reinterpret_cast(address & (~CachePage::kLineMask)); ++ int offset = (address & CachePage::kPageMask); ++ CachePage* cache_page = GetCachePage(i_cache, page); ++ char* cache_valid_byte = cache_page->ValidityByte(offset); ++ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); ++ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); ++ if (cache_hit) { ++ // Check that the data in memory matches the contents of the I-cache. ++ CHECK_EQ(0, memcmp(reinterpret_cast(instr), ++ cache_page->CachedData(offset), kInstrSize)); ++ } else { ++ // Cache miss. Load memory into the cache. ++ memcpy(cached_line, line, CachePage::kLineLength); ++ *cache_valid_byte = CachePage::LINE_VALID; ++ } ++} ++ ++Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { ++ // Set up simulator support first. Some of this information is needed to ++ // setup the architecture state. ++ stack_size_ = FLAG_sim_stack_size * KB; ++ stack_ = reinterpret_cast(malloc(stack_size_)); ++ pc_modified_ = false; ++ icount_ = 0; ++ break_count_ = 0; ++ break_pc_ = nullptr; ++ break_instr_ = 0; ++ ++ // Set up architecture state. ++ // All registers are initialized to zero to start with. ++ for (int i = 0; i < kNumSimuRegisters; i++) { ++ registers_[i] = 0; ++ } ++ for (int i = 0; i < kNumFPURegisters; i++) { ++ FPUregisters_[i] = 0; ++ } ++ for (int i = 0; i < kNumCFRegisters; i++) { ++ CFregisters_[i] = 0; ++ } ++ ++ FCSR_ = 0; ++ ++ // The sp is initialized to point to the bottom (high address) of the ++ // allocated stack area. To be safe in potential stack underflows we leave ++ // some buffer below. ++ registers_[sp] = reinterpret_cast(stack_) + stack_size_ - 64; ++ // The ra and pc are initialized to a known bad value that will cause an ++ // access violation if the simulator ever tries to execute it. ++ registers_[pc] = bad_ra; ++ registers_[ra] = bad_ra; ++ ++ last_debugger_input_ = nullptr; ++} ++ ++Simulator::~Simulator() { free(stack_); } ++ ++// Get the active Simulator for the current thread. ++Simulator* Simulator::current(Isolate* isolate) { ++ v8::internal::Isolate::PerIsolateThreadData* isolate_data = ++ isolate->FindOrAllocatePerThreadDataForThisThread(); ++ DCHECK_NOT_NULL(isolate_data); ++ ++ Simulator* sim = isolate_data->simulator(); ++ if (sim == nullptr) { ++ // TODO(146): delete the simulator object when a thread/isolate goes away. ++ sim = new Simulator(isolate); ++ isolate_data->set_simulator(sim); ++ } ++ return sim; ++} ++ ++// Sets the register in the architecture state. It will also deal with updating ++// Simulator internal state for special registers such as PC. ++void Simulator::set_register(int reg, int64_t value) { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ if (reg == pc) { ++ pc_modified_ = true; ++ } ++ ++ // Zero register always holds 0. ++ registers_[reg] = (reg == 0) ? 0 : value; ++} ++ ++void Simulator::set_dw_register(int reg, const int* dbl) { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ registers_[reg] = dbl[1]; ++ registers_[reg] = registers_[reg] << 32; ++ registers_[reg] += dbl[0]; ++} ++ ++void Simulator::set_fpu_register(int fpureg, int64_t value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ FPUregisters_[fpureg] = value; ++} ++ ++void Simulator::set_fpu_register_word(int fpureg, int32_t value) { ++ // Set ONLY lower 32-bits, leaving upper bits untouched. ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ int32_t* pword; ++ pword = reinterpret_cast(&FPUregisters_[fpureg]); ++ ++ *pword = value; ++} ++ ++void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { ++ // Set ONLY upper 32-bits, leaving lower bits untouched. ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ int32_t* phiword; ++ phiword = (reinterpret_cast(&FPUregisters_[fpureg])) + 1; ++ ++ *phiword = value; ++} ++ ++void Simulator::set_fpu_register_float(int fpureg, float value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ *bit_cast(&FPUregisters_[fpureg]) = value; ++} ++ ++void Simulator::set_fpu_register_double(int fpureg, double value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ *bit_cast(&FPUregisters_[fpureg]) = value; ++} ++ ++void Simulator::set_cf_register(int cfreg, bool value) { ++ DCHECK((cfreg >= 0) && (cfreg < kNumCFRegisters)); ++ CFregisters_[cfreg] = value; ++} ++ ++// Get the register from the architecture state. This function does handle ++// the special case of accessing the PC register. ++int64_t Simulator::get_register(int reg) const { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ if (reg == 0) ++ return 0; ++ else ++ return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); ++} ++ ++double Simulator::get_double_from_register_pair(int reg) { ++ // TODO(plind): bad ABI stuff, refactor or remove. ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ ++ double dm_val = 0.0; ++ // Read the bits from the unsigned integer register_[] array ++ // into the double precision floating point value and return it. ++ char buffer[sizeof(registers_[0])]; ++ memcpy(buffer, ®isters_[reg], sizeof(registers_[0])); ++ memcpy(&dm_val, buffer, sizeof(registers_[0])); ++ return (dm_val); ++} ++ ++int64_t Simulator::get_fpu_register(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return FPUregisters_[fpureg]; ++} ++ ++int32_t Simulator::get_fpu_register_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast(FPUregisters_[fpureg] & 0xFFFFFFFF); ++} ++ ++int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast(FPUregisters_[fpureg] & 0xFFFFFFFF); ++} ++ ++int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast((FPUregisters_[fpureg] >> 32) & 0xFFFFFFFF); ++} ++ ++float Simulator::get_fpu_register_float(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return *bit_cast(const_cast(&FPUregisters_[fpureg])); ++} ++ ++double Simulator::get_fpu_register_double(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return *bit_cast(&FPUregisters_[fpureg]); ++} ++ ++bool Simulator::get_cf_register(int cfreg) const { ++ DCHECK((cfreg >= 0) && (cfreg < kNumCFRegisters)); ++ return CFregisters_[cfreg]; ++} ++ ++// Runtime FP routines take up to two double arguments and zero ++// or one integer arguments. All are constructed here, ++// from a0-a3 or fa0 and fa1 (n64). ++void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { ++ const int fparg2 = f1; ++ *x = get_fpu_register_double(f0); ++ *y = get_fpu_register_double(fparg2); ++ *z = static_cast(get_register(a2)); ++} ++ ++// The return value is either in v0/v1 or f0. ++void Simulator::SetFpResult(const double& result) { ++ set_fpu_register_double(0, result); ++} ++ ++// Helper functions for setting and testing the FCSR register's bits. ++void Simulator::set_fcsr_bit(uint32_t cc, bool value) { ++ if (value) { ++ FCSR_ |= (1 << cc); ++ } else { ++ FCSR_ &= ~(1 << cc); ++ } ++} ++ ++bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); } ++ ++void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { ++ FCSR_ |= mode & kFPURoundingModeMask; ++} ++ ++unsigned int Simulator::get_fcsr_rounding_mode() { ++ return FCSR_ & kFPURoundingModeMask; ++} ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round_error(double original, double rounded) { ++ bool ret = false; ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded > max_int32 || rounded < min_int32) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round64_error(double original, double rounded) { ++ bool ret = false; ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded >= max_int64 || rounded < min_int64) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round_error(float original, float rounded) { ++ bool ret = false; ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded > max_int32 || rounded < min_int32) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++void Simulator::set_fpu_register_word_invalid_result(float original, ++ float rounded) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register_word(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::set_fpu_register_invalid_result(float original, float rounded) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::set_fpu_register_invalid_result64(float original, ++ float rounded) { ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded >= max_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } else if (rounded < min_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::set_fpu_register_word_invalid_result(double original, ++ double rounded) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register_word(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::set_fpu_register_invalid_result(double original, ++ double rounded) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::set_fpu_register_invalid_result64(double original, ++ double rounded) { ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded >= max_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } else if (rounded < min_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round64_error(float original, float rounded) { ++ bool ret = false; ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded >= max_int64 || rounded < min_int64) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++// For ftint instructions only ++void Simulator::round_according_to_fcsr(double toRound, double* rounded, ++ int32_t* rounded_int) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or ++ // equal to the infinitely accurate result. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. ++ switch (FCSR_ & kFPURoundingModeMask) { ++ case kRoundToNearest: ++ *rounded = std::floor(toRound + 0.5); ++ *rounded_int = static_cast(*rounded); ++ if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ *rounded_int -= 1; ++ *rounded -= 1.; ++ } ++ break; ++ case kRoundToZero: ++ *rounded = trunc(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToPlusInf: ++ *rounded = std::ceil(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToMinusInf: ++ *rounded = std::floor(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ } ++} ++ ++void Simulator::round64_according_to_fcsr(double toRound, double* rounded, ++ int64_t* rounded_int) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or. ++ // equal to the infinitely accurate result. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. ++ switch (FCSR_ & kFPURoundingModeMask) { ++ case kRoundToNearest: ++ *rounded = std::floor(toRound + 0.5); ++ *rounded_int = static_cast(*rounded); ++ if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ *rounded_int -= 1; ++ *rounded -= 1.; ++ } ++ break; ++ case kRoundToZero: ++ *rounded = std::trunc(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToPlusInf: ++ *rounded = std::ceil(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToMinusInf: ++ *rounded = std::floor(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ } ++} ++ ++void Simulator::round_according_to_fcsr(float toRound, float* rounded, ++ int32_t* rounded_int) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or ++ // equal to the infinitely accurate result. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. ++ switch (FCSR_ & kFPURoundingModeMask) { ++ case kRoundToNearest: ++ *rounded = std::floor(toRound + 0.5); ++ *rounded_int = static_cast(*rounded); ++ if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ *rounded_int -= 1; ++ *rounded -= 1.f; ++ } ++ break; ++ case kRoundToZero: ++ *rounded = std::trunc(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToPlusInf: ++ *rounded = std::ceil(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToMinusInf: ++ *rounded = std::floor(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ } ++} ++ ++void Simulator::round64_according_to_fcsr(float toRound, float* rounded, ++ int64_t* rounded_int) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or. ++ // equal to the infinitely accurate result. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. ++ switch (FCSR_ & kFPURoundingModeMask) { ++ case kRoundToNearest: ++ *rounded = std::floor(toRound + 0.5); ++ *rounded_int = static_cast(*rounded); ++ if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ *rounded_int -= 1; ++ *rounded -= 1.f; ++ } ++ break; ++ case kRoundToZero: ++ *rounded = trunc(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToPlusInf: ++ *rounded = std::ceil(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ case kRoundToMinusInf: ++ *rounded = std::floor(toRound); ++ *rounded_int = static_cast(*rounded); ++ break; ++ } ++} ++ ++// Raw access to the PC register. ++void Simulator::set_pc(int64_t value) { ++ pc_modified_ = true; ++ registers_[pc] = value; ++} ++ ++bool Simulator::has_bad_pc() const { ++ return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); ++} ++ ++// Raw access to the PC register without the special adjustment when reading. ++int64_t Simulator::get_pc() const { return registers_[pc]; } ++ ++// TODO(plind): refactor this messy debug code when we do unaligned access. ++void Simulator::DieOrDebug() { ++ if ((1)) { // Flag for this was removed. ++ Loong64Debugger dbg(this); ++ dbg.Debug(); ++ } else { ++ base::OS::Abort(); ++ } ++} ++ ++void Simulator::TraceRegWr(int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ int64_t fmt_int64; ++ int32_t fmt_int32[2]; ++ float fmt_float[2]; ++ double fmt_double; ++ } v; ++ v.fmt_int64 = value; ++ ++ switch (t) { ++ case WORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 ++ " uint32:%" PRIu32, ++ v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0]); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " (%" PRId64 ") int64:%" PRId64 ++ " uint64:%" PRIu64, ++ value, icount_, value, value); ++ break; ++ case FLOAT: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e", ++ v.fmt_int64, icount_, v.fmt_float[0]); ++ break; ++ case DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") dbl:%e", ++ v.fmt_int64, icount_, v.fmt_double); ++ break; ++ case FLOAT_DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e dbl:%e", ++ v.fmt_int64, icount_, v.fmt_float[0], v.fmt_double); ++ break; ++ case WORD_DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 ++ " uint32:%" PRIu32 " int64:%" PRId64 " uint64:%" PRIu64, ++ v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0], ++ v.fmt_int64, v.fmt_int64); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++// TODO(plind): consider making icount_ printing a flag option. ++void Simulator::TraceMemRd(int64_t addr, int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ int64_t fmt_int64; ++ int32_t fmt_int32[2]; ++ float fmt_float[2]; ++ double fmt_double; ++ } v; ++ v.fmt_int64 = value; ++ ++ switch (t) { ++ case WORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") int32:%" PRId32 " uint32:%" PRIu32, ++ v.fmt_int64, addr, icount_, v.fmt_int32[0], v.fmt_int32[0]); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") int64:%" PRId64 " uint64:%" PRIu64, ++ value, addr, icount_, value, value); ++ break; ++ case FLOAT: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") flt:%e", ++ v.fmt_int64, addr, icount_, v.fmt_float[0]); ++ break; ++ case DOUBLE: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") dbl:%e", ++ v.fmt_int64, addr, icount_, v.fmt_double); ++ break; ++ case FLOAT_DOUBLE: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") flt:%e dbl:%e", ++ v.fmt_int64, addr, icount_, v.fmt_float[0], v.fmt_double); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (t) { ++ case BYTE: ++ SNPrintF(trace_buf_, ++ " %02" PRIx8 " --> [%016" PRIx64 "] (%" PRId64 ++ ")", ++ static_cast(value), addr, icount_); ++ break; ++ case HALF: ++ SNPrintF(trace_buf_, ++ " %04" PRIx16 " --> [%016" PRIx64 "] (%" PRId64 ++ ")", ++ static_cast(value), addr, icount_); ++ break; ++ case WORD: ++ SNPrintF(trace_buf_, ++ " %08" PRIx32 " --> [%016" PRIx64 "] (%" PRId64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " --> [%016" PRIx64 "] (%" PRId64 " )", ++ value, addr, icount_); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMemRd(int64_t addr, T value) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (sizeof(T)) { ++ case 1: ++ SNPrintF(trace_buf_, ++ "%08" PRIx8 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int8:%" PRId8 " uint8:%" PRIu8, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 2: ++ SNPrintF(trace_buf_, ++ "%08" PRIx16 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int16:%" PRId16 " uint16:%" PRIu16, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 4: ++ SNPrintF(trace_buf_, ++ "%08" PRIx32 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int32:%" PRId32 " uint32:%" PRIu32, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 8: ++ SNPrintF(trace_buf_, ++ "%08" PRIx64 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int64:%" PRId64 " uint64:%" PRIu64, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMemWr(int64_t addr, T value) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (sizeof(T)) { ++ case 1: ++ SNPrintF(trace_buf_, ++ " %02" PRIx8 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 2: ++ SNPrintF(trace_buf_, ++ " %04" PRIx16 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 4: ++ SNPrintF(trace_buf_, ++ "%08" PRIx32 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 8: ++ SNPrintF(trace_buf_, ++ "%16" PRIx64 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++// TODO(plind): sign-extend and zero-extend not implmented properly ++// on all the ReadXX functions, I don't think re-interpret cast does it. ++int32_t Simulator::ReadW(int64_t addr, Instruction* instr, TraceType t) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ /* if ((addr & 0x3) == 0)*/ { ++ int32_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr), t); ++ return *ptr; ++ } ++ // PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, ++ // reinterpret_cast(instr)); ++ // DieOrDebug(); ++ // return 0; ++} ++ ++uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ // if ((addr & 0x3) == 0) { ++ uint32_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr), WORD); ++ return *ptr; ++ // } ++ // PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ // reinterpret_cast(instr)); ++ // DieOrDebug(); ++ // return 0; ++} ++ ++void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ /*if ((addr & 0x3) == 0)*/ { ++ TraceMemWr(addr, value, WORD); ++ int* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ // PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, ++ // reinterpret_cast(instr)); ++ // DieOrDebug(); ++} ++ ++int64_t Simulator::Read2W(int64_t addr, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ /* if ((addr & kPointerAlignmentMask) == 0)*/ { ++ int64_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, *ptr); ++ return *ptr; ++ } ++ // PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, ++ // reinterpret_cast(instr)); ++ // DieOrDebug(); ++ // return 0; ++} ++ ++void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ /*if ((addr & kPointerAlignmentMask) == 0)*/ { ++ TraceMemWr(addr, value, DWORD); ++ int64_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ // PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, ++ // reinterpret_cast(instr)); ++ // DieOrDebug(); ++} ++ ++double Simulator::ReadD(int64_t addr, Instruction* instr) { ++ /*if ((addr & kDoubleAlignmentMask) == 0)*/ { ++ double* ptr = reinterpret_cast(addr); ++ return *ptr; ++ } ++ // PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR ++ // "\n", ++ // addr, reinterpret_cast(instr)); ++ // base::OS::Abort(); ++ // return 0; ++} ++ ++void Simulator::WriteD(int64_t addr, double value, Instruction* instr) { ++ /*if ((addr & kDoubleAlignmentMask) == 0)*/ { ++ double* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ // PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR ++ // "\n", ++ // addr, reinterpret_cast(instr)); ++ // DieOrDebug(); ++} ++ ++uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) { ++ // if ((addr & 1) == 0) { ++ uint16_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++ // } ++ // PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64 ++ // " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, reinterpret_cast(instr)); ++ // DieOrDebug(); ++ // return 0; ++} ++ ++int16_t Simulator::ReadH(int64_t addr, Instruction* instr) { ++ // if ((addr & 1) == 0) { ++ int16_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++ // } ++ // PrintF("Unaligned signed halfword read at 0x%08" PRIx64 ++ // " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, reinterpret_cast(instr)); ++ // DieOrDebug(); ++ // return 0; ++} ++ ++void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) { ++ // if ((addr & 1) == 0) { ++ TraceMemWr(addr, value, HALF); ++ uint16_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ // } ++ // PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64 ++ // " , pc=0x%08" V8PRIxPTR "\n", ++ // addr, reinterpret_cast(instr)); ++ // DieOrDebug(); ++} ++ ++void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) { ++ // if ((addr & 1) == 0) { ++ TraceMemWr(addr, value, HALF); ++ int16_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ // } ++ // PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR ++ // "\n", ++ // addr, reinterpret_cast(instr)); ++ // DieOrDebug(); ++} ++ ++uint32_t Simulator::ReadBU(int64_t addr) { ++ uint8_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr & 0xFF; ++} ++ ++int32_t Simulator::ReadB(int64_t addr) { ++ int8_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++} ++ ++void Simulator::WriteB(int64_t addr, uint8_t value) { ++ TraceMemWr(addr, value, BYTE); ++ uint8_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++} ++ ++void Simulator::WriteB(int64_t addr, int8_t value) { ++ TraceMemWr(addr, value, BYTE); ++ int8_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++} ++ ++template ++T Simulator::ReadMem(int64_t addr, Instruction* instr) { ++ int alignment_mask = (1 << sizeof(T)) - 1; ++ if ((addr & alignment_mask) == 0) { ++ T* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, *ptr); ++ return *ptr; ++ } ++ PrintF("Unaligned read of type sizeof(%ld) at 0x%08lx, pc=0x%08" V8PRIxPTR ++ "\n", ++ sizeof(T), addr, reinterpret_cast(instr)); ++ base::OS::Abort(); ++ return 0; ++} ++ ++template ++void Simulator::WriteMem(int64_t addr, T value, Instruction* instr) { ++ int alignment_mask = (1 << sizeof(T)) - 1; ++ if ((addr & alignment_mask) == 0) { ++ T* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ TraceMemWr(addr, value); ++ return; ++ } ++ PrintF("Unaligned write of type sizeof(%ld) at 0x%08lx, pc=0x%08" V8PRIxPTR ++ "\n", ++ sizeof(T), addr, reinterpret_cast(instr)); ++ base::OS::Abort(); ++} ++ ++// Returns the limit of the stack area to enable checking for stack overflows. ++uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { ++ // The simulator uses a separate JS stack. If we have exhausted the C stack, ++ // we also drop down the JS limit to reflect the exhaustion on the JS stack. ++ if (GetCurrentStackPosition() < c_limit) { ++ return reinterpret_cast(get_sp()); ++ } ++ ++ // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes ++ // to prevent overrunning the stack when pushing values. ++ return reinterpret_cast(stack_) + 1024; ++} ++ ++// Unsupported instructions use Format to print an error and stop execution. ++void Simulator::Format(Instruction* instr, const char* format) { ++ PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n", ++ reinterpret_cast(instr), format); ++ UNIMPLEMENTED(); ++} ++ ++// Calls into the V8 runtime are based on this very simple interface. ++// Note: To be able to return two values from some calls the code in runtime.cc ++// uses the ObjectPair which is essentially two 32-bit values stuffed into a ++// 64-bit value. With the code below we assume that all runtime calls return ++// 64 bits of result. If they don't, the v1 result register contains a bogus ++// value, which is fine because it is caller-saved. ++ ++using SimulatorRuntimeCall = ObjectPair (*)(int64_t arg0, int64_t arg1, ++ int64_t arg2, int64_t arg3, ++ int64_t arg4, int64_t arg5, ++ int64_t arg6, int64_t arg7, ++ int64_t arg8); ++ ++// These prototypes handle the four types of FP calls. ++using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1); ++using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1); ++using SimulatorRuntimeFPCall = double (*)(double darg0); ++using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0); ++ ++// This signature supports direct call in to API function native callback ++// (refer to InvocationCallback in v8.h). ++using SimulatorRuntimeDirectApiCall = void (*)(int64_t arg0); ++using SimulatorRuntimeProfilingApiCall = void (*)(int64_t arg0, void* arg1); ++ ++// This signature supports direct call to accessor getter callback. ++using SimulatorRuntimeDirectGetterCall = void (*)(int64_t arg0, int64_t arg1); ++using SimulatorRuntimeProfilingGetterCall = void (*)(int64_t arg0, int64_t arg1, ++ void* arg2); ++ ++// Software interrupt instructions are used by the simulator to call into the ++// C-based V8 runtime. They are also used for debugging with simulator. ++void Simulator::SoftwareInterrupt() { ++ // There are several instructions that could get us here, ++ // the break instruction. ++ int32_t opcode_hi15 = instr_.Bits(31, 17); ++ CHECK_EQ(opcode_hi15, 0x15); ++ uint32_t code = instr_.Bits(14, 0); ++ // We first check if we met a call_rt_redirected. ++ if (instr_.InstructionBits() == rtCallRedirInstr) { ++ Redirection* redirection = Redirection::FromInstruction(instr_.instr()); ++ ++ int64_t* stack_pointer = reinterpret_cast(get_register(sp)); ++ ++ int64_t arg0 = get_register(a0); ++ int64_t arg1 = get_register(a1); ++ int64_t arg2 = get_register(a2); ++ int64_t arg3 = get_register(a3); ++ int64_t arg4 = get_register(a4); ++ int64_t arg5 = get_register(a5); ++ int64_t arg6 = get_register(a6); ++ int64_t arg7 = get_register(a7); ++ int64_t arg8 = stack_pointer[0]; ++ STATIC_ASSERT(kMaxCParameters == 9); ++ ++ bool fp_call = ++ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); ++ ++ { ++ // With the hard floating point calling convention, double ++ // arguments are passed in FPU registers. Fetch the arguments ++ // from there and call the builtin using soft floating point ++ // convention. ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ arg0 = get_fpu_register(f0); ++ arg1 = get_fpu_register(f1); ++ arg2 = get_fpu_register(f2); ++ arg3 = get_fpu_register(f3); ++ break; ++ case ExternalReference::BUILTIN_FP_CALL: ++ arg0 = get_fpu_register(f0); ++ arg1 = get_fpu_register(f1); ++ break; ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ arg0 = get_fpu_register(f0); ++ arg1 = get_fpu_register(f1); ++ arg2 = get_register(a2); ++ break; ++ default: ++ break; ++ } ++ } ++ ++ // This is dodgy but it works because the C entry stubs are never moved. ++ // See comment in codegen-arm.cc and bug 1242173. ++ int64_t saved_ra = get_register(ra); ++ ++ intptr_t external = ++ reinterpret_cast(redirection->external_function()); ++ ++ // Based on CpuFeatures::IsSupported(FPU), Loong64 will use either hardware ++ // FPU, or gcc soft-float routines. Hardware FPU is simulated in this ++ // simulator. Soft-float has additional abstraction of ExternalReference, ++ // to support serialization. ++ if (fp_call) { ++ double dval0, dval1; // one or two double parameters ++ int32_t ival; // zero or one integer parameters ++ int64_t iresult = 0; // integer return value ++ double dresult = 0; // double return value ++ GetFpArgs(&dval0, &dval1, &ival); ++ SimulatorRuntimeCall generic_target = ++ reinterpret_cast(external); ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ PrintF("Call to host function at %p with args %f, %f", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0, dval1); ++ break; ++ case ExternalReference::BUILTIN_FP_CALL: ++ PrintF("Call to host function at %p with arg %f", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0); ++ break; ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ PrintF("Call to host function at %p with args %f, %d", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0, ival); ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_COMPARE_CALL: { ++ SimulatorRuntimeCompareCall target = ++ reinterpret_cast(external); ++ iresult = target(dval0, dval1); ++ set_register(v0, static_cast(iresult)); ++ // set_register(v1, static_cast(iresult >> 32)); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_FP_CALL: { ++ SimulatorRuntimeFPFPCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0, dval1); ++ SetFpResult(dresult); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_CALL: { ++ SimulatorRuntimeFPCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0); ++ SetFpResult(dresult); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_INT_CALL: { ++ SimulatorRuntimeFPIntCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0, ival); ++ SetFpResult(dresult); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ PrintF("Returned %08x\n", static_cast(iresult)); ++ break; ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_FP_CALL: ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ PrintF("Returned %f\n", dresult); ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } ++ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " \n", ++ reinterpret_cast(external), arg0); ++ } ++ SimulatorRuntimeDirectApiCall target = ++ reinterpret_cast(external); ++ target(arg0); ++ } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " \n", ++ reinterpret_cast(external), arg0, arg1); ++ } ++ SimulatorRuntimeProfilingApiCall target = ++ reinterpret_cast(external); ++ target(arg0, Redirection::ReverseRedirection(arg1)); ++ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " \n", ++ reinterpret_cast(external), arg0, arg1); ++ } ++ SimulatorRuntimeDirectGetterCall target = ++ reinterpret_cast(external); ++ target(arg0, arg1); ++ } else if (redirection->type() == ++ ExternalReference::PROFILING_GETTER_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " %08" PRIx64 " \n", ++ reinterpret_cast(external), arg0, arg1, arg2); ++ } ++ SimulatorRuntimeProfilingGetterCall target = ++ reinterpret_cast(external); ++ target(arg0, arg1, Redirection::ReverseRedirection(arg2)); ++ } else { ++ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || ++ redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); ++ SimulatorRuntimeCall target = ++ reinterpret_cast(external); ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF( ++ "Call to host function at %p " ++ "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 ++ " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 ++ " , %08" PRIx64 " \n", ++ reinterpret_cast(FUNCTION_ADDR(target)), arg0, arg1, arg2, ++ arg3, arg4, arg5, arg6, arg7, arg8); ++ } ++ ObjectPair result = ++ target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); ++ set_register(v0, (int64_t)(result.x)); ++ set_register(v1, (int64_t)(result.y)); ++ } ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1), ++ get_register(v0)); ++ } ++ set_register(ra, saved_ra); ++ set_pc(get_register(ra)); ++ ++ } else if (code <= kMaxStopCode) { ++ if (IsWatchpoint(code)) { ++ PrintWatchpoint(code); ++ } else { ++ IncreaseStopCounter(code); ++ HandleStop(code, instr_.instr()); ++ } ++ } else { ++ // All remaining break_ codes, and all traps are handled here. ++ Loong64Debugger dbg(this); ++ dbg.Debug(); ++ } ++} ++ ++// Stop helper functions. ++bool Simulator::IsWatchpoint(uint64_t code) { ++ return (code <= kMaxWatchpointCode); ++} ++ ++void Simulator::PrintWatchpoint(uint64_t code) { ++ Loong64Debugger dbg(this); ++ ++break_count_; ++ PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64 ++ " ) ----------" ++ "----------------------------------", ++ code, break_count_, icount_); ++ dbg.PrintAllRegs(); // Print registers and continue running. ++} ++ ++void Simulator::HandleStop(uint64_t code, Instruction* instr) { ++ // Stop if it is enabled, otherwise go on jumping over the stop ++ // and the message address. ++ if (IsEnabledStop(code)) { ++ Loong64Debugger dbg(this); ++ dbg.Stop(instr); ++ } ++} ++ ++bool Simulator::IsStopInstruction(Instruction* instr) { ++ int32_t opcode_hi15 = instr->Bits(31, 17); ++ uint32_t code = static_cast(instr->Bits(14, 0)); ++ return (opcode_hi15 == 0x15) && code > kMaxWatchpointCode && ++ code <= kMaxStopCode; ++} ++ ++bool Simulator::IsEnabledStop(uint64_t code) { ++ DCHECK_LE(code, kMaxStopCode); ++ DCHECK_GT(code, kMaxWatchpointCode); ++ return !(watched_stops_[code].count & kStopDisabledBit); ++} ++ ++void Simulator::EnableStop(uint64_t code) { ++ if (!IsEnabledStop(code)) { ++ watched_stops_[code].count &= ~kStopDisabledBit; ++ } ++} ++ ++void Simulator::DisableStop(uint64_t code) { ++ if (IsEnabledStop(code)) { ++ watched_stops_[code].count |= kStopDisabledBit; ++ } ++} ++ ++void Simulator::IncreaseStopCounter(uint64_t code) { ++ DCHECK_LE(code, kMaxStopCode); ++ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { ++ PrintF("Stop counter for code %" PRId64 ++ " has overflowed.\n" ++ "Enabling this code and reseting the counter to 0.\n", ++ code); ++ watched_stops_[code].count = 0; ++ EnableStop(code); ++ } else { ++ watched_stops_[code].count++; ++ } ++} ++ ++// Print a stop status. ++void Simulator::PrintStopInfo(uint64_t code) { ++ if (code <= kMaxWatchpointCode) { ++ PrintF("That is a watchpoint, not a stop.\n"); ++ return; ++ } else if (code > kMaxStopCode) { ++ PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); ++ return; ++ } ++ const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; ++ int32_t count = watched_stops_[code].count & ~kStopDisabledBit; ++ // Don't print the state of unused breakpoints. ++ if (count != 0) { ++ if (watched_stops_[code].desc) { ++ PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n", ++ code, code, state, count, watched_stops_[code].desc); ++ } else { ++ PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code, ++ code, state, count); ++ } ++ } ++} ++ ++void Simulator::SignalException(Exception e) { ++ FATAL("Error: Exception %i raised.", static_cast(e)); ++} ++ ++template ++static T FPAbs(T a); ++ ++template <> ++double FPAbs(double a) { ++ return fabs(a); ++} ++ ++template <> ++float FPAbs(float a) { ++ return fabsf(a); ++} ++ ++template ++static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) { ++ if (std::isnan(a) && std::isnan(b)) { ++ *result = a; ++ } else if (std::isnan(a)) { ++ *result = b; ++ } else if (std::isnan(b)) { ++ *result = a; ++ } else if (b == a) { ++ // Handle -0.0 == 0.0 case. ++ // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax ++ // negates the result. ++ *result = std::signbit(b) - static_cast(kind) ? b : a; ++ } else { ++ return false; ++ } ++ return true; ++} ++ ++template ++static T FPUMin(T a, T b) { ++ T result; ++ if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { ++ return result; ++ } else { ++ return b < a ? b : a; ++ } ++} ++ ++template ++static T FPUMax(T a, T b) { ++ T result; ++ if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) { ++ return result; ++ } else { ++ return b > a ? b : a; ++ } ++} ++ ++template ++static T FPUMinA(T a, T b) { ++ T result; ++ if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { ++ if (FPAbs(a) < FPAbs(b)) { ++ result = a; ++ } else if (FPAbs(b) < FPAbs(a)) { ++ result = b; ++ } else { ++ result = a < b ? a : b; ++ } ++ } ++ return result; ++} ++ ++template ++static T FPUMaxA(T a, T b) { ++ T result; ++ if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { ++ if (FPAbs(a) > FPAbs(b)) { ++ result = a; ++ } else if (FPAbs(b) > FPAbs(a)) { ++ result = b; ++ } else { ++ result = a > b ? a : b; ++ } ++ } ++ return result; ++} ++ ++enum class KeepSign : bool { no = false, yes }; ++ ++template ::value, ++ int>::type = 0> ++T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { ++ DCHECK(std::isnan(arg)); ++ T qNaN = std::numeric_limits::quiet_NaN(); ++ if (keepSign == KeepSign::yes) { ++ return std::copysign(qNaN, result); ++ } ++ return qNaN; ++} ++ ++template ++T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { ++ if (std::isnan(first)) { ++ return FPUCanonalizeNaNArg(result, first, keepSign); ++ } ++ return result; ++} ++ ++template ++T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { ++ if (std::isnan(first)) { ++ return FPUCanonalizeNaNArg(result, first, keepSign); ++ } ++ return FPUCanonalizeNaNArgs(result, keepSign, args...); ++} ++ ++template ++T FPUCanonalizeOperation(Func f, T first, Args... args) { ++ return FPUCanonalizeOperation(f, KeepSign::no, first, args...); ++} ++ ++template ++T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { ++ T result = f(first, args...); ++ if (std::isnan(result)) { ++ result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); ++ } ++ return result; ++} ++ ++// Handle execution based on instruction types. ++void Simulator::DecodeTypeOp6() { ++ int64_t alu_out; ++ // Next pc. ++ int64_t next_pc = bad_ra; ++ ++ // Branch instructions common part. ++ auto BranchAndLinkHelper = [this, &next_pc]() { ++ int64_t current_pc = get_pc(); ++ set_register(ra, current_pc + kInstrSize); ++ int32_t offs26_low16 = ++ static_cast(instr_.Bits(25, 10) << 16) >> 16; ++ int32_t offs26_high10 = static_cast(instr_.Bits(9, 0) << 22) >> 6; ++ int32_t offs26 = offs26_low16 | offs26_high10; ++ next_pc = current_pc + (offs26 << 2); ++ printf_instr("Offs26: %08x\n", offs26); ++ set_pc(next_pc); ++ }; ++ ++ auto BranchOff16Helper = [this, &next_pc](bool do_branch) { ++ int64_t current_pc = get_pc(); ++ int32_t offs16 = static_cast(instr_.Bits(25, 10) << 16) >> 16; ++ printf_instr("Offs16: %08x\n", offs16); ++ int32_t offs = do_branch ? (offs16 << 2) : kInstrSize; ++ next_pc = current_pc + offs; ++ set_pc(next_pc); ++ }; ++ ++ auto BranchOff21Helper = [this, &next_pc](bool do_branch) { ++ int64_t current_pc = get_pc(); ++ int32_t offs21_low16 = ++ static_cast(instr_.Bits(25, 10) << 16) >> 16; ++ int32_t offs21_high5 = static_cast(instr_.Bits(4, 0) << 27) >> 11; ++ int32_t offs = offs21_low16 | offs21_high5; ++ printf_instr("Offs21: %08x\n", offs); ++ offs = do_branch ? (offs << 2) : kInstrSize; ++ next_pc = current_pc + offs; ++ set_pc(next_pc); ++ }; ++ ++ auto BranchOff26Helper = [this, &next_pc]() { ++ int64_t current_pc = get_pc(); ++ int32_t offs26_low16 = ++ static_cast(instr_.Bits(25, 10) << 16) >> 16; ++ int32_t offs26_high10 = static_cast(instr_.Bits(9, 0) << 22) >> 6; ++ int32_t offs26 = offs26_low16 | offs26_high10; ++ next_pc = current_pc + (offs26 << 2); ++ printf_instr("Offs26: %08x\n", offs26); ++ set_pc(next_pc); ++ }; ++ ++ auto JumpOff16Helper = [this, &next_pc]() { ++ int32_t offs16 = static_cast(instr_.Bits(25, 10) << 16) >> 16; ++ printf_instr("JIRL\t %s: %016lx, %s: %016lx, offs16: %x\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), offs16); ++ set_register(rd_reg(), get_pc() + kInstrSize); ++ next_pc = rj() + (offs16 << 2); ++ set_pc(next_pc); ++ }; ++ ++ switch (instr_.Bits(31, 26) << 26) { ++ case ADDU16I_D: { ++ printf_instr("ADDU16I_D\t %s: %016lx, %s: %016lx, si16: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si16()); ++ int32_t si16_upper = static_cast(si16()) << 16; ++ alu_out = static_cast(si16_upper) + rj(); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BEQZ: ++ printf_instr("BEQZ\t %s: %016lx, ", Registers::Name(rj_reg()), rj()); ++ BranchOff21Helper(rj() == 0); ++ break; ++ case BNEZ: ++ printf_instr("BNEZ\t %s: %016lx, ", Registers::Name(rj_reg()), rj()); ++ BranchOff21Helper(rj() != 0); ++ break; ++ case BCZ: { ++ if (instr_.Bits(9, 8) == 0b00) { ++ // BCEQZ ++ printf_instr("BCEQZ\t fcc%d: %s, ", cj_reg(), cj() ? "True" : "False"); ++ BranchOff21Helper(cj() == false); ++ } else if (instr_.Bits(9, 8) == 0b01) { ++ // BCNEZ ++ printf_instr("BCNEZ\t fcc%d: %s, ", cj_reg(), cj() ? "True" : "False"); ++ BranchOff21Helper(cj() == true); ++ } else { ++ UNREACHABLE(); ++ } ++ break; ++ } ++ case JIRL: ++ JumpOff16Helper(); ++ break; ++ case B: ++ printf_instr("B\t "); ++ BranchOff26Helper(); ++ break; ++ case BL: ++ printf_instr("BL\t "); ++ BranchAndLinkHelper(); ++ break; ++ case BEQ: ++ printf_instr("BEQ\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj() == rd()); ++ break; ++ case BNE: ++ printf_instr("BNE\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj() != rd()); ++ break; ++ case BLT: ++ printf_instr("BLT\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj() < rd()); ++ break; ++ case BGE: ++ printf_instr("BGE\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj() >= rd()); ++ break; ++ case BLTU: ++ printf_instr("BLTU\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj_u() < rd_u()); ++ break; ++ case BGEU: ++ printf_instr("BGEU\t %s: %016lx, %s, %016lx, ", Registers::Name(rj_reg()), ++ rj(), Registers::Name(rd_reg()), rd()); ++ BranchOff16Helper(rj_u() >= rd_u()); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp7() { ++ int64_t alu_out; ++ ++ switch (instr_.Bits(31, 25) << 25) { ++ case LU12I_W: { ++ printf_instr("LU12I_W\t %s: %016lx, si20: %d\n", ++ Registers::Name(rd_reg()), rd(), si20()); ++ int32_t si20_upper = static_cast(si20() << 12); ++ SetResult(rd_reg(), static_cast(si20_upper)); ++ break; ++ } ++ case LU32I_D: { ++ printf_instr("LU32I_D\t %s: %016lx, si20: %d\n", ++ Registers::Name(rd_reg()), rd(), si20()); ++ int32_t si20_signExtend = static_cast(si20() << 12) >> 12; ++ int64_t lower_32bit_mask = 0xFFFFFFFF; ++ alu_out = (static_cast(si20_signExtend) << 32) | ++ (rd() & lower_32bit_mask); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case PCADDI: { ++ printf_instr("PCADDI\t %s: %016lx, si20: %d\n", Registers::Name(rd_reg()), ++ rd(), si20()); ++ int32_t si20_signExtend = static_cast(si20() << 12) >> 10; ++ int64_t current_pc = get_pc(); ++ alu_out = static_cast(si20_signExtend) + current_pc; ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case PCALAU12I: { ++ printf_instr("PCALAU12I\t %s: %016lx, si20: %d\n", ++ Registers::Name(rd_reg()), rd(), si20()); ++ int32_t si20_signExtend = static_cast(si20() << 12); ++ int64_t current_pc = get_pc(); ++ int64_t clear_lower12bit_mask = 0xFFFFFFFFFFFFF000; ++ alu_out = static_cast(si20_signExtend) + current_pc; ++ SetResult(rd_reg(), alu_out & clear_lower12bit_mask); ++ break; ++ } ++ case PCADDU12I: { ++ printf_instr("PCADDU12I\t %s: %016lx, si20: %d\n", ++ Registers::Name(rd_reg()), rd(), si20()); ++ int32_t si20_signExtend = static_cast(si20() << 12); ++ int64_t current_pc = get_pc(); ++ alu_out = static_cast(si20_signExtend) + current_pc; ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case PCADDU18I: { ++ printf_instr("PCADDU18I\t %s: %016lx, si20: %d\n", ++ Registers::Name(rd_reg()), rd(), si20()); ++ int64_t si20_signExtend = (static_cast(si20()) << 44) >> 26; ++ int64_t current_pc = get_pc(); ++ alu_out = si20_signExtend + current_pc; ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp8() { ++ int64_t addr = 0x0; ++ int64_t si14_se = (static_cast(si14()) << 50) >> 48; ++ ++ switch (instr_.Bits(31, 24) << 24) { ++ case LDPTR_W: ++ printf_instr("LDPTR_W\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ set_register(rd_reg(), ReadW(rj() + si14_se, instr_.instr())); ++ break; ++ case STPTR_W: ++ printf_instr("STPTR_W\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ WriteW(rj() + si14_se, static_cast(rd()), instr_.instr()); ++ break; ++ case LDPTR_D: ++ printf_instr("LDPTR_D\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ set_register(rd_reg(), Read2W(rj() + si14_se, instr_.instr())); ++ break; ++ case STPTR_D: ++ printf_instr("STPTR_D\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ Write2W(rj() + si14_se, rd(), instr_.instr()); ++ break; ++ case LL_W: { ++ printf_instr("LL_W\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ addr = si14_se + rj(); ++ set_register(rd_reg(), ReadW(addr, instr_.instr())); ++ ; ++ break; ++ } ++ case SC_W: { ++ printf_instr("SC_W\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ addr = si14_se + rj(); ++ WriteW(addr, static_cast(rd()), instr_.instr()); ++ break; ++ } ++ case LL_D: { ++ printf_instr("LL_D\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ addr = si14_se + rj(); ++ set_register(rd_reg(), Read2W(addr, instr_.instr())); ++ break; ++ } ++ case SC_D: { ++ printf_instr("SC_D\t %s: %016lx, %s: %016lx, si14: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si14_se); ++ addr = si14_se + rj(); ++ Write2W(addr, rd(), instr_.instr()); ++ break; ++ } ++ case CSR: ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp10() { ++ int64_t alu_out = 0x0; ++ int64_t si12_se = (static_cast(si12()) << 52) >> 52; ++ uint64_t si12_ze = (static_cast(ui12()) << 52) >> 52; ++ ++ switch (instr_.Bits(31, 22) << 22) { ++ case BSTR_W: { ++ CHECK_EQ(instr_.Bit(21), 1); ++ uint8_t lsbw_ = lsbw(); ++ uint8_t msbw_ = msbw(); ++ CHECK_LE(lsbw_, msbw_); ++ uint8_t size = msbw_ - lsbw_ + 1; ++ uint64_t mask = (1ULL << size) - 1; ++ if (instr_.Bit(15) == 0) { ++ // BSTRINS_W ++ printf_instr( ++ "BSTRINS_W\t %s: %016lx, %s: %016lx, msbw: %02x, lsbw: %02x\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), rj(), ++ msbw_, lsbw_); ++ alu_out = static_cast((rd_u() & ~(mask << lsbw_)) | ++ ((rj_u() & mask) << lsbw_)); ++ } else { ++ // BSTRPICK_W ++ printf_instr( ++ "BSTRPICK_W\t %s: %016lx, %s: %016lx, msbw: %02x, lsbw: %02x\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), rj(), ++ msbw_, lsbw_); ++ alu_out = static_cast((rj_u() & (mask << lsbw_)) >> lsbw_); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BSTRINS_D: { ++ uint8_t lsbd_ = lsbd(); ++ uint8_t msbd_ = msbd(); ++ CHECK_LE(lsbd_, msbd_); ++ printf_instr( ++ "BSTRINS_D\t %s: %016lx, %s: %016lx, msbw: %02x, lsbw: %02x\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), rj(), ++ msbd_, lsbd_); ++ uint8_t size = msbd_ - lsbd_ + 1; ++ if (size < 64) { ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = (rd_u() & ~(mask << lsbd_)) | ((rj_u() & mask) << lsbd_); ++ SetResult(rd_reg(), alu_out); ++ } else if (size == 64) { ++ SetResult(rd_reg(), rj()); ++ } ++ break; ++ } ++ case BSTRPICK_D: { ++ uint8_t lsbd_ = lsbd(); ++ uint8_t msbd_ = msbd(); ++ CHECK_LE(lsbd_, msbd_); ++ printf_instr( ++ "BSTRPICK_D\t %s: %016lx, %s: %016lx, msbw: %02x, lsbw: %02x\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), rj(), ++ msbd_, lsbd_); ++ uint8_t size = msbd_ - lsbd_ + 1; ++ if (size < 64) { ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = (rj_u() & (mask << lsbd_)) >> lsbd_; ++ SetResult(rd_reg(), alu_out); ++ } else if (size == 64) { ++ SetResult(rd_reg(), rj()); ++ } ++ break; ++ } ++ case SLTI: ++ printf_instr("SLTI\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_se); ++ SetResult(rd_reg(), rj() < si12_se ? 1 : 0); ++ break; ++ case SLTUI: ++ printf_instr("SLTUI\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_se); ++ SetResult(rd_reg(), rj_u() < static_cast(si12_se) ? 1 : 0); ++ break; ++ case ADDI_W: { ++ printf_instr("ADDI_W\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_se); ++ int32_t alu32_out = ++ static_cast(rj()) + static_cast(si12_se); ++ SetResult(rd_reg(), alu32_out); ++ break; ++ } ++ case ADDI_D: ++ printf_instr("ADDI_D\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_se); ++ SetResult(rd_reg(), rj() + si12_se); ++ break; ++ case LU52I_D: { ++ printf_instr("LU52I_D\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_se); ++ int64_t si12_se = static_cast(si12()) << 52; ++ uint64_t mask = (1ULL << 52) - 1; ++ alu_out = si12_se + (rj() & mask); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case ANDI: ++ printf_instr("ANDI\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ SetResult(rd_reg(), rj() & si12_ze); ++ break; ++ case ORI: ++ printf_instr("ORI\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ SetResult(rd_reg(), rj_u() | si12_ze); ++ break; ++ case XORI: ++ printf_instr("XORI\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ SetResult(rd_reg(), rj_u() ^ si12_ze); ++ break; ++ case LD_B: ++ printf_instr("LD_B\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadB(rj() + si12_se)); ++ break; ++ case LD_H: ++ printf_instr("LD_H\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadH(rj() + si12_se, instr_.instr())); ++ break; ++ case LD_W: ++ printf_instr("LD_W\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadW(rj() + si12_se, instr_.instr())); ++ break; ++ case LD_D: ++ printf_instr("LD_D\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), Read2W(rj() + si12_se, instr_.instr())); ++ break; ++ case ST_B: ++ printf_instr("ST_B\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ WriteB(rj() + si12_se, static_cast(rd())); ++ break; ++ case ST_H: ++ printf_instr("ST_H\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ WriteH(rj() + si12_se, static_cast(rd()), instr_.instr()); ++ break; ++ case ST_W: ++ printf_instr("ST_W\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ WriteW(rj() + si12_se, static_cast(rd()), instr_.instr()); ++ break; ++ case ST_D: ++ printf_instr("ST_D\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ Write2W(rj() + si12_se, rd(), instr_.instr()); ++ break; ++ case LD_BU: ++ printf_instr("LD_BU\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadBU(rj() + si12_se)); ++ break; ++ case LD_HU: ++ printf_instr("LD_HU\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadHU(rj() + si12_se, instr_.instr())); ++ break; ++ case LD_WU: ++ printf_instr("LD_WU\t %s: %016lx, %s: %016lx, si12: %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), si12_ze); ++ set_register(rd_reg(), ReadWU(rj() + si12_se, instr_.instr())); ++ break; ++ case FLD_S: { ++ printf_instr("FLD_S\t %s: %016f, %s: %016lx, si12: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ Registers::Name(rj_reg()), rj(), si12_ze); ++ set_fpu_register(fd_reg(), kFPUInvalidResult); // Trash upper 32 bits. ++ set_fpu_register_word( ++ fd_reg(), ReadW(rj() + si12_se, instr_.instr(), FLOAT_DOUBLE)); ++ break; ++ } ++ case FST_S: { ++ printf_instr("FST_S\t %s: %016f, %s: %016lx, si12: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ Registers::Name(rj_reg()), rj(), si12_ze); ++ int32_t alu_out_32 = static_cast(get_fpu_register(fd_reg())); ++ WriteW(rj() + si12_se, alu_out_32, instr_.instr()); ++ break; ++ } ++ case FLD_D: { ++ printf_instr("FLD_D\t %s: %016f, %s: %016lx, si12: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj(), si12_ze); ++ set_fpu_register_double(fd_reg(), ReadD(rj() + si12_se, instr_.instr())); ++ TraceMemRd(rj() + si12_se, get_fpu_register(fd_reg()), DOUBLE); ++ break; ++ } ++ case FST_D: { ++ printf_instr("FST_D\t %s: %016f, %s: %016lx, si12: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj(), si12_ze); ++ WriteD(rj() + si12_se, get_fpu_register_double(fd_reg()), instr_.instr()); ++ TraceMemWr(rj() + si12_se, get_fpu_register(fd_reg()), DWORD); ++ break; ++ } ++ case PRELD: ++ UNIMPLEMENTED(); ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp12() { ++ switch (instr_.Bits(31, 20) << 20) { ++ case FMADD_S: ++ printf_instr("FMADD_S\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fk_reg()), fk_float(), ++ FPURegisters::Name(fa_reg()), fa_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), std::fma(fj_float(), fk_float(), fa_float())); ++ break; ++ case FMADD_D: ++ printf_instr("FMADD_D\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fk_reg()), fk_double(), ++ FPURegisters::Name(fa_reg()), fa_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), ++ std::fma(fj_double(), fk_double(), fa_double())); ++ break; ++ case FMSUB_S: ++ printf_instr("FMSUB_S\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fk_reg()), fk_float(), ++ FPURegisters::Name(fa_reg()), fa_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), ++ std::fma(fj_float(), fk_float(), -fa_float())); ++ break; ++ case FMSUB_D: ++ printf_instr("FMSUB_D\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fk_reg()), fk_double(), ++ FPURegisters::Name(fa_reg()), fa_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), ++ std::fma(fj_double(), fk_double(), -fa_double())); ++ break; ++ case FNMADD_S: ++ printf_instr("FNMADD_S\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fk_reg()), fk_float(), ++ FPURegisters::Name(fa_reg()), fa_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), ++ std::fma(-fj_float(), fk_float(), -fa_float())); ++ break; ++ case FNMADD_D: ++ printf_instr("FNMADD_D\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fk_reg()), fk_double(), ++ FPURegisters::Name(fa_reg()), fa_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), ++ std::fma(-fj_double(), fk_double(), -fa_double())); ++ break; ++ case FNMSUB_S: ++ printf_instr("FNMSUB_S\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fk_reg()), fk_float(), ++ FPURegisters::Name(fa_reg()), fa_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), ++ std::fma(-fj_float(), fk_float(), fa_float())); ++ break; ++ case FNMSUB_D: ++ printf_instr("FNMSUB_D\t %s: %016f, %s: %016f, %s: %016f %s: %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fk_reg()), fk_double(), ++ FPURegisters::Name(fa_reg()), fa_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), ++ std::fma(-fj_double(), fk_double(), fa_double())); ++ break; ++ case FCMP_COND_S: { ++ CHECK_EQ(instr_.Bits(4, 3), 0); ++ float fj = fj_float(); ++ float fk = fk_float(); ++ switch (cond()) { ++ case CAF: { ++ printf_instr("FCMP_CAF_S fcc%d\n", cd_reg()); ++ set_cf_register(cd_reg(), false); ++ break; ++ } ++ case CUN: { ++ printf_instr("FCMP_CUN_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CEQ: { ++ printf_instr("FCMP_CEQ_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj == fk); ++ break; ++ } ++ case CUEQ: { ++ printf_instr("FCMP_CUEQ_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj == fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CLT: { ++ printf_instr("FCMP_CLT_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj < fk); ++ break; ++ } ++ case CULT: { ++ printf_instr("FCMP_CULT_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj < fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CLE: { ++ printf_instr("FCMP_CLE_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj <= fk); ++ break; ++ } ++ case CULE: { ++ printf_instr("FCMP_CULE_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj <= fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CNE: { ++ printf_instr("FCMP_CNE_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), (fj < fk) || (fj > fk)); ++ break; ++ } ++ case COR: { ++ printf_instr("FCMP_COR_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), !std::isnan(fj) && !std::isnan(fk)); ++ break; ++ } ++ case CUNE: { ++ printf_instr("FCMP_CUNE_S fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj != fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case SAF: ++ case SUN: ++ case SEQ: ++ case SUEQ: ++ case SLT: ++ case SULT: ++ case SLE: ++ case SULE: ++ case SNE: ++ case SOR: ++ case SUNE: ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++ case FCMP_COND_D: { ++ CHECK_EQ(instr_.Bits(4, 3), 0); ++ double fj = fj_double(); ++ double fk = fk_double(); ++ switch (cond()) { ++ case CAF: { ++ printf_instr("FCMP_CAF_D fcc%d\n", cd_reg()); ++ set_cf_register(cd_reg(), false); ++ break; ++ } ++ case CUN: { ++ printf_instr("FCMP_CUN_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CEQ: { ++ printf_instr("FCMP_CEQ_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj == fk); ++ break; ++ } ++ case CUEQ: { ++ printf_instr("FCMP_CUEQ_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj == fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CLT: { ++ printf_instr("FCMP_CLT_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj < fk); ++ break; ++ } ++ case CULT: { ++ printf_instr("FCMP_CULT_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj < fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CLE: { ++ printf_instr("FCMP_CLE_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), fj <= fk); ++ break; ++ } ++ case CULE: { ++ printf_instr("FCMP_CULE_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj <= fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case CNE: { ++ printf_instr("FCMP_CNE_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), (fj < fk) || (fj > fk)); ++ break; ++ } ++ case COR: { ++ printf_instr("FCMP_COR_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), !std::isnan(fj) && !std::isnan(fk)); ++ break; ++ } ++ case CUNE: { ++ printf_instr("FCMP_CUNE_D fcc%d, %s: %016f, %s: %016f\n", cd_reg(), ++ FPURegisters::Name(fj_reg()), fj, ++ FPURegisters::Name(fk_reg()), fk); ++ set_cf_register(cd_reg(), ++ (fj != fk) || std::isnan(fj) || std::isnan(fk)); ++ break; ++ } ++ case SAF: ++ case SUN: ++ case SEQ: ++ case SUEQ: ++ case SLT: ++ case SULT: ++ case SLE: ++ case SULE: ++ case SNE: ++ case SOR: ++ case SUNE: ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++ case FSEL: { ++ CHECK_EQ(instr_.Bits(19, 18), 0); ++ printf_instr("FSEL fcc%d, %s: %016f, %s: %016f, %s: %016f\n", ca_reg(), ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ if (ca() == 0) { ++ SetFPUDoubleResult(fd_reg(), fj_double()); ++ } else { ++ SetFPUDoubleResult(fd_reg(), fk_double()); ++ } ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp14() { ++ int64_t alu_out = 0x0; ++ int32_t alu32_out = 0x0; ++ ++ switch (instr_.Bits(31, 18) << 18) { ++ case ALSL: { ++ uint8_t sa = sa2() + 1; ++ alu32_out = ++ (static_cast(rj()) << sa) + static_cast(rk()); ++ if (instr_.Bit(17) == 0) { ++ // ALSL_W ++ printf_instr("ALSL_W\t %s: %016lx, %s: %016lx, %s: %016lx, sa2: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk(), sa2()); ++ SetResult(rd_reg(), alu32_out); ++ } else { ++ // ALSL_WU ++ printf_instr("ALSL_WU\t %s: %016lx, %s: %016lx, %s: %016lx, sa2: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk(), sa2()); ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ } ++ break; ++ } ++ case BYTEPICK_W: { ++ CHECK_EQ(instr_.Bit(17), 0); ++ printf_instr("BYTEPICK_W\t %s: %016lx, %s: %016lx, %s: %016lx, sa2: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk(), sa2()); ++ uint8_t sa = sa2() * 8; ++ if (sa == 0) { ++ alu32_out = static_cast(rk()); ++ } else { ++ int32_t mask = (1 << 31) >> (sa - 1); ++ int32_t rk_hi = (static_cast(rk()) & (~mask)) << sa; ++ int32_t rj_lo = (static_cast(rj()) & mask) >> (32 - sa); ++ alu32_out = rk_hi | rj_lo; ++ } ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ break; ++ } ++ case BYTEPICK_D: { ++ printf_instr("BYTEPICK_D\t %s: %016lx, %s: %016lx, %s: %016lx, sa3: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk(), sa3()); ++ uint8_t sa = sa3() * 8; ++ if (sa == 0) { ++ alu_out = rk(); ++ } else { ++ int64_t mask = (1ULL << 63) >> (sa - 1); ++ int64_t rk_hi = (rk() & (~mask)) << sa; ++ int64_t rj_lo = (rj() & mask) >> (64 - sa); ++ alu_out = rk_hi | rj_lo; ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case ALSL_D: { ++ printf_instr("ALSL_D\t %s: %016lx, %s: %016lx, %s: %016lx, sa2: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk(), sa2()); ++ CHECK_EQ(instr_.Bit(17), 0); ++ uint8_t sa = sa2() + 1; ++ alu_out = (rj() << sa) + rk(); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case SLLI: { ++ DCHECK_EQ(instr_.Bit(17), 0); ++ if (instr_.Bits(17, 15) == 0b001) { ++ // SLLI_W ++ printf_instr("SLLI_W\t %s: %016lx, %s: %016lx, ui5: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui5()); ++ alu32_out = static_cast(rj()) << ui5(); ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ } else if ((instr_.Bits(17, 16) == 0b01)) { ++ // SLLI_D ++ printf_instr("SLLI_D\t %s: %016lx, %s: %016lx, ui6: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui6()); ++ SetResult(rd_reg(), rj() << ui6()); ++ } ++ break; ++ } ++ case SRLI: { ++ DCHECK_EQ(instr_.Bit(17), 0); ++ if (instr_.Bits(17, 15) == 0b001) { ++ // SRLI_W ++ printf_instr("SRLI_W\t %s: %016lx, %s: %016lx, ui5: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui5()); ++ alu32_out = static_cast(rj()) >> ui5(); ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ } else if (instr_.Bits(17, 16) == 0b01) { ++ // SRLI_D ++ printf_instr("SRLI_D\t %s: %016lx, %s: %016lx, ui6: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui6()); ++ SetResult(rd_reg(), rj_u() >> ui6()); ++ } ++ break; ++ } ++ case SRAI: { ++ DCHECK_EQ(instr_.Bit(17), 0); ++ if (instr_.Bits(17, 15) == 0b001) { ++ // SRAI_W ++ printf_instr("SRAI_W\t %s: %016lx, %s: %016lx, ui5: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui5()); ++ alu32_out = static_cast(rj()) >> ui5(); ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ } else if (instr_.Bits(17, 16) == 0b01) { ++ // SRAI_D ++ printf_instr("SRAI_D\t %s: %016lx, %s: %016lx, ui6: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui6()); ++ SetResult(rd_reg(), rj() >> ui6()); ++ } ++ break; ++ } ++ case ROTRI: { ++ DCHECK_EQ(instr_.Bit(17), 0); ++ if (instr_.Bits(17, 15) == 0b001) { ++ // ROTRI_W ++ printf_instr("ROTRI_W\t %s: %016lx, %s: %016lx, ui5: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui5()); ++ alu32_out = static_cast( ++ base::bits::RotateRight32(static_cast(rj_u()), ++ static_cast(ui5()))); ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ } else if (instr_.Bits(17, 16) == 0b01) { ++ // ROTRI_D ++ printf_instr("ROTRI_D\t %s: %016lx, %s: %016lx, ui6: %d\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), ui6()); ++ alu_out = ++ static_cast(base::bits::RotateRight64(rj_u(), ui6())); ++ SetResult(rd_reg(), alu_out); ++ printf_instr("ROTRI, %s, %s, %d\n", Registers::Name(rd_reg()), ++ Registers::Name(rj_reg()), ui6()); ++ } ++ break; ++ } ++ case LDDIR: ++ case LDPTE: ++ UNIMPLEMENTED(); ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp17() { ++ int64_t alu_out; ++ ++ switch (instr_.Bits(31, 15) << 15) { ++ case ADD_W: { ++ printf_instr("ADD_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int32_t alu32_out = static_cast(rj() + rk()); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ break; ++ } ++ case ADD_D: ++ printf_instr("ADD_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() + rk()); ++ break; ++ case SUB_W: { ++ printf_instr("SUB_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int32_t alu32_out = static_cast(rj() - rk()); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ break; ++ } ++ case SUB_D: ++ printf_instr("SUB_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() - rk()); ++ break; ++ case SLT: ++ printf_instr("SLT\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() < rk() ? 1 : 0); ++ break; ++ case SLTU: ++ printf_instr("SLTU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj_u() < rk_u() ? 1 : 0); ++ break; ++ case MASKEQZ: ++ printf_instr("MASKEQZ\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rk() == 0 ? rj() : 0); ++ break; ++ case MASKNEZ: ++ printf_instr("MASKNEZ\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rk() != 0 ? rj() : 0); ++ break; ++ case NOR: ++ printf_instr("NOR\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), ~(rj() | rk())); ++ break; ++ case AND: ++ printf_instr("AND\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() & rk()); ++ break; ++ case OR: ++ printf_instr("OR\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() | rk()); ++ break; ++ case XOR: ++ printf_instr("XOR\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() ^ rk()); ++ break; ++ case ORN: ++ printf_instr("ORN\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() | (~rk())); ++ break; ++ case ANDN: ++ printf_instr("ANDN\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() & (~rk())); ++ break; ++ case SLL_W: ++ printf_instr("SLL_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), (int32_t)rj() << (rk_u() % 32)); ++ break; ++ case SRL_W: { ++ printf_instr("SRL_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ alu_out = static_cast((uint32_t)rj_u() >> (rk_u() % 32)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case SRA_W: ++ printf_instr("SRA_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), (int32_t)rj() >> (rk_u() % 32)); ++ break; ++ case SLL_D: ++ printf_instr("SLL_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() << (rk_u() % 64)); ++ break; ++ case SRL_D: { ++ printf_instr("SRL_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ alu_out = static_cast(rj_u() >> (rk_u() % 64)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case SRA_D: ++ printf_instr("SRA_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() >> (rk_u() % 64)); ++ break; ++ case ROTR_W: { ++ printf_instr("ROTR_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ alu_out = static_cast( ++ base::bits::RotateRight32(static_cast(rj_u()), ++ static_cast(rk_u() % 32))); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case ROTR_D: { ++ printf_instr("ROTR_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ alu_out = static_cast( ++ base::bits::RotateRight64((rj_u()), (rk_u() % 64))); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case MUL_W: { ++ printf_instr("MUL_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ alu_out = static_cast(rj()) * static_cast(rk()); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case MULH_W: { ++ printf_instr("MULH_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int32_t rj_lo = static_cast(rj()); ++ int32_t rk_lo = static_cast(rk()); ++ alu_out = static_cast(rj_lo) * static_cast(rk_lo); ++ SetResult(rd_reg(), alu_out >> 32); ++ break; ++ } ++ case MULH_WU: { ++ printf_instr("MULH_WU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ uint32_t rj_lo = static_cast(rj_u()); ++ uint32_t rk_lo = static_cast(rk_u()); ++ alu_out = static_cast(rj_lo) * static_cast(rk_lo); ++ SetResult(rd_reg(), alu_out >> 32); ++ break; ++ } ++ case MUL_D: ++ printf_instr("MUL_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), rj() * rk()); ++ break; ++ case MULH_D: ++ printf_instr("MULH_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), MultiplyHighSigned(rj(), rk())); ++ break; ++ case MULH_DU: ++ printf_instr("MULH_DU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ SetResult(rd_reg(), MultiplyHighUnsigned(rj_u(), rk_u())); ++ break; ++ case MULW_D_W: { ++ printf_instr("MULW_D_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int64_t rj_i32 = static_cast(rj()); ++ int64_t rk_i32 = static_cast(rk()); ++ SetResult(rd_reg(), rj_i32 * rk_i32); ++ break; ++ } ++ case MULW_D_WU: { ++ printf_instr("MULW_D_WU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ uint64_t rj_u32 = static_cast(rj_u()); ++ uint64_t rk_u32 = static_cast(rk_u()); ++ SetResult(rd_reg(), rj_u32 * rk_u32); ++ break; ++ } ++ case DIV_W: { ++ printf_instr("DIV_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int32_t rj_i32 = static_cast(rj()); ++ int32_t rk_i32 = static_cast(rk()); ++ if (rj_i32 == INT_MIN && rk_i32 == -1) { ++ SetResult(rd_reg(), INT_MIN); ++ } else if (rk_i32 != 0) { ++ SetResult(rd_reg(), rj_i32 / rk_i32); ++ } ++ break; ++ } ++ case MOD_W: { ++ printf_instr("MOD_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ int32_t rj_i32 = static_cast(rj()); ++ int32_t rk_i32 = static_cast(rk()); ++ if (rj_i32 == INT_MIN && rk_i32 == -1) { ++ SetResult(rd_reg(), 0); ++ } else if (rk_i32 != 0) { ++ SetResult(rd_reg(), rj_i32 % rk_i32); ++ } ++ break; ++ } ++ case DIV_WU: { ++ printf_instr("DIV_WU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ uint32_t rj_u32 = static_cast(rj()); ++ uint32_t rk_u32 = static_cast(rk()); ++ if (rk_u32 != 0) { ++ SetResult(rd_reg(), static_cast(rj_u32 / rk_u32)); ++ } ++ break; ++ } ++ case MOD_WU: { ++ printf_instr("MOD_WU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ uint32_t rj_u32 = static_cast(rj()); ++ uint32_t rk_u32 = static_cast(rk()); ++ if (rk_u32 != 0) { ++ SetResult(rd_reg(), static_cast(rj_u32 % rk_u32)); ++ } ++ break; ++ } ++ case DIV_D: { ++ printf_instr("DIV_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ if (rj() == LONG_MIN && rk() == -1) { ++ SetResult(rd_reg(), LONG_MIN); ++ } else if (rk() != 0) { ++ SetResult(rd_reg(), rj() / rk()); ++ } ++ break; ++ } ++ case MOD_D: { ++ printf_instr("MOD_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ if (rj() == LONG_MIN && rk() == -1) { ++ SetResult(rd_reg(), 0); ++ } else if (rk() != 0) { ++ SetResult(rd_reg(), rj() % rk()); ++ } ++ break; ++ } ++ case DIV_DU: { ++ printf_instr("DIV_DU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ if (rk_u() != 0) { ++ SetResult(rd_reg(), static_cast(rj_u() / rk_u())); ++ } ++ break; ++ } ++ case MOD_DU: { ++ printf_instr("MOD_DU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ if (rk_u() != 0) { ++ SetResult(rd_reg(), static_cast(rj_u() % rk_u())); ++ } ++ break; ++ } ++ case BREAK: ++ printf_instr("BREAK\t code: %x\n", instr_.Bits(14, 0)); ++ SoftwareInterrupt(); ++ break; ++ case FADD_S: { ++ printf_instr("FADD_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, ++ fj_float(), fk_float())); ++ break; ++ } ++ case FADD_D: { ++ printf_instr("FADD_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs + rhs; }, ++ fj_double(), fk_double())); ++ break; ++ } ++ case FSUB_S: { ++ printf_instr("FSUB_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, ++ fj_float(), fk_float())); ++ break; ++ } ++ case FSUB_D: { ++ printf_instr("FSUB_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs - rhs; }, ++ fj_double(), fk_double())); ++ break; ++ } ++ case FMUL_S: { ++ printf_instr("FMUL_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, ++ fj_float(), fk_float())); ++ break; ++ } ++ case FMUL_D: { ++ printf_instr("FMUL_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs * rhs; }, ++ fj_double(), fk_double())); ++ break; ++ } ++ case FDIV_S: { ++ printf_instr("FDIV_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, ++ fj_float(), fk_float())); ++ break; ++ } ++ case FDIV_D: { ++ printf_instr("FDIV_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs / rhs; }, ++ fj_double(), fk_double())); ++ break; ++ } ++ case FMAX_S: ++ printf_instr("FMAX_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult(fd_reg(), FPUMax(fk_float(), fj_float())); ++ break; ++ case FMAX_D: ++ printf_instr("FMAX_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), FPUMax(fk_double(), fj_double())); ++ break; ++ case FMIN_S: ++ printf_instr("FMIN_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult(fd_reg(), FPUMin(fk_float(), fj_float())); ++ break; ++ case FMIN_D: ++ printf_instr("FMIN_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), FPUMin(fk_double(), fj_double())); ++ break; ++ case FMAXA_S: ++ printf_instr("FMAXA_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult(fd_reg(), FPUMaxA(fk_float(), fj_float())); ++ break; ++ case FMAXA_D: ++ printf_instr("FMAXA_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), FPUMaxA(fk_double(), fj_double())); ++ break; ++ case FMINA_S: ++ printf_instr("FMINA_S\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float(), ++ FPURegisters::Name(fk_reg()), fk_float()); ++ SetFPUFloatResult(fd_reg(), FPUMinA(fk_float(), fj_float())); ++ break; ++ case FMINA_D: ++ printf_instr("FMINA_D\t %s: %016f, %s, %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double(), ++ FPURegisters::Name(fk_reg()), fk_double()); ++ SetFPUDoubleResult(fd_reg(), FPUMinA(fk_double(), fj_double())); ++ break; ++ case LDX_B: ++ printf_instr("LDX_B\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadB(rj() + rk())); ++ break; ++ case LDX_H: ++ printf_instr("LDX_H\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadH(rj() + rk(), instr_.instr())); ++ break; ++ case LDX_W: ++ printf_instr("LDX_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadW(rj() + rk(), instr_.instr())); ++ break; ++ case LDX_D: ++ printf_instr("LDX_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), Read2W(rj() + rk(), instr_.instr())); ++ break; ++ case STX_B: ++ printf_instr("STX_B\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ WriteB(rj() + rk(), static_cast(rd())); ++ break; ++ case STX_H: ++ printf_instr("STX_H\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ WriteH(rj() + rk(), static_cast(rd()), instr_.instr()); ++ break; ++ case STX_W: ++ printf_instr("STX_W\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ WriteW(rj() + rk(), static_cast(rd()), instr_.instr()); ++ break; ++ case STX_D: ++ printf_instr("STX_D\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ Write2W(rj() + rk(), rd(), instr_.instr()); ++ break; ++ case LDX_BU: ++ printf_instr("LDX_BU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadBU(rj() + rk())); ++ break; ++ case LDX_HU: ++ printf_instr("LDX_HU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadHU(rj() + rk(), instr_.instr())); ++ break; ++ case LDX_WU: ++ printf_instr("LDX_WU\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj(), Registers::Name(rk_reg()), rk()); ++ set_register(rd_reg(), ReadWU(rj() + rk(), instr_.instr())); ++ break; ++ case FLDX_S: ++ printf_instr("FLDX_S\t %s: %016f, %s: %016lx, %s: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ Registers::Name(rj_reg()), rj(), Registers::Name(rk_reg()), ++ rk()); ++ set_fpu_register(fd_reg(), kFPUInvalidResult); // Trash upper 32 bits. ++ set_fpu_register_word(fd_reg(), ++ ReadW(rj() + rk(), instr_.instr(), FLOAT_DOUBLE)); ++ break; ++ case FLDX_D: ++ printf_instr("FLDX_D\t %s: %016f, %s: %016lx, %s: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj(), Registers::Name(rk_reg()), ++ rk()); ++ set_fpu_register_double(fd_reg(), ReadD(rj() + rk(), instr_.instr())); ++ break; ++ case FSTX_S: ++ printf_instr("FSTX_S\t %s: %016f, %s: %016lx, %s: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ Registers::Name(rj_reg()), rj(), Registers::Name(rk_reg()), ++ rk()); ++ WriteW(rj() + rk(), static_cast(get_fpu_register(fd_reg())), ++ instr_.instr()); ++ break; ++ case FSTX_D: ++ printf_instr("FSTX_D\t %s: %016f, %s: %016lx, %s: %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj(), Registers::Name(rk_reg()), ++ rk()); ++ WriteD(rj() + rk(), get_fpu_register_double(fd_reg()), instr_.instr()); ++ break; ++ case SYSCALL: ++ printf("Sim UNIMPLEMENTED: SYSCALL\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMSWAP_W: ++ printf("Sim UNIMPLEMENTED: AMSWAP_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMSWAP_D: ++ printf("Sim UNIMPLEMENTED: AMSWAP_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMADD_W: ++ printf("Sim UNIMPLEMENTED: AMADD_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMADD_D: ++ printf("Sim UNIMPLEMENTED: AMADD_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMAND_W: ++ printf("Sim UNIMPLEMENTED: AMAND_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMAND_D: ++ printf("Sim UNIMPLEMENTED: AMAND_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMOR_W: ++ printf("Sim UNIMPLEMENTED: AMOR_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMOR_D: ++ printf("Sim UNIMPLEMENTED: AMOR_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMXOR_W: ++ printf("Sim UNIMPLEMENTED: AMXOR_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMXOR_D: ++ printf("Sim UNIMPLEMENTED: AMXOR_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_W: ++ printf("Sim UNIMPLEMENTED: AMMAX_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_D: ++ printf("Sim UNIMPLEMENTED: AMMAX_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_W: ++ printf("Sim UNIMPLEMENTED: AMMIN_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_D: ++ printf("Sim UNIMPLEMENTED: AMMIN_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_WU: ++ printf("Sim UNIMPLEMENTED: AMMAX_WU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_DU: ++ printf("Sim UNIMPLEMENTED: AMMAX_DU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_WU: ++ printf("Sim UNIMPLEMENTED: AMMIN_WU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_DU: ++ printf("Sim UNIMPLEMENTED: AMMIN_DU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMSWAP_DB_W: { ++ printf_instr("AMSWAP_DB_W:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMSWAP_DB_D: { ++ printf_instr("AMSWAP_DB_D:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMADD_DB_W: { ++ printf_instr("AMADD_DB_W:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMADD_DB_D: { ++ printf_instr("AMADD_DB_D:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMAND_DB_W: { ++ printf_instr("AMAND_DB_W:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMAND_DB_D: { ++ printf_instr("AMAND_DB_D:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMOR_DB_W: { ++ printf_instr("AMOR_DB_W:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMOR_DB_D: { ++ printf_instr("AMOR_DB_D:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMXOR_DB_W: { ++ printf_instr("AMXOR_DB_W:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMXOR_DB_D: { ++ printf_instr("AMXOR_DB_D:\t %s: %016lx, %s, %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rk_reg()), ++ rk(), Registers::Name(rj_reg()), rj()); ++ UNIMPLEMENTED(); ++ } break; ++ case AMMAX_DB_W: ++ printf("Sim UNIMPLEMENTED: AMMAX_DB_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_DB_D: ++ printf("Sim UNIMPLEMENTED: AMMAX_DB_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_DB_W: ++ printf("Sim UNIMPLEMENTED: AMMIN_DB_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_DB_D: ++ printf("Sim UNIMPLEMENTED: AMMIN_DB_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_DB_WU: ++ printf("Sim UNIMPLEMENTED: AMMAX_DB_WU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMAX_DB_DU: ++ printf("Sim UNIMPLEMENTED: AMMAX_DB_DU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_DB_WU: ++ printf("Sim UNIMPLEMENTED: AMMIN_DB_WU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case AMMIN_DB_DU: ++ printf("Sim UNIMPLEMENTED: AMMIN_DB_DU\n"); ++ UNIMPLEMENTED(); ++ break; ++ case DBAR: ++ printf_instr("DBAR\n"); ++ break; ++ case IBAR: ++ printf("Sim UNIMPLEMENTED: IBAR\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FSCALEB_S: ++ printf("Sim UNIMPLEMENTED: FSCALEB_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FSCALEB_D: ++ printf("Sim UNIMPLEMENTED: FSCALEB_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FCOPYSIGN_S: ++ printf("Sim UNIMPLEMENTED: FCOPYSIGN_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FCOPYSIGN_D: ++ printf("Sim UNIMPLEMENTED: FCOPYSIGN_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeOp22() { ++ int64_t alu_out; ++ ++ switch (instr_.Bits(31, 10) << 10) { ++ case CLZ_W: { ++ printf_instr("CLZ_W\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ alu_out = base::bits::CountLeadingZeros32(static_cast(rj_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case CTZ_W: { ++ printf_instr("CTZ_W\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ alu_out = base::bits::CountTrailingZeros32(static_cast(rj_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case CLZ_D: { ++ printf_instr("CLZ_D\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ alu_out = base::bits::CountLeadingZeros64(static_cast(rj_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case CTZ_D: { ++ printf_instr("CTZ_D\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ alu_out = base::bits::CountTrailingZeros64(static_cast(rj_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVB_2H: { ++ printf_instr("REVB_2H\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint32_t input = static_cast(rj()); ++ uint64_t output = 0; ++ ++ uint32_t mask = 0xFF000000; ++ for (int i = 0; i < 4; i++) { ++ uint32_t tmp = mask & input; ++ if (i % 2 == 0) { ++ tmp = tmp >> 8; ++ } else { ++ tmp = tmp << 8; ++ } ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ ++ alu_out = static_cast(static_cast(output)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVB_4H: { ++ printf_instr("REVB_4H\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFF00000000000000; ++ for (int i = 0; i < 8; i++) { ++ uint64_t tmp = mask & input; ++ if (i % 2 == 0) { ++ tmp = tmp >> 8; ++ } else { ++ tmp = tmp << 8; ++ } ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVB_2W: { ++ printf_instr("REVB_2W\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFF000000FF000000; ++ for (int i = 0; i < 4; i++) { ++ uint64_t tmp = mask & input; ++ if (i <= 1) { ++ tmp = tmp >> (24 - i * 16); ++ } else { ++ tmp = tmp << (i * 16 - 24); ++ } ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVB_D: { ++ printf_instr("REVB_D\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFF00000000000000; ++ for (int i = 0; i < 8; i++) { ++ uint64_t tmp = mask & input; ++ if (i <= 3) { ++ tmp = tmp >> (56 - i * 16); ++ } else { ++ tmp = tmp << (i * 16 - 56); ++ } ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVH_2W: { ++ printf_instr("REVH_2W\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFFFF000000000000; ++ for (int i = 0; i < 4; i++) { ++ uint64_t tmp = mask & input; ++ if (i % 2 == 0) { ++ tmp = tmp >> 16; ++ } else { ++ tmp = tmp << 16; ++ } ++ output = output | tmp; ++ mask = mask >> 16; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case REVH_D: { ++ printf_instr("REVH_D\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFFFF000000000000; ++ for (int i = 0; i < 4; i++) { ++ uint64_t tmp = mask & input; ++ if (i <= 1) { ++ tmp = tmp >> (48 - i * 32); ++ } else { ++ tmp = tmp << (i * 32 - 48); ++ } ++ output = output | tmp; ++ mask = mask >> 16; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BITREV_4B: { ++ printf_instr("BITREV_4B\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint32_t input = static_cast(rj()); ++ uint32_t output = 0; ++ uint8_t i_byte, o_byte; ++ ++ // Reverse the bit in byte for each individual byte ++ for (int i = 0; i < 4; i++) { ++ output = output >> 8; ++ i_byte = input & 0xFF; ++ ++ // Fast way to reverse bits in byte ++ // Devised by Sean Anderson, July 13, 2001 ++ o_byte = static_cast(((i_byte * 0x0802LU & 0x22110LU) | ++ (i_byte * 0x8020LU & 0x88440LU)) * ++ 0x10101LU >> ++ 16); ++ ++ output = output | (static_cast(o_byte << 24)); ++ input = input >> 8; ++ } ++ ++ alu_out = static_cast(static_cast(output)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BITREV_8B: { ++ printf_instr("BITREV_8B\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint64_t input = rj_u(); ++ uint64_t output = 0; ++ uint8_t i_byte, o_byte; ++ ++ // Reverse the bit in byte for each individual byte ++ for (int i = 0; i < 8; i++) { ++ output = output >> 8; ++ i_byte = input & 0xFF; ++ ++ // Fast way to reverse bits in byte ++ // Devised by Sean Anderson, July 13, 2001 ++ o_byte = static_cast(((i_byte * 0x0802LU & 0x22110LU) | ++ (i_byte * 0x8020LU & 0x88440LU)) * ++ 0x10101LU >> ++ 16); ++ ++ output = output | (static_cast(o_byte) << 56); ++ input = input >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BITREV_W: { ++ printf_instr("BITREV_W\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint32_t input = static_cast(rj()); ++ uint32_t output = 0; ++ output = base::bits::ReverseBits(input); ++ alu_out = static_cast(static_cast(output)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case BITREV_D: { ++ printf_instr("BITREV_D\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ alu_out = static_cast(base::bits::ReverseBits(rj_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case EXT_W_B: { ++ printf_instr("EXT_W_B\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint8_t input = static_cast(rj()); ++ alu_out = static_cast(static_cast(input)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case EXT_W_H: { ++ printf_instr("EXT_W_H\t %s: %016lx, %s, %016lx\n", ++ Registers::Name(rd_reg()), rd(), Registers::Name(rj_reg()), ++ rj()); ++ uint16_t input = static_cast(rj()); ++ alu_out = static_cast(static_cast(input)); ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case FABS_S: ++ printf_instr("FABS_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), std::abs(fj_float())); ++ break; ++ case FABS_D: ++ printf_instr("FABS_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), std::abs(fj_double())); ++ break; ++ case FNEG_S: ++ printf_instr("FNEG_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), -fj_float()); ++ break; ++ case FNEG_D: ++ printf_instr("FNEG_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUDoubleResult(fd_reg(), -fj_double()); ++ break; ++ case FSQRT_S: { ++ printf_instr("FSQRT_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ if (fj_float() >= 0) { ++ SetFPUFloatResult(fd_reg(), std::sqrt(fj_float())); ++ } else { ++ SetFPUFloatResult(fd_reg(), std::sqrt(-1)); // qnan ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ } ++ break; ++ } ++ case FSQRT_D: { ++ printf_instr("FSQRT_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ if (fj_double() >= 0) { ++ SetFPUDoubleResult(fd_reg(), std::sqrt(fj_double())); ++ } else { ++ SetFPUDoubleResult(fd_reg(), std::sqrt(-1)); // qnan ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ } ++ break; ++ } ++ case FMOV_S: ++ printf_instr("FMOV_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUFloatResult(fd_reg(), fj_float()); ++ break; ++ case FMOV_D: ++ printf_instr("FMOV_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_float(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUDoubleResult(fd_reg(), fj_double()); ++ break; ++ case MOVGR2FR_W: { ++ printf_instr("MOVGR2FR_W\t %s: %016f, %s, %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj()); ++ set_fpu_register_word(fd_reg(), static_cast(rj())); ++ TraceRegWr(get_fpu_register(fd_reg()), FLOAT_DOUBLE); ++ break; ++ } ++ case MOVGR2FR_D: ++ printf_instr("MOVGR2FR_D\t %s: %016f, %s, %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj()); ++ SetFPUResult2(fd_reg(), rj()); ++ break; ++ case MOVGR2FRH_W: { ++ printf_instr("MOVGR2FRH_W\t %s: %016f, %s, %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ Registers::Name(rj_reg()), rj()); ++ set_fpu_register_hi_word(fd_reg(), static_cast(rj())); ++ TraceRegWr(get_fpu_register(fd_reg()), DOUBLE); ++ break; ++ } ++ case MOVFR2GR_S: { ++ printf_instr("MOVFR2GR_S\t %s: %016lx, %s, %016f\n", ++ Registers::Name(rd_reg()), rd(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ set_register(rd_reg(), ++ static_cast(get_fpu_register_word(fj_reg()))); ++ TraceRegWr(get_register(rd_reg()), WORD_DWORD); ++ break; ++ } ++ case MOVFR2GR_D: ++ printf_instr("MOVFR2GR_D\t %s: %016lx, %s, %016f\n", ++ Registers::Name(rd_reg()), rd(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetResult(rd_reg(), get_fpu_register(fj_reg())); ++ break; ++ case MOVFRH2GR_S: ++ printf_instr("MOVFRH2GR_S\t %s: %016lx, %s, %016f\n", ++ Registers::Name(rd_reg()), rd(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetResult(rd_reg(), get_fpu_register_hi_word(fj_reg())); ++ break; ++ case MOVGR2FCSR: { ++ printf_instr("MOVGR2FCSR\t fcsr: %016x, %s, %016lx\n", FCSR_, ++ Registers::Name(rj_reg()), rj()); ++ // fcsr could be 0-3 ++ CHECK_LT(rd_reg(), 4); ++ FCSR_ = static_cast(rj()); ++ TraceRegWr(FCSR_); ++ break; ++ } ++ case MOVFCSR2GR: { ++ printf_instr("MOVFCSR2GR\t %s, %016lx, FCSR: %016x\n", ++ Registers::Name(rd_reg()), rd(), FCSR_); ++ // fcsr could be 0-3 ++ CHECK_LT(rj_reg(), 4); ++ SetResult(rd_reg(), FCSR_); ++ break; ++ } ++ case FCVT_S_D: ++ printf_instr("FCVT_S_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ SetFPUFloatResult(fd_reg(), static_cast(fj_double())); ++ break; ++ case FCVT_D_S: ++ printf_instr("FCVT_D_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ SetFPUDoubleResult(fd_reg(), static_cast(fj_float())); ++ break; ++ case FTINTRM_W_S: { ++ printf_instr("FTINTRM_W_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::floor(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRM_W_D: { ++ printf_instr("FTINTRM_W_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::floor(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRM_L_S: { ++ printf_instr("FTINTRM_L_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::floor(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRM_L_D: { ++ printf_instr("FTINTRM_L_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::floor(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRP_W_S: { ++ printf_instr("FTINTRP_W_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::ceil(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRP_W_D: { ++ printf_instr("FTINTRP_W_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::ceil(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRP_L_S: { ++ printf_instr("FTINTRP_L_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::ceil(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRP_L_D: { ++ printf_instr("FTINTRP_L_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::ceil(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRZ_W_S: { ++ printf_instr("FTINTRZ_W_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::trunc(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRZ_W_D: { ++ printf_instr("FTINTRZ_W_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::trunc(fj); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRZ_L_S: { ++ printf_instr("FTINTRZ_L_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::trunc(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRZ_L_D: { ++ printf_instr("FTINTRZ_L_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::trunc(fj); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRNE_W_S: { ++ printf_instr("FTINTRNE_W_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::floor(fj + 0.5); ++ int32_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fj == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRNE_W_D: { ++ printf_instr("FTINTRNE_W_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::floor(fj + 0.5); ++ int32_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fj == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRNE_L_S: { ++ printf_instr("FTINTRNE_L_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded = std::floor(fj + 0.5); ++ int64_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fj == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINTRNE_L_D: { ++ printf_instr("FTINTRNE_L_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded = std::floor(fj + 0.5); ++ int64_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fj == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINT_W_S: { ++ printf_instr("FTINT_W_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded; ++ int32_t result; ++ round_according_to_fcsr(fj, &rounded, &result); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINT_W_D: { ++ printf_instr("FTINT_W_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded; ++ int32_t result; ++ round_according_to_fcsr(fj, &rounded, &result); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fj, rounded)) { ++ set_fpu_register_word_invalid_result(fj, rounded); ++ } ++ break; ++ } ++ case FTINT_L_S: { ++ printf_instr("FTINT_L_S\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float rounded; ++ int64_t result; ++ round64_according_to_fcsr(fj, &rounded, &result); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FTINT_L_D: { ++ printf_instr("FTINT_L_D\t %s: %016f, %s, %016f\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double rounded; ++ int64_t result; ++ round64_according_to_fcsr(fj, &rounded, &result); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fj, rounded)) { ++ set_fpu_register_invalid_result64(fj, rounded); ++ } ++ break; ++ } ++ case FFINT_S_W: { ++ alu_out = get_fpu_register_signed_word(fj_reg()); ++ printf_instr("FFINT_S_W\t %s: %016f, %s, %016x\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), (int)alu_out); ++ SetFPUFloatResult(fd_reg(), static_cast(alu_out)); ++ break; ++ } ++ case FFINT_S_L: { ++ alu_out = get_fpu_register(fj_reg()); ++ printf_instr("FFINT_S_L\t %s: %016f, %s, %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), alu_out); ++ SetFPUFloatResult(fd_reg(), static_cast(alu_out)); ++ break; ++ } ++ case FFINT_D_W: { ++ alu_out = get_fpu_register_signed_word(fj_reg()); ++ printf_instr("FFINT_D_W\t %s: %016f, %s, %016x\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), (int)alu_out); ++ SetFPUDoubleResult(fd_reg(), static_cast(alu_out)); ++ break; ++ } ++ case FFINT_D_L: { ++ alu_out = get_fpu_register(fj_reg()); ++ printf_instr("FFINT_D_L\t %s: %016f, %s, %016lx\n", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), alu_out); ++ SetFPUDoubleResult(fd_reg(), static_cast(alu_out)); ++ break; ++ } ++ case FRINT_S: { ++ printf_instr("FRINT_S\t %s: %016f, %s, %016f mode : ", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_float()); ++ float fj = fj_float(); ++ float result, temp_result; ++ double temp; ++ float upper = std::ceil(fj); ++ float lower = std::floor(fj); ++ switch (get_fcsr_rounding_mode()) { ++ case kRoundToNearest: ++ printf_instr(" kRoundToNearest\n"); ++ if (upper - fj < fj - lower) { ++ result = upper; ++ } else if (upper - fj > fj - lower) { ++ result = lower; ++ } else { ++ temp_result = upper / 2; ++ float reminder = std::modf(temp_result, &temp); ++ if (reminder == 0) { ++ result = upper; ++ } else { ++ result = lower; ++ } ++ } ++ break; ++ case kRoundToZero: ++ printf_instr(" kRoundToZero\n"); ++ result = (fj > 0 ? lower : upper); ++ break; ++ case kRoundToPlusInf: ++ printf_instr(" kRoundToPlusInf\n"); ++ result = upper; ++ break; ++ case kRoundToMinusInf: ++ printf_instr(" kRoundToMinusInf\n"); ++ result = lower; ++ break; ++ } ++ SetFPUFloatResult(fd_reg(), result); ++ if (result != fj) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ break; ++ } ++ case FRINT_D: { ++ printf_instr("FRINT_D\t %s: %016f, %s, %016f mode : ", ++ FPURegisters::Name(fd_reg()), fd_double(), ++ FPURegisters::Name(fj_reg()), fj_double()); ++ double fj = fj_double(); ++ double result, temp, temp_result; ++ double upper = std::ceil(fj); ++ double lower = std::floor(fj); ++ switch (get_fcsr_rounding_mode()) { ++ case kRoundToNearest: ++ printf_instr(" kRoundToNearest\n"); ++ if (upper - fj < fj - lower) { ++ result = upper; ++ } else if (upper - fj > fj - lower) { ++ result = lower; ++ } else { ++ temp_result = upper / 2; ++ double reminder = std::modf(temp_result, &temp); ++ if (reminder == 0) { ++ result = upper; ++ } else { ++ result = lower; ++ } ++ } ++ break; ++ case kRoundToZero: ++ printf_instr(" kRoundToZero\n"); ++ result = (fj > 0 ? lower : upper); ++ break; ++ case kRoundToPlusInf: ++ printf_instr(" kRoundToPlusInf\n"); ++ result = upper; ++ break; ++ case kRoundToMinusInf: ++ printf_instr(" kRoundToMinusInf\n"); ++ result = lower; ++ break; ++ } ++ SetFPUDoubleResult(fd_reg(), result); ++ if (result != fj) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ break; ++ } ++ case MOVFR2CF: ++ printf("Sim UNIMPLEMENTED: MOVFR2CF\n"); ++ UNIMPLEMENTED(); ++ break; ++ case MOVCF2FR: ++ printf("Sim UNIMPLEMENTED: MOVCF2FR\n"); ++ UNIMPLEMENTED(); ++ break; ++ case MOVGR2CF: ++ printf_instr("MOVGR2CF\t FCC%d, %s: %016lx\n", cd_reg(), ++ Registers::Name(rj_reg()), rj()); ++ set_cf_register(cd_reg(), rj() & 1); ++ break; ++ case MOVCF2GR: ++ printf_instr("MOVCF2GR\t %s, %016lx, FCC%d\n", Registers::Name(rd_reg()), ++ rd(), cj_reg()); ++ SetResult(rd_reg(), cj()); ++ break; ++ case FRECIP_S: ++ printf("Sim UNIMPLEMENTED: FRECIP_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FRECIP_D: ++ printf("Sim UNIMPLEMENTED: FRECIP_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FRSQRT_S: ++ printf("Sim UNIMPLEMENTED: FRSQRT_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FRSQRT_D: ++ printf("Sim UNIMPLEMENTED: FRSQRT_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FCLASS_S: ++ printf("Sim UNIMPLEMENTED: FCLASS_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FCLASS_D: ++ printf("Sim UNIMPLEMENTED: FCLASS_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FLOGB_S: ++ printf("Sim UNIMPLEMENTED: FLOGB_S\n"); ++ UNIMPLEMENTED(); ++ break; ++ case FLOGB_D: ++ printf("Sim UNIMPLEMENTED: FLOGB_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case CLO_W: ++ printf("Sim UNIMPLEMENTED: CLO_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case CTO_W: ++ printf("Sim UNIMPLEMENTED: CTO_W\n"); ++ UNIMPLEMENTED(); ++ break; ++ case CLO_D: ++ printf("Sim UNIMPLEMENTED: CLO_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ case CTO_D: ++ printf("Sim UNIMPLEMENTED: CTO_D\n"); ++ UNIMPLEMENTED(); ++ break; ++ // Unimplemented opcodes raised an error in the configuration step before, ++ // so we can use the default here to set the destination register in common ++ // cases. ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++// Executes the current instruction. ++void Simulator::InstructionDecode(Instruction* instr) { ++ if (v8::internal::FLAG_check_icache) { ++ CheckICache(i_cache(), instr); ++ } ++ pc_modified_ = false; ++ ++ v8::internal::EmbeddedVector buffer; ++ ++ if (::v8::internal::FLAG_trace_sim) { ++ SNPrintF(trace_buf_, " "); ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ dasm.InstructionDecode(buffer, reinterpret_cast(instr)); ++ } ++ ++ static int instr_count = 0; ++ instr_ = instr; ++ printf_instr("\nInstr%3d: %08x, PC: %016lx\t", instr_count++, ++ instr_.Bits(31, 0), get_pc()); ++ switch (instr_.InstructionType()) { ++ case Instruction::kOp6Type: ++ DecodeTypeOp6(); ++ break; ++ case Instruction::kOp7Type: ++ DecodeTypeOp7(); ++ break; ++ case Instruction::kOp8Type: ++ DecodeTypeOp8(); ++ break; ++ case Instruction::kOp10Type: ++ DecodeTypeOp10(); ++ break; ++ case Instruction::kOp12Type: ++ DecodeTypeOp12(); ++ break; ++ case Instruction::kOp14Type: ++ DecodeTypeOp14(); ++ break; ++ case Instruction::kOp17Type: ++ DecodeTypeOp17(); ++ break; ++ case Instruction::kOp22Type: ++ DecodeTypeOp22(); ++ break; ++ default: { ++ printf("instr_: %x\n", instr_.Bits(31, 0)); ++ UNREACHABLE(); ++ } ++ } ++ ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF(" 0x%08" PRIxPTR " %-44s %s\n", ++ reinterpret_cast(instr), buffer.begin(), ++ trace_buf_.begin()); ++ } ++ ++ if (!pc_modified_) { ++ set_register(pc, reinterpret_cast(instr) + kInstrSize); ++ } ++} ++ ++void Simulator::Execute() { ++ // Get the PC to simulate. Cannot use the accessor here as we need the ++ // raw PC value and not the one used as input to arithmetic instructions. ++ int64_t program_counter = get_pc(); ++ if (::v8::internal::FLAG_stop_sim_at == 0) { ++ // Fast version of the dispatch loop without checking whether the simulator ++ // should be stopping at a particular executed instruction. ++ while (program_counter != end_sim_pc) { ++ Instruction* instr = reinterpret_cast(program_counter); ++ icount_++; ++ InstructionDecode(instr); ++ program_counter = get_pc(); ++ } ++ } else { ++ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when ++ // we reach the particular instruction count. ++ while (program_counter != end_sim_pc) { ++ Instruction* instr = reinterpret_cast(program_counter); ++ icount_++; ++ if (icount_ == static_cast(::v8::internal::FLAG_stop_sim_at)) { ++ Loong64Debugger dbg(this); ++ dbg.Debug(); ++ } else { ++ InstructionDecode(instr); ++ } ++ program_counter = get_pc(); ++ } ++ } ++} ++ ++void Simulator::CallInternal(Address entry) { ++ // Adjust JS-based stack limit to C-based stack limit. ++ isolate_->stack_guard()->AdjustStackLimitForSimulator(); ++ ++ // Prepare to execute the code at entry. ++ set_register(pc, static_cast(entry)); ++ // Put down marker for end of simulation. The simulator will stop simulation ++ // when the PC reaches this value. By saving the "end simulation" value into ++ // the LR the simulation stops when returning to this call point. ++ set_register(ra, end_sim_pc); ++ ++ // Remember the values of callee-saved registers. ++ int64_t s0_val = get_register(s0); ++ int64_t s1_val = get_register(s1); ++ int64_t s2_val = get_register(s2); ++ int64_t s3_val = get_register(s3); ++ int64_t s4_val = get_register(s4); ++ int64_t s5_val = get_register(s5); ++ int64_t s6_val = get_register(s6); ++ int64_t s7_val = get_register(s7); ++ int64_t s8_val = get_register(s8); ++ int64_t gp_val = get_register(gp); ++ int64_t sp_val = get_register(sp); ++ int64_t tp_val = get_register(tp); ++ int64_t fp_val = get_register(fp); ++ ++ // Set up the callee-saved registers with a known value. To be able to check ++ // that they are preserved properly across JS execution. ++ int64_t callee_saved_value = icount_; ++ set_register(s0, callee_saved_value); ++ set_register(s1, callee_saved_value); ++ set_register(s2, callee_saved_value); ++ set_register(s3, callee_saved_value); ++ set_register(s4, callee_saved_value); ++ set_register(s5, callee_saved_value); ++ set_register(s6, callee_saved_value); ++ set_register(s7, callee_saved_value); ++ set_register(s8, callee_saved_value); ++ set_register(gp, callee_saved_value); ++ set_register(tp, callee_saved_value); ++ set_register(fp, callee_saved_value); ++ ++ // Start the simulation. ++ Execute(); ++ ++ // Check that the callee-saved registers have been preserved. ++ CHECK_EQ(callee_saved_value, get_register(s0)); ++ CHECK_EQ(callee_saved_value, get_register(s1)); ++ CHECK_EQ(callee_saved_value, get_register(s2)); ++ CHECK_EQ(callee_saved_value, get_register(s3)); ++ CHECK_EQ(callee_saved_value, get_register(s4)); ++ CHECK_EQ(callee_saved_value, get_register(s5)); ++ CHECK_EQ(callee_saved_value, get_register(s6)); ++ CHECK_EQ(callee_saved_value, get_register(s7)); ++ CHECK_EQ(callee_saved_value, get_register(s8)); ++ CHECK_EQ(callee_saved_value, get_register(gp)); ++ CHECK_EQ(callee_saved_value, get_register(tp)); ++ CHECK_EQ(callee_saved_value, get_register(fp)); ++ ++ // Restore callee-saved registers with the original value. ++ set_register(s0, s0_val); ++ set_register(s1, s1_val); ++ set_register(s2, s2_val); ++ set_register(s3, s3_val); ++ set_register(s4, s4_val); ++ set_register(s5, s5_val); ++ set_register(s6, s6_val); ++ set_register(s7, s7_val); ++ set_register(s8, s8_val); ++ set_register(gp, gp_val); ++ set_register(sp, sp_val); ++ set_register(tp, tp_val); ++ set_register(fp, fp_val); ++} ++ ++intptr_t Simulator::CallImpl(Address entry, int argument_count, ++ const intptr_t* arguments) { ++ constexpr int kRegisterPassedArguments = 8; ++ // Set up arguments. ++ ++ int reg_arg_count = std::min(kRegisterPassedArguments, argument_count); ++ if (reg_arg_count > 0) set_register(a0, arguments[0]); ++ if (reg_arg_count > 1) set_register(a1, arguments[1]); ++ if (reg_arg_count > 2) set_register(a2, arguments[2]); ++ if (reg_arg_count > 3) set_register(a3, arguments[3]); ++ if (reg_arg_count > 4) set_register(a4, arguments[4]); ++ if (reg_arg_count > 5) set_register(a5, arguments[5]); ++ if (reg_arg_count > 6) set_register(a6, arguments[6]); ++ if (reg_arg_count > 7) set_register(a7, arguments[7]); ++ ++ // Remaining arguments passed on stack. ++ int64_t original_stack = get_register(sp); ++ // Compute position of stack on entry to generated code. ++ int stack_args_count = argument_count - reg_arg_count; ++ int stack_args_size = stack_args_count * sizeof(*arguments) + kCArgsSlotsSize; ++ int64_t entry_stack = original_stack - stack_args_size; ++ ++ if (base::OS::ActivationFrameAlignment() != 0) { ++ entry_stack &= -base::OS::ActivationFrameAlignment(); ++ } ++ // Store remaining arguments on stack, from low to high memory. ++ intptr_t* stack_argument = reinterpret_cast(entry_stack); ++ memcpy(stack_argument + kCArgSlotCount, arguments + reg_arg_count, ++ stack_args_count * sizeof(*arguments)); ++ set_register(sp, entry_stack); ++ ++ CallInternal(entry); ++ ++ // Pop stack passed arguments. ++ CHECK_EQ(entry_stack, get_register(sp)); ++ set_register(sp, original_stack); ++ ++ return get_register(v0); ++} ++ ++double Simulator::CallFP(Address entry, double d0, double d1) { ++ const FPURegister fparg2 = f1; ++ set_fpu_register_double(f0, d0); ++ set_fpu_register_double(fparg2, d1); ++ CallInternal(entry); ++ return get_fpu_register_double(f0); ++} ++ ++uintptr_t Simulator::PushAddress(uintptr_t address) { ++ int64_t new_sp = get_register(sp) - sizeof(uintptr_t); ++ uintptr_t* stack_slot = reinterpret_cast(new_sp); ++ *stack_slot = address; ++ set_register(sp, new_sp); ++ return new_sp; ++} ++ ++uintptr_t Simulator::PopAddress() { ++ int64_t current_sp = get_register(sp); ++ uintptr_t* stack_slot = reinterpret_cast(current_sp); ++ uintptr_t address = *stack_slot; ++ set_register(sp, current_sp + sizeof(uintptr_t)); ++ return address; ++} ++ ++#undef UNSUPPORTED ++} // namespace internal ++} // namespace v8 ++ ++#endif // USE_SIMULATOR ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/loong64/simulator-loong64.h b/deps/v8/src/loong64/simulator-loong64.h +new file mode 100644 +index 0000000..36f7513 +--- /dev/null ++++ b/deps/v8/src/loong64/simulator-loong64.h +@@ -0,0 +1,552 @@ ++// Copyright 2020 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++// Declares a Simulator for loongisa instructions if we are not generating a ++// native loongisa binary. This Simulator allows us to run and debug loongisa ++// code generation on regular desktop machines. V8 calls into generated code via ++// the GeneratedCode wrapper, which will start execution in the Simulator or ++// forwards to the real entry on a loongisa HW platform. ++ ++#ifndef V8_LOONG64_SIMULATOR_LOONG64_H_ ++#define V8_LOONG64_SIMULATOR_LOONG64_H_ ++ ++#include "src/allocation.h" ++#include "src/loong64/constants-loong64.h" ++ ++template ++int Compare(const T& a, const T& b) { ++ if (a == b) ++ return 0; ++ else if (a < b) ++ return -1; ++ else ++ return 1; ++} ++ ++// Returns the negative absolute value of its argument. ++template ::value>::type> ++T Nabs(T a) { ++ return a < 0 ? a : -a; ++} ++ ++#if defined(USE_SIMULATOR) ++// Running with a simulator. ++ ++#include "src/assembler.h" ++#include "src/base/hashmap.h" ++#include "src/simulator-base.h" ++ ++namespace v8 { ++namespace internal { ++ ++// ----------------------------------------------------------------------------- ++// Utility functions ++ ++class CachePage { ++ public: ++ static const int LINE_VALID = 0; ++ static const int LINE_INVALID = 1; ++ ++ static const int kPageShift = 12; ++ static const int kPageSize = 1 << kPageShift; ++ static const int kPageMask = kPageSize - 1; ++ static const int kLineShift = 2; // The cache line is only 4 bytes right now. ++ static const int kLineLength = 1 << kLineShift; ++ static const int kLineMask = kLineLength - 1; ++ ++ CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } ++ ++ char* ValidityByte(int offset) { ++ return &validity_map_[offset >> kLineShift]; ++ } ++ ++ char* CachedData(int offset) { return &data_[offset]; } ++ ++ private: ++ char data_[kPageSize]; // The cached data. ++ static const int kValidityMapSize = kPageSize >> kLineShift; ++ char validity_map_[kValidityMapSize]; // One byte per line. ++}; ++ ++class SimInstructionBase : public InstructionBase { ++ public: ++ Type InstructionType() const { return type_; } ++ inline Instruction* instr() const { return instr_; } ++ inline int32_t operand() const { return operand_; } ++ ++ protected: ++ SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {} ++ explicit SimInstructionBase(Instruction* instr) {} ++ ++ int32_t operand_; ++ Instruction* instr_; ++ Type type_; ++ ++ private: ++ DISALLOW_ASSIGN(SimInstructionBase); ++}; ++ ++class SimInstruction : public InstructionGetters { ++ public: ++ SimInstruction() {} ++ ++ explicit SimInstruction(Instruction* instr) { *this = instr; } ++ ++ SimInstruction& operator=(Instruction* instr) { ++ operand_ = *reinterpret_cast(instr); ++ instr_ = instr; ++ type_ = InstructionBase::InstructionType(); ++ DCHECK(reinterpret_cast(&operand_) == this); ++ return *this; ++ } ++}; ++ ++class Simulator : public SimulatorBase { ++ public: ++ friend class Loong64Debugger; ++ ++ // Registers are declared in order. ++ enum Register { ++ no_reg = -1, ++ zero_reg = 0, ++ ra, ++ gp, ++ sp, ++ a0, ++ a1, ++ a2, ++ a3, ++ a4, ++ a5, ++ a6, ++ a7, ++ t0, ++ t1, ++ t2, ++ t3, ++ t4, ++ t5, ++ t6, ++ t7, ++ t8, ++ tp, ++ fp, ++ s0, ++ s1, ++ s2, ++ s3, ++ s4, ++ s5, ++ s6, ++ s7, ++ s8, ++ pc, // pc must be the last register. ++ kNumSimuRegisters, ++ // aliases ++ v0 = a0, ++ v1 = a1 ++ }; ++ ++ // Condition flag registers. ++ enum CFRegister { ++ fcc0, ++ fcc1, ++ fcc2, ++ fcc3, ++ fcc4, ++ fcc5, ++ fcc6, ++ fcc7, ++ kNumCFRegisters ++ }; ++ ++ // Floating point registers. ++ enum FPURegister { ++ f0, ++ f1, ++ f2, ++ f3, ++ f4, ++ f5, ++ f6, ++ f7, ++ f8, ++ f9, ++ f10, ++ f11, ++ f12, ++ f13, ++ f14, ++ f15, ++ f16, ++ f17, ++ f18, ++ f19, ++ f20, ++ f21, ++ f22, ++ f23, ++ f24, ++ f25, ++ f26, ++ f27, ++ f28, ++ f29, ++ f30, ++ f31, ++ kNumFPURegisters ++ }; ++ ++ explicit Simulator(Isolate* isolate); ++ ~Simulator(); ++ ++ // The currently executing Simulator instance. Potentially there can be one ++ // for each native thread. ++ V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); ++ ++ // Accessors for register state. Reading the pc value adheres to the LOONG64 ++ // architecture specification and is off by a 8 from the currently executing ++ // instruction. ++ void set_register(int reg, int64_t value); ++ void set_register_word(int reg, int32_t value); ++ void set_dw_register(int dreg, const int* dbl); ++ int64_t get_register(int reg) const; ++ double get_double_from_register_pair(int reg); ++ // Same for FPURegisters. ++ void set_fpu_register(int fpureg, int64_t value); ++ void set_fpu_register_word(int fpureg, int32_t value); ++ void set_fpu_register_hi_word(int fpureg, int32_t value); ++ void set_fpu_register_float(int fpureg, float value); ++ void set_fpu_register_double(int fpureg, double value); ++ void set_fpu_register_invalid_result64(float original, float rounded); ++ void set_fpu_register_invalid_result(float original, float rounded); ++ void set_fpu_register_word_invalid_result(float original, float rounded); ++ void set_fpu_register_invalid_result64(double original, double rounded); ++ void set_fpu_register_invalid_result(double original, double rounded); ++ void set_fpu_register_word_invalid_result(double original, double rounded); ++ int64_t get_fpu_register(int fpureg) const; ++ int32_t get_fpu_register_word(int fpureg) const; ++ int32_t get_fpu_register_signed_word(int fpureg) const; ++ int32_t get_fpu_register_hi_word(int fpureg) const; ++ float get_fpu_register_float(int fpureg) const; ++ double get_fpu_register_double(int fpureg) const; ++ void set_cf_register(int cfreg, bool value); ++ bool get_cf_register(int cfreg) const; ++ void set_fcsr_rounding_mode(FPURoundingMode mode); ++ unsigned int get_fcsr_rounding_mode(); ++ void set_fcsr_bit(uint32_t cc, bool value); ++ bool test_fcsr_bit(uint32_t cc); ++ bool set_fcsr_round_error(double original, double rounded); ++ bool set_fcsr_round64_error(double original, double rounded); ++ bool set_fcsr_round_error(float original, float rounded); ++ bool set_fcsr_round64_error(float original, float rounded); ++ void round_according_to_fcsr(double toRound, double* rounded, ++ int32_t* rounded_int); ++ void round64_according_to_fcsr(double toRound, double* rounded, ++ int64_t* rounded_int); ++ void round_according_to_fcsr(float toRound, float* rounded, ++ int32_t* rounded_int); ++ void round64_according_to_fcsr(float toRound, float* rounded, ++ int64_t* rounded_int); ++ // Special case of set_register and get_register to access the raw PC value. ++ void set_pc(int64_t value); ++ int64_t get_pc() const; ++ ++ Address get_sp() const { return static_cast
(get_register(sp)); } ++ ++ // Accessor to the internal simulator stack area. ++ uintptr_t StackLimit(uintptr_t c_limit) const; ++ ++ // Executes LOONG64 instructions until the PC reaches end_sim_pc. ++ void Execute(); ++ ++ template ++ Return Call(Address entry, Args... args) { ++ return VariadicCall(this, &Simulator::CallImpl, entry, args...); ++ } ++ ++ // Alternative: call a 2-argument double function. ++ double CallFP(Address entry, double d0, double d1); ++ ++ // Push an address onto the JS stack. ++ uintptr_t PushAddress(uintptr_t address); ++ ++ // Pop an address from the JS stack. ++ uintptr_t PopAddress(); ++ ++ // Debugger input. ++ void set_last_debugger_input(char* input); ++ char* last_debugger_input() { return last_debugger_input_; } ++ ++ // Redirection support. ++ static void SetRedirectInstruction(Instruction* instruction); ++ ++ // ICache checking. ++ static bool ICacheMatch(void* one, void* two); ++ static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, ++ size_t size); ++ ++ // Returns true if pc register contains one of the 'special_values' defined ++ // below (bad_ra, end_sim_pc). ++ bool has_bad_pc() const; ++ ++ private: ++ enum special_values { ++ // Known bad pc value to ensure that the simulator does not execute ++ // without being properly setup. ++ bad_ra = -1, ++ // A pc value used to signal the simulator to stop execution. Generally ++ // the ra is set to this value on transition from native C code to ++ // simulated execution, so that the simulator can "return" to the native ++ // C code. ++ end_sim_pc = -2, ++ // Unpredictable value. ++ Unpredictable = 0xbadbeaf ++ }; ++ ++ V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, ++ const intptr_t* arguments); ++ ++ // Unsupported instructions use Format to print an error and stop execution. ++ void Format(Instruction* instr, const char* format); ++ ++ // Helpers for data value tracing. ++ enum TraceType { ++ BYTE, ++ HALF, ++ WORD, ++ DWORD, ++ FLOAT, ++ DOUBLE, ++ FLOAT_DOUBLE, ++ WORD_DWORD ++ }; ++ ++ // Read and write memory. ++ inline uint32_t ReadBU(int64_t addr); ++ inline int32_t ReadB(int64_t addr); ++ inline void WriteB(int64_t addr, uint8_t value); ++ inline void WriteB(int64_t addr, int8_t value); ++ ++ inline uint16_t ReadHU(int64_t addr, Instruction* instr); ++ inline int16_t ReadH(int64_t addr, Instruction* instr); ++ // Note: Overloaded on the sign of the value. ++ inline void WriteH(int64_t addr, uint16_t value, Instruction* instr); ++ inline void WriteH(int64_t addr, int16_t value, Instruction* instr); ++ ++ inline uint32_t ReadWU(int64_t addr, Instruction* instr); ++ inline int32_t ReadW(int64_t addr, Instruction* instr, TraceType t = WORD); ++ inline void WriteW(int64_t addr, int32_t value, Instruction* instr); ++ void WriteConditionalW(int64_t addr, int32_t value, Instruction* instr, ++ int32_t rt_reg); ++ inline int64_t Read2W(int64_t addr, Instruction* instr); ++ inline void Write2W(int64_t addr, int64_t value, Instruction* instr); ++ inline void WriteConditional2W(int64_t addr, int64_t value, ++ Instruction* instr, int32_t rt_reg); ++ ++ inline double ReadD(int64_t addr, Instruction* instr); ++ inline void WriteD(int64_t addr, double value, Instruction* instr); ++ ++ template ++ T ReadMem(int64_t addr, Instruction* instr); ++ template ++ void WriteMem(int64_t addr, T value, Instruction* instr); ++ ++ // Helper for debugging memory access. ++ inline void DieOrDebug(); ++ ++ void TraceRegWr(int64_t value, TraceType t = DWORD); ++ void TraceMemWr(int64_t addr, int64_t value, TraceType t); ++ void TraceMemRd(int64_t addr, int64_t value, TraceType t = DWORD); ++ template ++ void TraceMemRd(int64_t addr, T value); ++ template ++ void TraceMemWr(int64_t addr, T value); ++ ++ SimInstruction instr_; ++ ++ // Executing is handled based on the instruction type. ++ void DecodeTypeOp6(); ++ void DecodeTypeOp7(); ++ void DecodeTypeOp8(); ++ void DecodeTypeOp10(); ++ void DecodeTypeOp12(); ++ void DecodeTypeOp14(); ++ void DecodeTypeOp17(); ++ void DecodeTypeOp22(); ++ ++ inline int32_t rj_reg() const { return instr_.RjValue(); } ++ inline int64_t rj() const { return get_register(rj_reg()); } ++ inline uint64_t rj_u() const { ++ return static_cast(get_register(rj_reg())); ++ } ++ inline int32_t rk_reg() const { return instr_.RkValue(); } ++ inline int64_t rk() const { return get_register(rk_reg()); } ++ inline uint64_t rk_u() const { ++ return static_cast(get_register(rk_reg())); ++ } ++ inline int32_t rd_reg() const { return instr_.RdValue(); } ++ inline int64_t rd() const { return get_register(rd_reg()); } ++ inline uint64_t rd_u() const { ++ return static_cast(get_register(rd_reg())); ++ } ++ inline int32_t fa_reg() const { return instr_.FaValue(); } ++ inline float fa_float() const { return get_fpu_register_float(fa_reg()); } ++ inline double fa_double() const { return get_fpu_register_double(fa_reg()); } ++ inline int32_t fj_reg() const { return instr_.FjValue(); } ++ inline float fj_float() const { return get_fpu_register_float(fj_reg()); } ++ inline double fj_double() const { return get_fpu_register_double(fj_reg()); } ++ inline int32_t fk_reg() const { return instr_.FkValue(); } ++ inline float fk_float() const { return get_fpu_register_float(fk_reg()); } ++ inline double fk_double() const { return get_fpu_register_double(fk_reg()); } ++ inline int32_t fd_reg() const { return instr_.FdValue(); } ++ inline float fd_float() const { return get_fpu_register_float(fd_reg()); } ++ inline double fd_double() const { return get_fpu_register_double(fd_reg()); } ++ inline int32_t cj_reg() const { return instr_.CjValue(); } ++ inline bool cj() const { return get_cf_register(cj_reg()); } ++ inline int32_t cd_reg() const { return instr_.CdValue(); } ++ inline bool cd() const { return get_cf_register(cd_reg()); } ++ inline int32_t ca_reg() const { return instr_.CaValue(); } ++ inline bool ca() const { return get_cf_register(ca_reg()); } ++ inline uint32_t sa2() const { return instr_.Sa2Value(); } ++ inline uint32_t sa3() const { return instr_.Sa3Value(); } ++ inline uint32_t ui5() const { return instr_.Ui5Value(); } ++ inline uint32_t ui6() const { return instr_.Ui6Value(); } ++ inline uint32_t lsbw() const { return instr_.LsbwValue(); } ++ inline uint32_t msbw() const { return instr_.MsbwValue(); } ++ inline uint32_t lsbd() const { return instr_.LsbdValue(); } ++ inline uint32_t msbd() const { return instr_.MsbdValue(); } ++ inline uint32_t cond() const { return instr_.CondValue(); } ++ inline int32_t si12() const { return (instr_.Si12Value() << 20) >> 20; } ++ inline uint32_t ui12() const { return instr_.Ui12Value(); } ++ inline int32_t si14() const { return (instr_.Si14Value() << 18) >> 18; } ++ inline int32_t si16() const { return (instr_.Si16Value() << 16) >> 16; } ++ inline int32_t si20() const { return (instr_.Si20Value() << 12) >> 12; } ++ ++ inline void SetResult(const int32_t rd_reg, const int64_t alu_out) { ++ set_register(rd_reg, alu_out); ++ TraceRegWr(alu_out); ++ } ++ ++ inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) { ++ set_fpu_register_word(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), WORD); ++ } ++ ++ inline void SetFPUWordResult2(int32_t fd_reg, int32_t alu_out) { ++ set_fpu_register_word(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg)); ++ } ++ ++ inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) { ++ set_fpu_register(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg)); ++ } ++ ++ inline void SetFPUResult2(int32_t fd_reg, int64_t alu_out) { ++ set_fpu_register(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), DOUBLE); ++ } ++ ++ inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) { ++ set_fpu_register_float(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), FLOAT); ++ } ++ ++ inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) { ++ set_fpu_register_double(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), DOUBLE); ++ } ++ ++ // Used for breakpoints. ++ void SoftwareInterrupt(); ++ ++ // Stop helper functions. ++ bool IsWatchpoint(uint64_t code); ++ void PrintWatchpoint(uint64_t code); ++ void HandleStop(uint64_t code, Instruction* instr); ++ bool IsStopInstruction(Instruction* instr); ++ bool IsEnabledStop(uint64_t code); ++ void EnableStop(uint64_t code); ++ void DisableStop(uint64_t code); ++ void IncreaseStopCounter(uint64_t code); ++ void PrintStopInfo(uint64_t code); ++ ++ // Executes one instruction. ++ void InstructionDecode(Instruction* instr); ++ // Execute one instruction placed in a branch delay slot. ++ ++ // ICache. ++ static void CheckICache(base::CustomMatcherHashMap* i_cache, ++ Instruction* instr); ++ static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, ++ size_t size); ++ static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, ++ void* page); ++ ++ enum Exception { ++ none, ++ kIntegerOverflow, ++ kIntegerUnderflow, ++ kDivideByZero, ++ kNumExceptions ++ }; ++ ++ // Exceptions. ++ void SignalException(Exception e); ++ ++ // Handle arguments and return value for runtime FP functions. ++ void GetFpArgs(double* x, double* y, int32_t* z); ++ void SetFpResult(const double& result); ++ ++ void CallInternal(Address entry); ++ ++ // Architecture state. ++ // Registers. ++ int64_t registers_[kNumSimuRegisters]; ++ // Floating point Registers. ++ int64_t FPUregisters_[kNumFPURegisters]; ++ // Condition flags Registers. ++ bool CFregisters_[kNumCFRegisters]; ++ // FPU control register. ++ uint32_t FCSR_; ++ ++ // Simulator support. ++ // Allocate 1MB for stack. ++ size_t stack_size_; ++ char* stack_; ++ bool pc_modified_; ++ int64_t icount_; ++ int break_count_; ++ EmbeddedVector trace_buf_; ++ ++ // Debugger input. ++ char* last_debugger_input_; ++ ++ v8::internal::Isolate* isolate_; ++ ++ // Registered breakpoints. ++ Instruction* break_pc_; ++ Instr break_instr_; ++ ++ // Stop is disabled if bit 31 is set. ++ static const uint32_t kStopDisabledBit = 1 << 31; ++ ++ // A stop is enabled, meaning the simulator will stop when meeting the ++ // instruction, if bit 31 of watched_stops_[code].count is unset. ++ // The value watched_stops_[code].count & ~(1 << 31) indicates how many times ++ // the breakpoint was hit or gone through. ++ struct StopCountAndDesc { ++ uint32_t count; ++ char* desc; ++ }; ++ StopCountAndDesc watched_stops_[kMaxStopCode + 1]; ++}; ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // defined(USE_SIMULATOR) ++#endif // V8_LOONG64_SIMULATOR_LOONG64_H_ +diff --git a/deps/v8/src/loong64/simulator-mips64.cc b/deps/v8/src/loong64/simulator-mips64.cc +new file mode 100644 +index 0000000..6e4a2eb +--- /dev/null ++++ b/deps/v8/src/loong64/simulator-mips64.cc +@@ -0,0 +1,7489 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#include ++#include ++#include ++#include ++ ++#if V8_TARGET_ARCH_MIPS64 ++ ++#include "src/assembler-inl.h" ++#include "src/base/bits.h" ++#include "src/codegen.h" ++#include "src/disasm.h" ++#include "src/macro-assembler.h" ++#include "src/mips64/constants-mips64.h" ++#include "src/mips64/simulator-mips64.h" ++#include "src/ostreams.h" ++#include "src/runtime/runtime-utils.h" ++ ++// Only build the simulator if not compiling for real MIPS hardware. ++#if defined(USE_SIMULATOR) ++ ++namespace v8 { ++namespace internal { ++ ++// Util functions. ++inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); } ++ ++uint32_t get_fcsr_condition_bit(uint32_t cc) { ++ if (cc == 0) { ++ return 23; ++ } else { ++ return 24 + cc; ++ } ++} ++ ++ ++static int64_t MultiplyHighSigned(int64_t u, int64_t v) { ++ uint64_t u0, v0, w0; ++ int64_t u1, v1, w1, w2, t; ++ ++ u0 = u & 0xFFFFFFFFL; ++ u1 = u >> 32; ++ v0 = v & 0xFFFFFFFFL; ++ v1 = v >> 32; ++ ++ w0 = u0 * v0; ++ t = u1 * v0 + (w0 >> 32); ++ w1 = t & 0xFFFFFFFFL; ++ w2 = t >> 32; ++ w1 = u0 * v1 + w1; ++ ++ return u1 * v1 + w2 + (w1 >> 32); ++} ++ ++ ++// This macro provides a platform independent use of sscanf. The reason for ++// SScanF not being implemented in a platform independent was through ++// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time ++// Library does not provide vsscanf. ++#define SScanF sscanf // NOLINT ++ ++// The MipsDebugger class is used by the simulator while debugging simulated ++// code. ++class MipsDebugger { ++ public: ++ explicit MipsDebugger(Simulator* sim) : sim_(sim) { } ++ ++ void Stop(Instruction* instr); ++ void Debug(); ++ // Print all registers with a nice formatting. ++ void PrintAllRegs(); ++ void PrintAllRegsIncludingFPU(); ++ ++ private: ++ // We set the breakpoint code to 0xFFFFF to easily recognize it. ++ static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xFFFFF << 6; ++ static const Instr kNopInstr = 0x0; ++ ++ Simulator* sim_; ++ ++ int64_t GetRegisterValue(int regnum); ++ int64_t GetFPURegisterValue(int regnum); ++ float GetFPURegisterValueFloat(int regnum); ++ double GetFPURegisterValueDouble(int regnum); ++ bool GetValue(const char* desc, int64_t* value); ++ ++ // Set or delete a breakpoint. Returns true if successful. ++ bool SetBreakpoint(Instruction* breakpc); ++ bool DeleteBreakpoint(Instruction* breakpc); ++ ++ // Undo and redo all breakpoints. This is needed to bracket disassembly and ++ // execution to skip past breakpoints when run from the debugger. ++ void UndoBreakpoints(); ++ void RedoBreakpoints(); ++}; ++ ++inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); } ++ ++void MipsDebugger::Stop(Instruction* instr) { ++ // Get the stop code. ++ uint32_t code = instr->Bits(25, 6); ++ PrintF("Simulator hit (%u)\n", code); ++ Debug(); ++} ++ ++int64_t MipsDebugger::GetRegisterValue(int regnum) { ++ if (regnum == kNumSimuRegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_register(regnum); ++ } ++} ++ ++ ++int64_t MipsDebugger::GetFPURegisterValue(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register(regnum); ++ } ++} ++ ++ ++float MipsDebugger::GetFPURegisterValueFloat(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register_float(regnum); ++ } ++} ++ ++ ++double MipsDebugger::GetFPURegisterValueDouble(int regnum) { ++ if (regnum == kNumFPURegisters) { ++ return sim_->get_pc(); ++ } else { ++ return sim_->get_fpu_register_double(regnum); ++ } ++} ++ ++ ++bool MipsDebugger::GetValue(const char* desc, int64_t* value) { ++ int regnum = Registers::Number(desc); ++ int fpuregnum = FPURegisters::Number(desc); ++ ++ if (regnum != kInvalidRegister) { ++ *value = GetRegisterValue(regnum); ++ return true; ++ } else if (fpuregnum != kInvalidFPURegister) { ++ *value = GetFPURegisterValue(fpuregnum); ++ return true; ++ } else if (strncmp(desc, "0x", 2) == 0) { ++ return SScanF(desc + 2, "%" SCNx64, ++ reinterpret_cast(value)) == 1; ++ } else { ++ return SScanF(desc, "%" SCNu64, reinterpret_cast(value)) == 1; ++ } ++ return false; ++} ++ ++ ++bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { ++ // Check if a breakpoint can be set. If not return without any side-effects. ++ if (sim_->break_pc_ != nullptr) { ++ return false; ++ } ++ ++ // Set the breakpoint. ++ sim_->break_pc_ = breakpc; ++ sim_->break_instr_ = breakpc->InstructionBits(); ++ // Not setting the breakpoint instruction in the code itself. It will be set ++ // when the debugger shell continues. ++ return true; ++} ++ ++ ++bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); ++ } ++ ++ sim_->break_pc_ = nullptr; ++ sim_->break_instr_ = 0; ++ return true; ++} ++ ++ ++void MipsDebugger::UndoBreakpoints() { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); ++ } ++} ++ ++ ++void MipsDebugger::RedoBreakpoints() { ++ if (sim_->break_pc_ != nullptr) { ++ sim_->break_pc_->SetInstructionBits(kBreakpointInstr); ++ } ++} ++ ++ ++void MipsDebugger::PrintAllRegs() { ++#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) ++ ++ PrintF("\n"); ++ // at, v0, a0. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64 ++ "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n", ++ REG_INFO(1), REG_INFO(2), REG_INFO(4)); ++ // v1, a1. ++ PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ "", REG_INFO(3), REG_INFO(5)); ++ // a2. ++ PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", ++ REG_INFO(6)); ++ // a3. ++ PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", ++ REG_INFO(7)); ++ PrintF("\n"); ++ // a4-t3, s0-s7 ++ for (int i = 0; i < 8; i++) { ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ REG_INFO(8 + i), REG_INFO(16 + i)); ++ } ++ PrintF("\n"); ++ // t8, k0, LO. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(24), REG_INFO(26), REG_INFO(32)); ++ // t9, k1, HI. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(25), REG_INFO(27), REG_INFO(33)); ++ // sp, fp, gp. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", ++ REG_INFO(29), REG_INFO(30), REG_INFO(28)); ++ // pc. ++ PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 ++ " %14" PRId64 " \n", ++ REG_INFO(31), REG_INFO(34)); ++ ++#undef REG_INFO ++#undef FPU_REG_INFO ++} ++ ++ ++void MipsDebugger::PrintAllRegsIncludingFPU() { ++#define FPU_REG_INFO(n) FPURegisters::Name(n), \ ++ GetFPURegisterValue(n), \ ++ GetFPURegisterValueDouble(n) ++ ++ PrintAllRegs(); ++ ++ PrintF("\n\n"); ++ // f0, f1, f2, ... f31. ++ // TODO(plind): consider printing 2 columns for space efficiency. ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30)); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31)); ++ ++#undef REG_INFO ++#undef FPU_REG_INFO ++} ++ ++ ++void MipsDebugger::Debug() { ++ intptr_t last_pc = -1; ++ bool done = false; ++ ++#define COMMAND_SIZE 63 ++#define ARG_SIZE 255 ++ ++#define STR(a) #a ++#define XSTR(a) STR(a) ++ ++ char cmd[COMMAND_SIZE + 1]; ++ char arg1[ARG_SIZE + 1]; ++ char arg2[ARG_SIZE + 1]; ++ char* argv[3] = { cmd, arg1, arg2 }; ++ ++ // Make sure to have a proper terminating character if reaching the limit. ++ cmd[COMMAND_SIZE] = 0; ++ arg1[ARG_SIZE] = 0; ++ arg2[ARG_SIZE] = 0; ++ ++ // Undo all set breakpoints while running in the debugger shell. This will ++ // make them invisible to all commands. ++ UndoBreakpoints(); ++ ++ while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { ++ if (last_pc != sim_->get_pc()) { ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ dasm.InstructionDecode(buffer, ++ reinterpret_cast(sim_->get_pc())); ++ PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start()); ++ last_pc = sim_->get_pc(); ++ } ++ char* line = ReadLine("sim> "); ++ if (line == nullptr) { ++ break; ++ } else { ++ char* last_input = sim_->last_debugger_input(); ++ if (strcmp(line, "\n") == 0 && last_input != nullptr) { ++ line = last_input; ++ } else { ++ // Ownership is transferred to sim_; ++ sim_->set_last_debugger_input(line); ++ } ++ // Use sscanf to parse the individual parts of the command line. At the ++ // moment no command expects more than two parameters. ++ int argc = SScanF(line, ++ "%" XSTR(COMMAND_SIZE) "s " ++ "%" XSTR(ARG_SIZE) "s " ++ "%" XSTR(ARG_SIZE) "s", ++ cmd, arg1, arg2); ++ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { ++ Instruction* instr = reinterpret_cast(sim_->get_pc()); ++ if (!(instr->IsTrap()) || ++ instr->InstructionBits() == rtCallRedirInstr) { ++ sim_->InstructionDecode( ++ reinterpret_cast(sim_->get_pc())); ++ } else { ++ // Allow si to jump over generated breakpoints. ++ PrintF("/!\\ Jumping over generated breakpoint.\n"); ++ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); ++ } ++ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { ++ // Execute the one instruction we broke at with breakpoints disabled. ++ sim_->InstructionDecode(reinterpret_cast(sim_->get_pc())); ++ // Leave the debugger shell. ++ done = true; ++ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { ++ if (argc == 2) { ++ int64_t value; ++ double dvalue; ++ if (strcmp(arg1, "all") == 0) { ++ PrintAllRegs(); ++ } else if (strcmp(arg1, "allf") == 0) { ++ PrintAllRegsIncludingFPU(); ++ } else { ++ int regnum = Registers::Number(arg1); ++ int fpuregnum = FPURegisters::Number(arg1); ++ ++ if (regnum != kInvalidRegister) { ++ value = GetRegisterValue(regnum); ++ PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value, ++ value); ++ } else if (fpuregnum != kInvalidFPURegister) { ++ value = GetFPURegisterValue(fpuregnum); ++ dvalue = GetFPURegisterValueDouble(fpuregnum); ++ PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", ++ FPURegisters::Name(fpuregnum), value, dvalue); ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } ++ } else { ++ if (argc == 3) { ++ if (strcmp(arg2, "single") == 0) { ++ int64_t value; ++ float fvalue; ++ int fpuregnum = FPURegisters::Number(arg1); ++ ++ if (fpuregnum != kInvalidFPURegister) { ++ value = GetFPURegisterValue(fpuregnum); ++ value &= 0xFFFFFFFFUL; ++ fvalue = GetFPURegisterValueFloat(fpuregnum); ++ PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue); ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } else { ++ PrintF("print single\n"); ++ } ++ } else { ++ PrintF("print or print single\n"); ++ } ++ } ++ } else if ((strcmp(cmd, "po") == 0) ++ || (strcmp(cmd, "printobject") == 0)) { ++ if (argc == 2) { ++ int64_t value; ++ OFStream os(stdout); ++ if (GetValue(arg1, &value)) { ++ Object* obj = reinterpret_cast(value); ++ os << arg1 << ": \n"; ++#ifdef DEBUG ++ obj->Print(os); ++ os << "\n"; ++#else ++ os << Brief(obj) << "\n"; ++#endif ++ } else { ++ os << arg1 << " unrecognized\n"; ++ } ++ } else { ++ PrintF("printobject \n"); ++ } ++ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { ++ int64_t* cur = nullptr; ++ int64_t* end = nullptr; ++ int next_arg = 1; ++ ++ if (strcmp(cmd, "stack") == 0) { ++ cur = reinterpret_cast(sim_->get_register(Simulator::sp)); ++ } else { // Command "mem". ++ int64_t value; ++ if (!GetValue(arg1, &value)) { ++ PrintF("%s unrecognized\n", arg1); ++ continue; ++ } ++ cur = reinterpret_cast(value); ++ next_arg++; ++ } ++ ++ int64_t words; ++ if (argc == next_arg) { ++ words = 10; ++ } else { ++ if (!GetValue(argv[next_arg], &words)) { ++ words = 10; ++ } ++ } ++ end = cur + words; ++ ++ while (cur < end) { ++ PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ", ++ reinterpret_cast(cur), *cur, *cur); ++ HeapObject* obj = reinterpret_cast(*cur); ++ int64_t value = *cur; ++ Heap* current_heap = sim_->isolate_->heap(); ++ if (((value & 1) == 0) || ++ current_heap->ContainsSlow(obj->address())) { ++ PrintF(" ("); ++ if ((value & 1) == 0) { ++ PrintF("smi %d", static_cast(value >> 32)); ++ } else { ++ obj->ShortPrint(); ++ } ++ PrintF(")"); ++ } ++ PrintF("\n"); ++ cur++; ++ } ++ ++ } else if ((strcmp(cmd, "disasm") == 0) || ++ (strcmp(cmd, "dpc") == 0) || ++ (strcmp(cmd, "di") == 0)) { ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ ++ byte* cur = nullptr; ++ byte* end = nullptr; ++ ++ if (argc == 1) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ end = cur + (10 * Instruction::kInstrSize); ++ } else if (argc == 2) { ++ int regnum = Registers::Number(arg1); ++ if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { ++ // The argument is an address or a register name. ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(value); ++ // Disassemble 10 instructions at . ++ end = cur + (10 * Instruction::kInstrSize); ++ } ++ } else { ++ // The argument is the number of instructions. ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ // Disassemble instructions. ++ end = cur + (value * Instruction::kInstrSize); ++ } ++ } ++ } else { ++ int64_t value1; ++ int64_t value2; ++ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { ++ cur = reinterpret_cast(value1); ++ end = cur + (value2 * Instruction::kInstrSize); ++ } ++ } ++ ++ while (cur < end) { ++ dasm.InstructionDecode(buffer, cur); ++ PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast(cur), ++ buffer.start()); ++ cur += Instruction::kInstrSize; ++ } ++ } else if (strcmp(cmd, "gdb") == 0) { ++ PrintF("relinquishing control to gdb\n"); ++ v8::base::OS::DebugBreak(); ++ PrintF("regaining control from gdb\n"); ++ } else if (strcmp(cmd, "break") == 0) { ++ if (argc == 2) { ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ if (!SetBreakpoint(reinterpret_cast(value))) { ++ PrintF("setting breakpoint failed\n"); ++ } ++ } else { ++ PrintF("%s unrecognized\n", arg1); ++ } ++ } else { ++ PrintF("break
\n"); ++ } ++ } else if (strcmp(cmd, "del") == 0) { ++ if (!DeleteBreakpoint(nullptr)) { ++ PrintF("deleting breakpoint failed\n"); ++ } ++ } else if (strcmp(cmd, "flags") == 0) { ++ PrintF("No flags on MIPS !\n"); ++ } else if (strcmp(cmd, "stop") == 0) { ++ int64_t value; ++ intptr_t stop_pc = sim_->get_pc() - ++ 2 * Instruction::kInstrSize; ++ Instruction* stop_instr = reinterpret_cast(stop_pc); ++ Instruction* msg_address = ++ reinterpret_cast(stop_pc + ++ Instruction::kInstrSize); ++ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { ++ // Remove the current stop. ++ if (sim_->IsStopInstruction(stop_instr)) { ++ stop_instr->SetInstructionBits(kNopInstr); ++ msg_address->SetInstructionBits(kNopInstr); ++ } else { ++ PrintF("Not at debugger stop.\n"); ++ } ++ } else if (argc == 3) { ++ // Print information about all/the specified breakpoint(s). ++ if (strcmp(arg1, "info") == 0) { ++ if (strcmp(arg2, "all") == 0) { ++ PrintF("Stop information:\n"); ++ for (uint32_t i = kMaxWatchpointCode + 1; ++ i <= kMaxStopCode; ++ i++) { ++ sim_->PrintStopInfo(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->PrintStopInfo(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } else if (strcmp(arg1, "enable") == 0) { ++ // Enable all/the specified breakpoint(s). ++ if (strcmp(arg2, "all") == 0) { ++ for (uint32_t i = kMaxWatchpointCode + 1; ++ i <= kMaxStopCode; ++ i++) { ++ sim_->EnableStop(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->EnableStop(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } else if (strcmp(arg1, "disable") == 0) { ++ // Disable all/the specified breakpoint(s). ++ if (strcmp(arg2, "all") == 0) { ++ for (uint32_t i = kMaxWatchpointCode + 1; ++ i <= kMaxStopCode; ++ i++) { ++ sim_->DisableStop(i); ++ } ++ } else if (GetValue(arg2, &value)) { ++ sim_->DisableStop(value); ++ } else { ++ PrintF("Unrecognized argument.\n"); ++ } ++ } ++ } else { ++ PrintF("Wrong usage. Use help command for more information.\n"); ++ } ++ } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { ++ // Print registers and disassemble. ++ PrintAllRegs(); ++ PrintF("\n"); ++ ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ v8::internal::EmbeddedVector buffer; ++ ++ byte* cur = nullptr; ++ byte* end = nullptr; ++ ++ if (argc == 1) { ++ cur = reinterpret_cast(sim_->get_pc()); ++ end = cur + (10 * Instruction::kInstrSize); ++ } else if (argc == 2) { ++ int64_t value; ++ if (GetValue(arg1, &value)) { ++ cur = reinterpret_cast(value); ++ // no length parameter passed, assume 10 instructions ++ end = cur + (10 * Instruction::kInstrSize); ++ } ++ } else { ++ int64_t value1; ++ int64_t value2; ++ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { ++ cur = reinterpret_cast(value1); ++ end = cur + (value2 * Instruction::kInstrSize); ++ } ++ } ++ ++ while (cur < end) { ++ dasm.InstructionDecode(buffer, cur); ++ PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast(cur), ++ buffer.start()); ++ cur += Instruction::kInstrSize; ++ } ++ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { ++ PrintF("cont\n"); ++ PrintF(" continue execution (alias 'c')\n"); ++ PrintF("stepi\n"); ++ PrintF(" step one instruction (alias 'si')\n"); ++ PrintF("print \n"); ++ PrintF(" print register content (alias 'p')\n"); ++ PrintF(" use register name 'all' to print all registers\n"); ++ PrintF("printobject \n"); ++ PrintF(" print an object from a register (alias 'po')\n"); ++ PrintF("stack []\n"); ++ PrintF(" dump stack content, default dump 10 words)\n"); ++ PrintF("mem
[]\n"); ++ PrintF(" dump memory content, default dump 10 words)\n"); ++ PrintF("flags\n"); ++ PrintF(" print flags\n"); ++ PrintF("disasm []\n"); ++ PrintF("disasm [
]\n"); ++ PrintF("disasm [[
] ]\n"); ++ PrintF(" disassemble code, default is 10 instructions\n"); ++ PrintF(" from pc (alias 'di')\n"); ++ PrintF("gdb\n"); ++ PrintF(" enter gdb\n"); ++ PrintF("break
\n"); ++ PrintF(" set a break point on the address\n"); ++ PrintF("del\n"); ++ PrintF(" delete the breakpoint\n"); ++ PrintF("stop feature:\n"); ++ PrintF(" Description:\n"); ++ PrintF(" Stops are debug instructions inserted by\n"); ++ PrintF(" the Assembler::stop() function.\n"); ++ PrintF(" When hitting a stop, the Simulator will\n"); ++ PrintF(" stop and and give control to the Debugger.\n"); ++ PrintF(" All stop codes are watched:\n"); ++ PrintF(" - They can be enabled / disabled: the Simulator\n"); ++ PrintF(" will / won't stop when hitting them.\n"); ++ PrintF(" - The Simulator keeps track of how many times they \n"); ++ PrintF(" are met. (See the info command.) Going over a\n"); ++ PrintF(" disabled stop still increases its counter. \n"); ++ PrintF(" Commands:\n"); ++ PrintF(" stop info all/ : print infos about number \n"); ++ PrintF(" or all stop(s).\n"); ++ PrintF(" stop enable/disable all/ : enables / disables\n"); ++ PrintF(" all or number stop(s)\n"); ++ PrintF(" stop unstop\n"); ++ PrintF(" ignore the stop instruction at the current location\n"); ++ PrintF(" from now on\n"); ++ } else { ++ PrintF("Unknown command: %s\n", cmd); ++ } ++ } ++ } ++ ++ // Add all the breakpoints back to stop execution and enter the debugger ++ // shell when hit. ++ RedoBreakpoints(); ++ ++#undef COMMAND_SIZE ++#undef ARG_SIZE ++ ++#undef STR ++#undef XSTR ++} ++ ++bool Simulator::ICacheMatch(void* one, void* two) { ++ DCHECK_EQ(reinterpret_cast(one) & CachePage::kPageMask, 0); ++ DCHECK_EQ(reinterpret_cast(two) & CachePage::kPageMask, 0); ++ return one == two; ++} ++ ++ ++static uint32_t ICacheHash(void* key) { ++ return static_cast(reinterpret_cast(key)) >> 2; ++} ++ ++ ++static bool AllOnOnePage(uintptr_t start, size_t size) { ++ intptr_t start_page = (start & ~CachePage::kPageMask); ++ intptr_t end_page = ((start + size) & ~CachePage::kPageMask); ++ return start_page == end_page; ++} ++ ++ ++void Simulator::set_last_debugger_input(char* input) { ++ DeleteArray(last_debugger_input_); ++ last_debugger_input_ = input; ++} ++ ++void Simulator::SetRedirectInstruction(Instruction* instruction) { ++ instruction->SetInstructionBits(rtCallRedirInstr); ++} ++ ++void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, ++ void* start_addr, size_t size) { ++ int64_t start = reinterpret_cast(start_addr); ++ int64_t intra_line = (start & CachePage::kLineMask); ++ start -= intra_line; ++ size += intra_line; ++ size = ((size - 1) | CachePage::kLineMask) + 1; ++ int offset = (start & CachePage::kPageMask); ++ while (!AllOnOnePage(start, size - 1)) { ++ int bytes_to_flush = CachePage::kPageSize - offset; ++ FlushOnePage(i_cache, start, bytes_to_flush); ++ start += bytes_to_flush; ++ size -= bytes_to_flush; ++ DCHECK_EQ((int64_t)0, start & CachePage::kPageMask); ++ offset = 0; ++ } ++ if (size != 0) { ++ FlushOnePage(i_cache, start, size); ++ } ++} ++ ++CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, ++ void* page) { ++ base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); ++ if (entry->value == nullptr) { ++ CachePage* new_page = new CachePage(); ++ entry->value = new_page; ++ } ++ return reinterpret_cast(entry->value); ++} ++ ++ ++// Flush from start up to and not including start + size. ++void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, ++ intptr_t start, size_t size) { ++ DCHECK_LE(size, CachePage::kPageSize); ++ DCHECK(AllOnOnePage(start, size - 1)); ++ DCHECK_EQ(start & CachePage::kLineMask, 0); ++ DCHECK_EQ(size & CachePage::kLineMask, 0); ++ void* page = reinterpret_cast(start & (~CachePage::kPageMask)); ++ int offset = (start & CachePage::kPageMask); ++ CachePage* cache_page = GetCachePage(i_cache, page); ++ char* valid_bytemap = cache_page->ValidityByte(offset); ++ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); ++} ++ ++void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, ++ Instruction* instr) { ++ int64_t address = reinterpret_cast(instr); ++ void* page = reinterpret_cast(address & (~CachePage::kPageMask)); ++ void* line = reinterpret_cast(address & (~CachePage::kLineMask)); ++ int offset = (address & CachePage::kPageMask); ++ CachePage* cache_page = GetCachePage(i_cache, page); ++ char* cache_valid_byte = cache_page->ValidityByte(offset); ++ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); ++ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); ++ if (cache_hit) { ++ // Check that the data in memory matches the contents of the I-cache. ++ CHECK_EQ(0, memcmp(reinterpret_cast(instr), ++ cache_page->CachedData(offset), ++ Instruction::kInstrSize)); ++ } else { ++ // Cache miss. Load memory into the cache. ++ memcpy(cached_line, line, CachePage::kLineLength); ++ *cache_valid_byte = CachePage::LINE_VALID; ++ } ++} ++ ++ ++Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { ++ // Set up simulator support first. Some of this information is needed to ++ // setup the architecture state. ++ stack_size_ = FLAG_sim_stack_size * KB; ++ stack_ = reinterpret_cast(malloc(stack_size_)); ++ pc_modified_ = false; ++ icount_ = 0; ++ break_count_ = 0; ++ break_pc_ = nullptr; ++ break_instr_ = 0; ++ ++ // Set up architecture state. ++ // All registers are initialized to zero to start with. ++ for (int i = 0; i < kNumSimuRegisters; i++) { ++ registers_[i] = 0; ++ } ++ for (int i = 0; i < kNumFPURegisters; i++) { ++ FPUregisters_[2 * i] = 0; ++ FPUregisters_[2 * i + 1] = 0; // upper part for MSA ASE ++ } ++ ++ if (kArchVariant == kMips64r6) { ++ FCSR_ = kFCSRNaN2008FlagMask; ++ MSACSR_ = 0; ++ } else { ++ FCSR_ = 0; ++ } ++ ++ // The sp is initialized to point to the bottom (high address) of the ++ // allocated stack area. To be safe in potential stack underflows we leave ++ // some buffer below. ++ registers_[sp] = reinterpret_cast(stack_) + stack_size_ - 64; ++ // The ra and pc are initialized to a known bad value that will cause an ++ // access violation if the simulator ever tries to execute it. ++ registers_[pc] = bad_ra; ++ registers_[ra] = bad_ra; ++ ++ last_debugger_input_ = nullptr; ++} ++ ++ ++Simulator::~Simulator() { free(stack_); } ++ ++ ++// Get the active Simulator for the current thread. ++Simulator* Simulator::current(Isolate* isolate) { ++ v8::internal::Isolate::PerIsolateThreadData* isolate_data = ++ isolate->FindOrAllocatePerThreadDataForThisThread(); ++ DCHECK_NOT_NULL(isolate_data); ++ ++ Simulator* sim = isolate_data->simulator(); ++ if (sim == nullptr) { ++ // TODO(146): delete the simulator object when a thread/isolate goes away. ++ sim = new Simulator(isolate); ++ isolate_data->set_simulator(sim); ++ } ++ return sim; ++} ++ ++ ++// Sets the register in the architecture state. It will also deal with updating ++// Simulator internal state for special registers such as PC. ++void Simulator::set_register(int reg, int64_t value) { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ if (reg == pc) { ++ pc_modified_ = true; ++ } ++ ++ // Zero register always holds 0. ++ registers_[reg] = (reg == 0) ? 0 : value; ++} ++ ++ ++void Simulator::set_dw_register(int reg, const int* dbl) { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ registers_[reg] = dbl[1]; ++ registers_[reg] = registers_[reg] << 32; ++ registers_[reg] += dbl[0]; ++} ++ ++ ++void Simulator::set_fpu_register(int fpureg, int64_t value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ FPUregisters_[fpureg * 2] = value; ++} ++ ++ ++void Simulator::set_fpu_register_word(int fpureg, int32_t value) { ++ // Set ONLY lower 32-bits, leaving upper bits untouched. ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ int32_t* pword; ++ if (kArchEndian == kLittle) { ++ pword = reinterpret_cast(&FPUregisters_[fpureg * 2]); ++ } else { ++ pword = reinterpret_cast(&FPUregisters_[fpureg * 2]) + 1; ++ } ++ *pword = value; ++} ++ ++ ++void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { ++ // Set ONLY upper 32-bits, leaving lower bits untouched. ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ int32_t* phiword; ++ if (kArchEndian == kLittle) { ++ phiword = (reinterpret_cast(&FPUregisters_[fpureg * 2])) + 1; ++ } else { ++ phiword = reinterpret_cast(&FPUregisters_[fpureg * 2]); ++ } ++ *phiword = value; ++} ++ ++ ++void Simulator::set_fpu_register_float(int fpureg, float value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ *bit_cast(&FPUregisters_[fpureg * 2]) = value; ++} ++ ++ ++void Simulator::set_fpu_register_double(int fpureg, double value) { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ *bit_cast(&FPUregisters_[fpureg * 2]) = value; ++} ++ ++ ++// Get the register from the architecture state. This function does handle ++// the special case of accessing the PC register. ++int64_t Simulator::get_register(int reg) const { ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); ++ if (reg == 0) ++ return 0; ++ else ++ return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); ++} ++ ++ ++double Simulator::get_double_from_register_pair(int reg) { ++ // TODO(plind): bad ABI stuff, refactor or remove. ++ DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); ++ ++ double dm_val = 0.0; ++ // Read the bits from the unsigned integer register_[] array ++ // into the double precision floating point value and return it. ++ char buffer[sizeof(registers_[0])]; ++ memcpy(buffer, ®isters_[reg], sizeof(registers_[0])); ++ memcpy(&dm_val, buffer, sizeof(registers_[0])); ++ return(dm_val); ++} ++ ++ ++int64_t Simulator::get_fpu_register(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return FPUregisters_[fpureg * 2]; ++} ++ ++ ++int32_t Simulator::get_fpu_register_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); ++} ++ ++ ++int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast(FPUregisters_[fpureg * 2] & 0xFFFFFFFF); ++} ++ ++ ++int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return static_cast((FPUregisters_[fpureg * 2] >> 32) & 0xFFFFFFFF); ++} ++ ++ ++float Simulator::get_fpu_register_float(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return *bit_cast(const_cast(&FPUregisters_[fpureg * 2])); ++} ++ ++ ++double Simulator::get_fpu_register_double(int fpureg) const { ++ DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); ++ return *bit_cast(&FPUregisters_[fpureg * 2]); ++} ++ ++template ++void Simulator::get_msa_register(int wreg, T* value) { ++ DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); ++ memcpy(value, FPUregisters_ + wreg * 2, kSimd128Size); ++} ++ ++template ++void Simulator::set_msa_register(int wreg, const T* value) { ++ DCHECK((wreg >= 0) && (wreg < kNumMSARegisters)); ++ memcpy(FPUregisters_ + wreg * 2, value, kSimd128Size); ++} ++ ++// Runtime FP routines take up to two double arguments and zero ++// or one integer arguments. All are constructed here, ++// from a0-a3 or f12 and f13 (n64), or f14 (O32). ++void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { ++ if (!IsMipsSoftFloatABI) { ++ const int fparg2 = 13; ++ *x = get_fpu_register_double(12); ++ *y = get_fpu_register_double(fparg2); ++ *z = static_cast(get_register(a2)); ++ } else { ++ // TODO(plind): bad ABI stuff, refactor or remove. ++ // We use a char buffer to get around the strict-aliasing rules which ++ // otherwise allow the compiler to optimize away the copy. ++ char buffer[sizeof(*x)]; ++ int32_t* reg_buffer = reinterpret_cast(buffer); ++ ++ // Registers a0 and a1 -> x. ++ reg_buffer[0] = get_register(a0); ++ reg_buffer[1] = get_register(a1); ++ memcpy(x, buffer, sizeof(buffer)); ++ // Registers a2 and a3 -> y. ++ reg_buffer[0] = get_register(a2); ++ reg_buffer[1] = get_register(a3); ++ memcpy(y, buffer, sizeof(buffer)); ++ // Register 2 -> z. ++ reg_buffer[0] = get_register(a2); ++ memcpy(z, buffer, sizeof(*z)); ++ } ++} ++ ++ ++// The return value is either in v0/v1 or f0. ++void Simulator::SetFpResult(const double& result) { ++ if (!IsMipsSoftFloatABI) { ++ set_fpu_register_double(0, result); ++ } else { ++ char buffer[2 * sizeof(registers_[0])]; ++ int64_t* reg_buffer = reinterpret_cast(buffer); ++ memcpy(buffer, &result, sizeof(buffer)); ++ // Copy result to v0 and v1. ++ set_register(v0, reg_buffer[0]); ++ set_register(v1, reg_buffer[1]); ++ } ++} ++ ++ ++// Helper functions for setting and testing the FCSR register's bits. ++void Simulator::set_fcsr_bit(uint32_t cc, bool value) { ++ if (value) { ++ FCSR_ |= (1 << cc); ++ } else { ++ FCSR_ &= ~(1 << cc); ++ } ++} ++ ++ ++bool Simulator::test_fcsr_bit(uint32_t cc) { ++ return FCSR_ & (1 << cc); ++} ++ ++ ++void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { ++ FCSR_ |= mode & kFPURoundingModeMask; ++} ++ ++void Simulator::set_msacsr_rounding_mode(FPURoundingMode mode) { ++ MSACSR_ |= mode & kFPURoundingModeMask; ++} ++ ++unsigned int Simulator::get_fcsr_rounding_mode() { ++ return FCSR_ & kFPURoundingModeMask; ++} ++ ++unsigned int Simulator::get_msacsr_rounding_mode() { ++ return MSACSR_ & kFPURoundingModeMask; ++} ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round_error(double original, double rounded) { ++ bool ret = false; ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded > max_int32 || rounded < min_int32) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round64_error(double original, double rounded) { ++ bool ret = false; ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded >= max_int64 || rounded < min_int64) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round_error(float original, float rounded) { ++ bool ret = false; ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded > max_int32 || rounded < min_int32) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++void Simulator::set_fpu_register_word_invalid_result(float original, ++ float rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register_word(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } ++} ++ ++ ++void Simulator::set_fpu_register_invalid_result(float original, float rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } ++} ++ ++ ++void Simulator::set_fpu_register_invalid_result64(float original, ++ float rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded >= max_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } else if (rounded < min_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } ++} ++ ++ ++void Simulator::set_fpu_register_word_invalid_result(double original, ++ double rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register_word(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register_word(fd_reg(), kFPUInvalidResult); ++ } ++} ++ ++ ++void Simulator::set_fpu_register_invalid_result(double original, ++ double rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ double max_int32 = std::numeric_limits::max(); ++ double min_int32 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded > max_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } else if (rounded < min_int32) { ++ set_fpu_register(fd_reg(), kFPUInvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register(fd_reg(), kFPUInvalidResult); ++ } ++} ++ ++ ++void Simulator::set_fpu_register_invalid_result64(double original, ++ double rounded) { ++ if (FCSR_ & kFCSRNaN2008FlagMask) { ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ if (std::isnan(original)) { ++ set_fpu_register(fd_reg(), 0); ++ } else if (rounded >= max_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } else if (rounded < min_int64) { ++ set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); ++ } else { ++ UNREACHABLE(); ++ } ++ } else { ++ set_fpu_register(fd_reg(), kFPU64InvalidResult); ++ } ++} ++ ++ ++// Sets the rounding error codes in FCSR based on the result of the rounding. ++// Returns true if the operation was invalid. ++bool Simulator::set_fcsr_round64_error(float original, float rounded) { ++ bool ret = false; ++ // The value of INT64_MAX (2^63-1) can't be represented as double exactly, ++ // loading the most accurate representation into max_int64, which is 2^63. ++ double max_int64 = std::numeric_limits::max(); ++ double min_int64 = std::numeric_limits::min(); ++ ++ if (!std::isfinite(original) || !std::isfinite(rounded)) { ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ if (original != rounded) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ ++ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { ++ set_fcsr_bit(kFCSRUnderflowFlagBit, true); ++ ret = true; ++ } ++ ++ if (rounded >= max_int64 || rounded < min_int64) { ++ set_fcsr_bit(kFCSROverflowFlagBit, true); ++ // The reference is not really clear but it seems this is required: ++ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++ ++// For cvt instructions only ++void Simulator::round_according_to_fcsr(double toRound, double& rounded, ++ int32_t& rounded_int, double fs) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. Behave like round_w_d. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or ++ // equal to the infinitely accurate result. Behave like trunc_w_d. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. Behave like ceil_w_d. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. Behave like floor_w_d. ++ switch (FCSR_ & 3) { ++ case kRoundToNearest: ++ rounded = std::floor(fs + 0.5); ++ rounded_int = static_cast(rounded); ++ if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ rounded_int--; ++ rounded -= 1.; ++ } ++ break; ++ case kRoundToZero: ++ rounded = trunc(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToPlusInf: ++ rounded = std::ceil(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToMinusInf: ++ rounded = std::floor(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ } ++} ++ ++ ++void Simulator::round64_according_to_fcsr(double toRound, double& rounded, ++ int64_t& rounded_int, double fs) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. Behave like round_w_d. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or. ++ // equal to the infinitely accurate result. Behave like trunc_w_d. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. Behave like ceil_w_d. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. Behave like floor_w_d. ++ switch (FCSR_ & 3) { ++ case kRoundToNearest: ++ rounded = std::floor(fs + 0.5); ++ rounded_int = static_cast(rounded); ++ if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ rounded_int--; ++ rounded -= 1.; ++ } ++ break; ++ case kRoundToZero: ++ rounded = trunc(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToPlusInf: ++ rounded = std::ceil(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToMinusInf: ++ rounded = std::floor(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ } ++} ++ ++ ++// for cvt instructions only ++void Simulator::round_according_to_fcsr(float toRound, float& rounded, ++ int32_t& rounded_int, float fs) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. Behave like round_w_d. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or ++ // equal to the infinitely accurate result. Behave like trunc_w_d. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. Behave like ceil_w_d. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. Behave like floor_w_d. ++ switch (FCSR_ & 3) { ++ case kRoundToNearest: ++ rounded = std::floor(fs + 0.5); ++ rounded_int = static_cast(rounded); ++ if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ rounded_int--; ++ rounded -= 1.f; ++ } ++ break; ++ case kRoundToZero: ++ rounded = trunc(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToPlusInf: ++ rounded = std::ceil(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToMinusInf: ++ rounded = std::floor(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ } ++} ++ ++ ++void Simulator::round64_according_to_fcsr(float toRound, float& rounded, ++ int64_t& rounded_int, float fs) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. Behave like round_w_d. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or. ++ // equal to the infinitely accurate result. Behave like trunc_w_d. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. Behave like ceil_w_d. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. Behave like floor_w_d. ++ switch (FCSR_ & 3) { ++ case kRoundToNearest: ++ rounded = std::floor(fs + 0.5); ++ rounded_int = static_cast(rounded); ++ if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ rounded_int--; ++ rounded -= 1.f; ++ } ++ break; ++ case kRoundToZero: ++ rounded = trunc(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToPlusInf: ++ rounded = std::ceil(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToMinusInf: ++ rounded = std::floor(fs); ++ rounded_int = static_cast(rounded); ++ break; ++ } ++} ++ ++template ++void Simulator::round_according_to_msacsr(T_fp toRound, T_fp& rounded, ++ T_int& rounded_int) { ++ // 0 RN (round to nearest): Round a result to the nearest ++ // representable value; if the result is exactly halfway between ++ // two representable values, round to zero. Behave like round_w_d. ++ ++ // 1 RZ (round toward zero): Round a result to the closest ++ // representable value whose absolute value is less than or ++ // equal to the infinitely accurate result. Behave like trunc_w_d. ++ ++ // 2 RP (round up, or toward +infinity): Round a result to the ++ // next representable value up. Behave like ceil_w_d. ++ ++ // 3 RN (round down, or toward −infinity): Round a result to ++ // the next representable value down. Behave like floor_w_d. ++ switch (get_msacsr_rounding_mode()) { ++ case kRoundToNearest: ++ rounded = std::floor(toRound + 0.5); ++ rounded_int = static_cast(rounded); ++ if ((rounded_int & 1) != 0 && rounded_int - toRound == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ rounded_int--; ++ rounded -= 1.; ++ } ++ break; ++ case kRoundToZero: ++ rounded = trunc(toRound); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToPlusInf: ++ rounded = std::ceil(toRound); ++ rounded_int = static_cast(rounded); ++ break; ++ case kRoundToMinusInf: ++ rounded = std::floor(toRound); ++ rounded_int = static_cast(rounded); ++ break; ++ } ++} ++ ++// Raw access to the PC register. ++void Simulator::set_pc(int64_t value) { ++ pc_modified_ = true; ++ registers_[pc] = value; ++} ++ ++ ++bool Simulator::has_bad_pc() const { ++ return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); ++} ++ ++ ++// Raw access to the PC register without the special adjustment when reading. ++int64_t Simulator::get_pc() const { ++ return registers_[pc]; ++} ++ ++ ++// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an ++// interrupt is caused. On others it does a funky rotation thing. For now we ++// simply disallow unaligned reads, but at some point we may want to move to ++// emulating the rotate behaviour. Note that simulator runs have the runtime ++// system running directly on the host system and only generated code is ++// executed in the simulator. Since the host is typically IA32 we will not ++// get the correct MIPS-like behaviour on unaligned accesses. ++ ++// TODO(plind): refactor this messy debug code when we do unaligned access. ++void Simulator::DieOrDebug() { ++ if ((1)) { // Flag for this was removed. ++ MipsDebugger dbg(this); ++ dbg.Debug(); ++ } else { ++ base::OS::Abort(); ++ } ++} ++ ++void Simulator::TraceRegWr(int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ int64_t fmt_int64; ++ int32_t fmt_int32[2]; ++ float fmt_float[2]; ++ double fmt_double; ++ } v; ++ v.fmt_int64 = value; ++ ++ switch (t) { ++ case WORD: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 ++ " uint32:%" PRIu32, ++ v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0]); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") int64:%" PRId64 ++ " uint64:%" PRIu64, ++ value, icount_, value, value); ++ break; ++ case FLOAT: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e", ++ v.fmt_int64, icount_, v.fmt_float[0]); ++ break; ++ case DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") dbl:%e", ++ v.fmt_int64, icount_, v.fmt_double); ++ break; ++ case FLOAT_DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e dbl:%e", ++ v.fmt_int64, icount_, v.fmt_float[0], v.fmt_double); ++ break; ++ case WORD_DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 ++ " uint32:%" PRIu32 " int64:%" PRId64 " uint64:%" PRIu64, ++ v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0], ++ v.fmt_int64, v.fmt_int64); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMSARegWr(T* value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ uint8_t b[16]; ++ uint16_t h[8]; ++ uint32_t w[4]; ++ uint64_t d[2]; ++ float f[4]; ++ double df[2]; ++ } v; ++ memcpy(v.b, value, kSimd128Size); ++ switch (t) { ++ case BYTE: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", ++ v.d[0], v.d[1], icount_); ++ break; ++ case HALF: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", ++ v.d[0], v.d[1], icount_); ++ break; ++ case WORD: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32 ++ " %" PRId32, ++ v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", ++ v.d[0], v.d[1], icount_); ++ break; ++ case FLOAT: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") flt[0..3]:%e %e %e %e", ++ v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); ++ break; ++ case DOUBLE: ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") dbl[0..1]:%e %e", ++ v.d[0], v.d[1], icount_, v.df[0], v.df[1]); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMSARegWr(T* value) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ uint8_t b[kMSALanesByte]; ++ uint16_t h[kMSALanesHalf]; ++ uint32_t w[kMSALanesWord]; ++ uint64_t d[kMSALanesDword]; ++ float f[kMSALanesWord]; ++ double df[kMSALanesDword]; ++ } v; ++ memcpy(v.b, value, kMSALanesByte); ++ ++ if (std::is_same::value) { ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") int32[0..3]:%" PRId32 " %" PRId32 " %" PRId32 ++ " %" PRId32, ++ v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]); ++ } else if (std::is_same::value) { ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") flt[0..3]:%e %e %e %e", ++ v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]); ++ } else if (std::is_same::value) { ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ++ ") dbl[0..1]:%e %e", ++ v.d[0], v.d[1], icount_, v.df[0], v.df[1]); ++ } else { ++ SNPrintF(trace_buf_, ++ "LO: %016" PRIx64 " HI: %016" PRIx64 " (%" PRIu64 ")", ++ v.d[0], v.d[1], icount_); ++ } ++ } ++} ++ ++// TODO(plind): consider making icount_ printing a flag option. ++void Simulator::TraceMemRd(int64_t addr, int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ union { ++ int64_t fmt_int64; ++ int32_t fmt_int32[2]; ++ float fmt_float[2]; ++ double fmt_double; ++ } v; ++ v.fmt_int64 = value; ++ ++ switch (t) { ++ case WORD: ++ SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") int32:%" PRId32 " uint32:%" PRIu32, ++ v.fmt_int64, addr, icount_, v.fmt_int32[0], v.fmt_int32[0]); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") int64:%" PRId64 " uint64:%" PRIu64, ++ value, addr, icount_, value, value); ++ break; ++ case FLOAT: ++ SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") flt:%e", ++ v.fmt_int64, addr, icount_, v.fmt_float[0]); ++ break; ++ case DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") dbl:%e", ++ v.fmt_int64, addr, icount_, v.fmt_double); ++ break; ++ case FLOAT_DOUBLE: ++ SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ++ ") flt:%e dbl:%e", ++ v.fmt_int64, addr, icount_, v.fmt_float[0], v.fmt_double); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++ ++void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (t) { ++ case BYTE: ++ SNPrintF(trace_buf_, " %02" PRIx8 " --> [%016" PRIx64 ++ "] (%" PRId64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case HALF: ++ SNPrintF(trace_buf_, " %04" PRIx16 " --> [%016" PRIx64 ++ "] (%" PRId64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case WORD: ++ SNPrintF(trace_buf_, ++ " %08" PRIx32 " --> [%016" PRIx64 "] (%" PRId64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case DWORD: ++ SNPrintF(trace_buf_, ++ "%016" PRIx64 " --> [%016" PRIx64 "] (%" PRId64 " )", ++ value, addr, icount_); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMemRd(int64_t addr, T value) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (sizeof(T)) { ++ case 1: ++ SNPrintF(trace_buf_, ++ "%08" PRIx8 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int8:%" PRId8 " uint8:%" PRIu8, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 2: ++ SNPrintF(trace_buf_, ++ "%08" PRIx16 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int16:%" PRId16 " uint16:%" PRIu16, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 4: ++ SNPrintF(trace_buf_, ++ "%08" PRIx32 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int32:%" PRId32 " uint32:%" PRIu32, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ case 8: ++ SNPrintF(trace_buf_, ++ "%08" PRIx64 " <-- [%08" PRIx64 "] (%" PRIu64 ++ ") int64:%" PRId64 " uint64:%" PRIu64, ++ static_cast(value), addr, icount_, ++ static_cast(value), static_cast(value)); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++template ++void Simulator::TraceMemWr(int64_t addr, T value) { ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (sizeof(T)) { ++ case 1: ++ SNPrintF(trace_buf_, ++ " %02" PRIx8 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 2: ++ SNPrintF(trace_buf_, ++ " %04" PRIx16 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 4: ++ SNPrintF(trace_buf_, ++ "%08" PRIx32 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ case 8: ++ SNPrintF(trace_buf_, ++ "%16" PRIx64 " --> [%08" PRIx64 "] (%" PRIu64 ")", ++ static_cast(value), addr, icount_); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++} ++ ++// TODO(plind): sign-extend and zero-extend not implmented properly ++// on all the ReadXX functions, I don't think re-interpret cast does it. ++int32_t Simulator::ReadW(int64_t addr, Instruction* instr, TraceType t) { ++ if (addr >=0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { ++ int32_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr), t); ++ return *ptr; ++ } ++ PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ reinterpret_cast(instr)); ++ DieOrDebug(); ++ return 0; ++} ++ ++ ++uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) { ++ if (addr >=0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { ++ uint32_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr), WORD); ++ return *ptr; ++ } ++ PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ reinterpret_cast(instr)); ++ DieOrDebug(); ++ return 0; ++} ++ ++ ++void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { ++ TraceMemWr(addr, value, WORD); ++ int* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ reinterpret_cast(instr)); ++ DieOrDebug(); ++} ++ ++ ++int64_t Simulator::Read2W(int64_t addr, Instruction* instr) { ++ if (addr >=0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ " \n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { ++ int64_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, *ptr); ++ return *ptr; ++ } ++ PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ reinterpret_cast(instr)); ++ DieOrDebug(); ++ return 0; ++} ++ ++ ++void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) { ++ if (addr >= 0 && addr < 0x400) { ++ // This has to be a nullptr-dereference, drop into debugger. ++ PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR ++ "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ } ++ if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { ++ TraceMemWr(addr, value, DWORD); ++ int64_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, ++ reinterpret_cast(instr)); ++ DieOrDebug(); ++} ++ ++ ++double Simulator::ReadD(int64_t addr, Instruction* instr) { ++ if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { ++ double* ptr = reinterpret_cast(addr); ++ return *ptr; ++ } ++ PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", ++ addr, reinterpret_cast(instr)); ++ base::OS::Abort(); ++ return 0; ++} ++ ++ ++void Simulator::WriteD(int64_t addr, double value, Instruction* instr) { ++ if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { ++ double* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR ++ "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++} ++ ++ ++uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) { ++ if ((addr & 1) == 0 || kArchVariant == kMips64r6) { ++ uint16_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++ } ++ PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64 ++ " , pc=0x%08" V8PRIxPTR "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ return 0; ++} ++ ++ ++int16_t Simulator::ReadH(int64_t addr, Instruction* instr) { ++ if ((addr & 1) == 0 || kArchVariant == kMips64r6) { ++ int16_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++ } ++ PrintF("Unaligned signed halfword read at 0x%08" PRIx64 ++ " , pc=0x%08" V8PRIxPTR "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++ return 0; ++} ++ ++ ++void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) { ++ if ((addr & 1) == 0 || kArchVariant == kMips64r6) { ++ TraceMemWr(addr, value, HALF); ++ uint16_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64 ++ " , pc=0x%08" V8PRIxPTR "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++} ++ ++ ++void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) { ++ if ((addr & 1) == 0 || kArchVariant == kMips64r6) { ++ TraceMemWr(addr, value, HALF); ++ int16_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ return; ++ } ++ PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR ++ "\n", ++ addr, reinterpret_cast(instr)); ++ DieOrDebug(); ++} ++ ++ ++uint32_t Simulator::ReadBU(int64_t addr) { ++ uint8_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr & 0xFF; ++} ++ ++ ++int32_t Simulator::ReadB(int64_t addr) { ++ int8_t* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, static_cast(*ptr)); ++ return *ptr; ++} ++ ++ ++void Simulator::WriteB(int64_t addr, uint8_t value) { ++ TraceMemWr(addr, value, BYTE); ++ uint8_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++} ++ ++ ++void Simulator::WriteB(int64_t addr, int8_t value) { ++ TraceMemWr(addr, value, BYTE); ++ int8_t* ptr = reinterpret_cast(addr); ++ *ptr = value; ++} ++ ++template ++T Simulator::ReadMem(int64_t addr, Instruction* instr) { ++ int alignment_mask = (1 << sizeof(T)) - 1; ++ if ((addr & alignment_mask) == 0 || kArchVariant == kMips64r6) { ++ T* ptr = reinterpret_cast(addr); ++ TraceMemRd(addr, *ptr); ++ return *ptr; ++ } ++ PrintF("Unaligned read of type sizeof(%ld) at 0x%08lx, pc=0x%08" V8PRIxPTR ++ "\n", ++ sizeof(T), addr, reinterpret_cast(instr)); ++ base::OS::Abort(); ++ return 0; ++} ++ ++template ++void Simulator::WriteMem(int64_t addr, T value, Instruction* instr) { ++ int alignment_mask = (1 << sizeof(T)) - 1; ++ if ((addr & alignment_mask) == 0 || kArchVariant == kMips64r6) { ++ T* ptr = reinterpret_cast(addr); ++ *ptr = value; ++ TraceMemWr(addr, value); ++ return; ++ } ++ PrintF("Unaligned write of type sizeof(%ld) at 0x%08lx, pc=0x%08" V8PRIxPTR ++ "\n", ++ sizeof(T), addr, reinterpret_cast(instr)); ++ base::OS::Abort(); ++} ++ ++// Returns the limit of the stack area to enable checking for stack overflows. ++uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { ++ // The simulator uses a separate JS stack. If we have exhausted the C stack, ++ // we also drop down the JS limit to reflect the exhaustion on the JS stack. ++ if (GetCurrentStackPosition() < c_limit) { ++ return reinterpret_cast(get_sp()); ++ } ++ ++ // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes ++ // to prevent overrunning the stack when pushing values. ++ return reinterpret_cast(stack_) + 1024; ++} ++ ++ ++// Unsupported instructions use Format to print an error and stop execution. ++void Simulator::Format(Instruction* instr, const char* format) { ++ PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n", ++ reinterpret_cast(instr), format); ++ UNIMPLEMENTED_MIPS(); ++} ++ ++ ++// Calls into the V8 runtime are based on this very simple interface. ++// Note: To be able to return two values from some calls the code in runtime.cc ++// uses the ObjectPair which is essentially two 32-bit values stuffed into a ++// 64-bit value. With the code below we assume that all runtime calls return ++// 64 bits of result. If they don't, the v1 result register contains a bogus ++// value, which is fine because it is caller-saved. ++ ++typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, int64_t arg1, ++ int64_t arg2, int64_t arg3, ++ int64_t arg4, int64_t arg5, ++ int64_t arg6, int64_t arg7, ++ int64_t arg8); ++ ++// These prototypes handle the four types of FP calls. ++typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); ++typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); ++typedef double (*SimulatorRuntimeFPCall)(double darg0); ++typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); ++ ++// This signature supports direct call in to API function native callback ++// (refer to InvocationCallback in v8.h). ++typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); ++typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); ++ ++// This signature supports direct call to accessor getter callback. ++typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); ++typedef void (*SimulatorRuntimeProfilingGetterCall)( ++ int64_t arg0, int64_t arg1, void* arg2); ++ ++// Software interrupt instructions are used by the simulator to call into the ++// C-based V8 runtime. They are also used for debugging with simulator. ++void Simulator::SoftwareInterrupt() { ++ // There are several instructions that could get us here, ++ // the break_ instruction, or several variants of traps. All ++ // Are "SPECIAL" class opcode, and are distinuished by function. ++ int32_t func = instr_.FunctionFieldRaw(); ++ uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1; ++ // We first check if we met a call_rt_redirected. ++ if (instr_.InstructionBits() == rtCallRedirInstr) { ++ Redirection* redirection = Redirection::FromInstruction(instr_.instr()); ++ ++ int64_t* stack_pointer = reinterpret_cast(get_register(sp)); ++ ++ int64_t arg0 = get_register(a0); ++ int64_t arg1 = get_register(a1); ++ int64_t arg2 = get_register(a2); ++ int64_t arg3 = get_register(a3); ++ int64_t arg4 = get_register(a4); ++ int64_t arg5 = get_register(a5); ++ int64_t arg6 = get_register(a6); ++ int64_t arg7 = get_register(a7); ++ int64_t arg8 = stack_pointer[0]; ++ STATIC_ASSERT(kMaxCParameters == 9); ++ ++ bool fp_call = ++ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || ++ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); ++ ++ if (!IsMipsSoftFloatABI) { ++ // With the hard floating point calling convention, double ++ // arguments are passed in FPU registers. Fetch the arguments ++ // from there and call the builtin using soft floating point ++ // convention. ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ arg0 = get_fpu_register(f12); ++ arg1 = get_fpu_register(f13); ++ arg2 = get_fpu_register(f14); ++ arg3 = get_fpu_register(f15); ++ break; ++ case ExternalReference::BUILTIN_FP_CALL: ++ arg0 = get_fpu_register(f12); ++ arg1 = get_fpu_register(f13); ++ break; ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ arg0 = get_fpu_register(f12); ++ arg1 = get_fpu_register(f13); ++ arg2 = get_register(a2); ++ break; ++ default: ++ break; ++ } ++ } ++ ++ // This is dodgy but it works because the C entry stubs are never moved. ++ // See comment in codegen-arm.cc and bug 1242173. ++ int64_t saved_ra = get_register(ra); ++ ++ intptr_t external = ++ reinterpret_cast(redirection->external_function()); ++ ++ // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware ++ // FPU, or gcc soft-float routines. Hardware FPU is simulated in this ++ // simulator. Soft-float has additional abstraction of ExternalReference, ++ // to support serialization. ++ if (fp_call) { ++ double dval0, dval1; // one or two double parameters ++ int32_t ival; // zero or one integer parameters ++ int64_t iresult = 0; // integer return value ++ double dresult = 0; // double return value ++ GetFpArgs(&dval0, &dval1, &ival); ++ SimulatorRuntimeCall generic_target = ++ reinterpret_cast(external); ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ PrintF("Call to host function at %p with args %f, %f", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0, dval1); ++ break; ++ case ExternalReference::BUILTIN_FP_CALL: ++ PrintF("Call to host function at %p with arg %f", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0); ++ break; ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ PrintF("Call to host function at %p with args %f, %d", ++ reinterpret_cast(FUNCTION_ADDR(generic_target)), ++ dval0, ival); ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_COMPARE_CALL: { ++ SimulatorRuntimeCompareCall target = ++ reinterpret_cast(external); ++ iresult = target(dval0, dval1); ++ set_register(v0, static_cast(iresult)); ++ // set_register(v1, static_cast(iresult >> 32)); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_FP_CALL: { ++ SimulatorRuntimeFPFPCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0, dval1); ++ SetFpResult(dresult); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_CALL: { ++ SimulatorRuntimeFPCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0); ++ SetFpResult(dresult); ++ break; ++ } ++ case ExternalReference::BUILTIN_FP_INT_CALL: { ++ SimulatorRuntimeFPIntCall target = ++ reinterpret_cast(external); ++ dresult = target(dval0, ival); ++ SetFpResult(dresult); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ if (::v8::internal::FLAG_trace_sim) { ++ switch (redirection->type()) { ++ case ExternalReference::BUILTIN_COMPARE_CALL: ++ PrintF("Returned %08x\n", static_cast(iresult)); ++ break; ++ case ExternalReference::BUILTIN_FP_FP_CALL: ++ case ExternalReference::BUILTIN_FP_CALL: ++ case ExternalReference::BUILTIN_FP_INT_CALL: ++ PrintF("Returned %f\n", dresult); ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } ++ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " \n", ++ reinterpret_cast(external), arg0); ++ } ++ SimulatorRuntimeDirectApiCall target = ++ reinterpret_cast(external); ++ target(arg0); ++ } else if ( ++ redirection->type() == ExternalReference::PROFILING_API_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " \n", ++ reinterpret_cast(external), arg0, arg1); ++ } ++ SimulatorRuntimeProfilingApiCall target = ++ reinterpret_cast(external); ++ target(arg0, Redirection::ReverseRedirection(arg1)); ++ } else if ( ++ redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " \n", ++ reinterpret_cast(external), arg0, arg1); ++ } ++ SimulatorRuntimeDirectGetterCall target = ++ reinterpret_cast(external); ++ target(arg0, arg1); ++ } else if ( ++ redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 ++ " %08" PRIx64 " \n", ++ reinterpret_cast(external), arg0, arg1, arg2); ++ } ++ SimulatorRuntimeProfilingGetterCall target = ++ reinterpret_cast(external); ++ target(arg0, arg1, Redirection::ReverseRedirection(arg2)); ++ } else { ++ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || ++ redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); ++ SimulatorRuntimeCall target = ++ reinterpret_cast(external); ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF( ++ "Call to host function at %p " ++ "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 ++ " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 ++ " , %08" PRIx64 " \n", ++ reinterpret_cast(FUNCTION_ADDR(target)), arg0, arg1, arg2, ++ arg3, arg4, arg5, arg6, arg7, arg8); ++ } ++ ObjectPair result = ++ target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); ++ set_register(v0, (int64_t)(result.x)); ++ set_register(v1, (int64_t)(result.y)); ++ } ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1), ++ get_register(v0)); ++ } ++ set_register(ra, saved_ra); ++ set_pc(get_register(ra)); ++ ++ } else if (func == BREAK && code <= kMaxStopCode) { ++ if (IsWatchpoint(code)) { ++ PrintWatchpoint(code); ++ } else { ++ IncreaseStopCounter(code); ++ HandleStop(code, instr_.instr()); ++ } ++ } else { ++ // All remaining break_ codes, and all traps are handled here. ++ MipsDebugger dbg(this); ++ dbg.Debug(); ++ } ++} ++ ++ ++// Stop helper functions. ++bool Simulator::IsWatchpoint(uint64_t code) { ++ return (code <= kMaxWatchpointCode); ++} ++ ++ ++void Simulator::PrintWatchpoint(uint64_t code) { ++ MipsDebugger dbg(this); ++ ++break_count_; ++ PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64 ++ " ) ----------" ++ "----------------------------------", ++ code, break_count_, icount_); ++ dbg.PrintAllRegs(); // Print registers and continue running. ++} ++ ++ ++void Simulator::HandleStop(uint64_t code, Instruction* instr) { ++ // Stop if it is enabled, otherwise go on jumping over the stop ++ // and the message address. ++ if (IsEnabledStop(code)) { ++ MipsDebugger dbg(this); ++ dbg.Stop(instr); ++ } ++} ++ ++ ++bool Simulator::IsStopInstruction(Instruction* instr) { ++ int32_t func = instr->FunctionFieldRaw(); ++ uint32_t code = static_cast(instr->Bits(25, 6)); ++ return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; ++} ++ ++ ++bool Simulator::IsEnabledStop(uint64_t code) { ++ DCHECK_LE(code, kMaxStopCode); ++ DCHECK_GT(code, kMaxWatchpointCode); ++ return !(watched_stops_[code].count & kStopDisabledBit); ++} ++ ++ ++void Simulator::EnableStop(uint64_t code) { ++ if (!IsEnabledStop(code)) { ++ watched_stops_[code].count &= ~kStopDisabledBit; ++ } ++} ++ ++ ++void Simulator::DisableStop(uint64_t code) { ++ if (IsEnabledStop(code)) { ++ watched_stops_[code].count |= kStopDisabledBit; ++ } ++} ++ ++ ++void Simulator::IncreaseStopCounter(uint64_t code) { ++ DCHECK_LE(code, kMaxStopCode); ++ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { ++ PrintF("Stop counter for code %" PRId64 ++ " has overflowed.\n" ++ "Enabling this code and reseting the counter to 0.\n", ++ code); ++ watched_stops_[code].count = 0; ++ EnableStop(code); ++ } else { ++ watched_stops_[code].count++; ++ } ++} ++ ++ ++// Print a stop status. ++void Simulator::PrintStopInfo(uint64_t code) { ++ if (code <= kMaxWatchpointCode) { ++ PrintF("That is a watchpoint, not a stop.\n"); ++ return; ++ } else if (code > kMaxStopCode) { ++ PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); ++ return; ++ } ++ const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; ++ int32_t count = watched_stops_[code].count & ~kStopDisabledBit; ++ // Don't print the state of unused breakpoints. ++ if (count != 0) { ++ if (watched_stops_[code].desc) { ++ PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n", ++ code, code, state, count, watched_stops_[code].desc); ++ } else { ++ PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code, ++ code, state, count); ++ } ++ } ++} ++ ++ ++void Simulator::SignalException(Exception e) { ++ FATAL("Error: Exception %i raised.", static_cast(e)); ++} ++ ++// Min/Max template functions for Double and Single arguments. ++ ++template ++static T FPAbs(T a); ++ ++template <> ++double FPAbs(double a) { ++ return fabs(a); ++} ++ ++template <> ++float FPAbs(float a) { ++ return fabsf(a); ++} ++ ++template ++static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) { ++ if (std::isnan(a) && std::isnan(b)) { ++ result = a; ++ } else if (std::isnan(a)) { ++ result = b; ++ } else if (std::isnan(b)) { ++ result = a; ++ } else if (b == a) { ++ // Handle -0.0 == 0.0 case. ++ // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax ++ // negates the result. ++ result = std::signbit(b) - static_cast(kind) ? b : a; ++ } else { ++ return false; ++ } ++ return true; ++} ++ ++template ++static T FPUMin(T a, T b) { ++ T result; ++ if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { ++ return result; ++ } else { ++ return b < a ? b : a; ++ } ++} ++ ++template ++static T FPUMax(T a, T b) { ++ T result; ++ if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) { ++ return result; ++ } else { ++ return b > a ? b : a; ++ } ++} ++ ++template ++static T FPUMinA(T a, T b) { ++ T result; ++ if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { ++ if (FPAbs(a) < FPAbs(b)) { ++ result = a; ++ } else if (FPAbs(b) < FPAbs(a)) { ++ result = b; ++ } else { ++ result = a < b ? a : b; ++ } ++ } ++ return result; ++} ++ ++template ++static T FPUMaxA(T a, T b) { ++ T result; ++ if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { ++ if (FPAbs(a) > FPAbs(b)) { ++ result = a; ++ } else if (FPAbs(b) > FPAbs(a)) { ++ result = b; ++ } else { ++ result = a > b ? a : b; ++ } ++ } ++ return result; ++} ++ ++enum class KeepSign : bool { no = false, yes }; ++ ++template ::value, ++ int>::type = 0> ++T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { ++ DCHECK(std::isnan(arg)); ++ T qNaN = std::numeric_limits::quiet_NaN(); ++ if (keepSign == KeepSign::yes) { ++ return std::copysign(qNaN, result); ++ } ++ return qNaN; ++} ++ ++template ++T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { ++ if (std::isnan(first)) { ++ return FPUCanonalizeNaNArg(result, first, keepSign); ++ } ++ return result; ++} ++ ++template ++T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { ++ if (std::isnan(first)) { ++ return FPUCanonalizeNaNArg(result, first, keepSign); ++ } ++ return FPUCanonalizeNaNArgs(result, keepSign, args...); ++} ++ ++template ++T FPUCanonalizeOperation(Func f, T first, Args... args) { ++ return FPUCanonalizeOperation(f, KeepSign::no, first, args...); ++} ++ ++template ++T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { ++ T result = f(first, args...); ++ if (std::isnan(result)) { ++ result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); ++ } ++ return result; ++} ++ ++// Handle execution based on instruction types. ++ ++void Simulator::DecodeTypeRegisterSRsType() { ++ float fs, ft, fd; ++ fs = get_fpu_register_float(fs_reg()); ++ ft = get_fpu_register_float(ft_reg()); ++ fd = get_fpu_register_float(fd_reg()); ++ int32_t ft_int = bit_cast(ft); ++ int32_t fd_int = bit_cast(fd); ++ uint32_t cc, fcsr_cc; ++ cc = instr_.FCccValue(); ++ fcsr_cc = get_fcsr_condition_bit(cc); ++ switch (instr_.FunctionFieldRaw()) { ++ case RINT: { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ float result, temp_result; ++ double temp; ++ float upper = std::ceil(fs); ++ float lower = std::floor(fs); ++ switch (get_fcsr_rounding_mode()) { ++ case kRoundToNearest: ++ if (upper - fs < fs - lower) { ++ result = upper; ++ } else if (upper - fs > fs - lower) { ++ result = lower; ++ } else { ++ temp_result = upper / 2; ++ float reminder = modf(temp_result, &temp); ++ if (reminder == 0) { ++ result = upper; ++ } else { ++ result = lower; ++ } ++ } ++ break; ++ case kRoundToZero: ++ result = (fs > 0 ? lower : upper); ++ break; ++ case kRoundToPlusInf: ++ result = upper; ++ break; ++ case kRoundToMinusInf: ++ result = lower; ++ break; ++ } ++ SetFPUFloatResult(fd_reg(), result); ++ if (result != fs) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ break; ++ } ++ case ADD_S: ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, ++ fs, ft)); ++ break; ++ case SUB_S: ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, ++ fs, ft)); ++ break; ++ case MADDF_S: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd)); ++ break; ++ case MSUBF_S: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd)); ++ break; ++ case MUL_S: ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, ++ fs, ft)); ++ break; ++ case DIV_S: ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, ++ fs, ft)); ++ break; ++ case ABS_S: ++ SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( ++ [](float fs) { return FPAbs(fs); }, fs)); ++ break; ++ case MOV_S: ++ SetFPUFloatResult(fd_reg(), fs); ++ break; ++ case NEG_S: ++ SetFPUFloatResult(fd_reg(), ++ FPUCanonalizeOperation([](float src) { return -src; }, ++ KeepSign::yes, fs)); ++ break; ++ case SQRT_S: ++ SetFPUFloatResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs)); ++ break; ++ case RSQRT_S: ++ SetFPUFloatResult( ++ fd_reg(), FPUCanonalizeOperation( ++ [](float src) { return 1.0 / std::sqrt(src); }, fs)); ++ break; ++ case RECIP_S: ++ SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( ++ [](float src) { return 1.0 / src; }, fs)); ++ break; ++ case C_F_D: ++ set_fcsr_bit(fcsr_cc, false); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_UN_D: ++ set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_EQ_D: ++ set_fcsr_bit(fcsr_cc, (fs == ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_UEQ_D: ++ set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_OLT_D: ++ set_fcsr_bit(fcsr_cc, (fs < ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_ULT_D: ++ set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_OLE_D: ++ set_fcsr_bit(fcsr_cc, (fs <= ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_ULE_D: ++ set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case CVT_D_S: ++ SetFPUDoubleResult(fd_reg(), static_cast(fs)); ++ break; ++ case CLASS_S: { // Mips64r6 instruction ++ // Convert float input to uint32_t for easier bit manipulation ++ uint32_t classed = bit_cast(fs); ++ ++ // Extracting sign, exponent and mantissa from the input float ++ uint32_t sign = (classed >> 31) & 1; ++ uint32_t exponent = (classed >> 23) & 0x000000FF; ++ uint32_t mantissa = classed & 0x007FFFFF; ++ uint32_t result; ++ float fResult; ++ ++ // Setting flags if input float is negative infinity, ++ // positive infinity, negative zero or positive zero ++ bool negInf = (classed == 0xFF800000); ++ bool posInf = (classed == 0x7F800000); ++ bool negZero = (classed == 0x80000000); ++ bool posZero = (classed == 0x00000000); ++ ++ bool signalingNan; ++ bool quietNan; ++ bool negSubnorm; ++ bool posSubnorm; ++ bool negNorm; ++ bool posNorm; ++ ++ // Setting flags if float is NaN ++ signalingNan = false; ++ quietNan = false; ++ if (!negInf && !posInf && (exponent == 0xFF)) { ++ quietNan = ((mantissa & 0x00200000) == 0) && ++ ((mantissa & (0x00200000 - 1)) == 0); ++ signalingNan = !quietNan; ++ } ++ ++ // Setting flags if float is subnormal number ++ posSubnorm = false; ++ negSubnorm = false; ++ if ((exponent == 0) && (mantissa != 0)) { ++ DCHECK(sign == 0 || sign == 1); ++ posSubnorm = (sign == 0); ++ negSubnorm = (sign == 1); ++ } ++ ++ // Setting flags if float is normal number ++ posNorm = false; ++ negNorm = false; ++ if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && ++ !quietNan && !negZero && !posZero) { ++ DCHECK(sign == 0 || sign == 1); ++ posNorm = (sign == 0); ++ negNorm = (sign == 1); ++ } ++ ++ // Calculating result according to description of CLASS.S instruction ++ result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | ++ (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | ++ (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; ++ ++ DCHECK_NE(result, 0); ++ ++ fResult = bit_cast(result); ++ SetFPUFloatResult(fd_reg(), fResult); ++ break; ++ } ++ case CVT_L_S: { ++ float rounded; ++ int64_t result; ++ round64_according_to_fcsr(fs, rounded, result, fs); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case CVT_W_S: { ++ float rounded; ++ int32_t result; ++ round_according_to_fcsr(fs, rounded, result, fs); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_word_invalid_result(fs, rounded); ++ } ++ break; ++ } ++ case TRUNC_W_S: { // Truncate single to word (round towards 0). ++ float rounded = trunc(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_word_invalid_result(fs, rounded); ++ } ++ } break; ++ case TRUNC_L_S: { // Mips64r2 instruction. ++ float rounded = trunc(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case ROUND_W_S: { ++ float rounded = std::floor(fs + 0.5); ++ int32_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_word_invalid_result(fs, rounded); ++ } ++ break; ++ } ++ case ROUND_L_S: { // Mips64r2 instruction. ++ float rounded = std::floor(fs + 0.5); ++ int64_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ int64_t i64 = static_cast(result); ++ SetFPUResult(fd_reg(), i64); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case FLOOR_L_S: { // Mips64r2 instruction. ++ float rounded = floor(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case FLOOR_W_S: // Round double to word towards negative infinity. ++ { ++ float rounded = std::floor(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_word_invalid_result(fs, rounded); ++ } ++ } break; ++ case CEIL_W_S: // Round double to word towards positive infinity. ++ { ++ float rounded = std::ceil(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_invalid_result(fs, rounded); ++ } ++ } break; ++ case CEIL_L_S: { // Mips64r2 instruction. ++ float rounded = ceil(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case MINA: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs)); ++ break; ++ case MAXA: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs)); ++ break; ++ case MIN: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), FPUMin(ft, fs)); ++ break; ++ case MAX: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), FPUMax(ft, fs)); ++ break; ++ case SEL: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); ++ break; ++ case SELEQZ_C: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult( ++ fd_reg(), ++ (ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg()) : 0.0); ++ break; ++ case SELNEZ_C: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUFloatResult( ++ fd_reg(), ++ (ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg()) : 0.0); ++ break; ++ case MOVZ_C: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ if (rt() == 0) { ++ SetFPUFloatResult(fd_reg(), fs); ++ } ++ break; ++ } ++ case MOVN_C: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ if (rt() != 0) { ++ SetFPUFloatResult(fd_reg(), fs); ++ } ++ break; ++ } ++ case MOVF: { ++ // Same function field for MOVT.D and MOVF.D ++ uint32_t ft_cc = (ft_reg() >> 2) & 0x7; ++ ft_cc = get_fcsr_condition_bit(ft_cc); ++ ++ if (instr_.Bit(16)) { // Read Tf bit. ++ // MOVT.D ++ if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); ++ } else { ++ // MOVF.D ++ if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); ++ } ++ break; ++ } ++ default: ++ // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S ++ // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterDRsType() { ++ double ft, fs, fd; ++ uint32_t cc, fcsr_cc; ++ fs = get_fpu_register_double(fs_reg()); ++ ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg()) ++ : 0.0; ++ fd = get_fpu_register_double(fd_reg()); ++ cc = instr_.FCccValue(); ++ fcsr_cc = get_fcsr_condition_bit(cc); ++ int64_t ft_int = bit_cast(ft); ++ int64_t fd_int = bit_cast(fd); ++ switch (instr_.FunctionFieldRaw()) { ++ case RINT: { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ double result, temp, temp_result; ++ double upper = std::ceil(fs); ++ double lower = std::floor(fs); ++ switch (get_fcsr_rounding_mode()) { ++ case kRoundToNearest: ++ if (upper - fs < fs - lower) { ++ result = upper; ++ } else if (upper - fs > fs - lower) { ++ result = lower; ++ } else { ++ temp_result = upper / 2; ++ double reminder = modf(temp_result, &temp); ++ if (reminder == 0) { ++ result = upper; ++ } else { ++ result = lower; ++ } ++ } ++ break; ++ case kRoundToZero: ++ result = (fs > 0 ? lower : upper); ++ break; ++ case kRoundToPlusInf: ++ result = upper; ++ break; ++ case kRoundToMinusInf: ++ result = lower; ++ break; ++ } ++ SetFPUDoubleResult(fd_reg(), result); ++ if (result != fs) { ++ set_fcsr_bit(kFCSRInexactFlagBit, true); ++ } ++ break; ++ } ++ case SEL: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); ++ break; ++ case SELEQZ_C: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); ++ break; ++ case SELNEZ_C: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); ++ break; ++ case MOVZ_C: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ if (rt() == 0) { ++ SetFPUDoubleResult(fd_reg(), fs); ++ } ++ break; ++ } ++ case MOVN_C: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ if (rt() != 0) { ++ SetFPUDoubleResult(fd_reg(), fs); ++ } ++ break; ++ } ++ case MOVF: { ++ // Same function field for MOVT.D and MOVF.D ++ uint32_t ft_cc = (ft_reg() >> 2) & 0x7; ++ ft_cc = get_fcsr_condition_bit(ft_cc); ++ if (instr_.Bit(16)) { // Read Tf bit. ++ // MOVT.D ++ if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); ++ } else { ++ // MOVF.D ++ if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); ++ } ++ break; ++ } ++ case MINA: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs)); ++ break; ++ case MAXA: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs)); ++ break; ++ case MIN: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs)); ++ break; ++ case MAX: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs)); ++ break; ++ case ADD_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs + rhs; }, fs, ft)); ++ break; ++ case SUB_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs - rhs; }, fs, ft)); ++ break; ++ case MADDF_D: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd)); ++ break; ++ case MSUBF_D: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd)); ++ break; ++ case MUL_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs * rhs; }, fs, ft)); ++ break; ++ case DIV_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation( ++ [](double lhs, double rhs) { return lhs / rhs; }, fs, ft)); ++ break; ++ case ABS_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs)); ++ break; ++ case MOV_D: ++ SetFPUDoubleResult(fd_reg(), fs); ++ break; ++ case NEG_D: ++ SetFPUDoubleResult(fd_reg(), ++ FPUCanonalizeOperation([](double src) { return -src; }, ++ KeepSign::yes, fs)); ++ break; ++ case SQRT_D: ++ SetFPUDoubleResult( ++ fd_reg(), ++ FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs)); ++ break; ++ case RSQRT_D: ++ SetFPUDoubleResult( ++ fd_reg(), FPUCanonalizeOperation( ++ [](double fs) { return 1.0 / std::sqrt(fs); }, fs)); ++ break; ++ case RECIP_D: ++ SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation( ++ [](double fs) { return 1.0 / fs; }, fs)); ++ break; ++ case C_UN_D: ++ set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_EQ_D: ++ set_fcsr_bit(fcsr_cc, (fs == ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_UEQ_D: ++ set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_OLT_D: ++ set_fcsr_bit(fcsr_cc, (fs < ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_ULT_D: ++ set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_OLE_D: ++ set_fcsr_bit(fcsr_cc, (fs <= ft)); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case C_ULE_D: ++ set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ case CVT_W_D: { // Convert double to word. ++ double rounded; ++ int32_t result; ++ round_according_to_fcsr(fs, rounded, result, fs); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_word_invalid_result(fs, rounded); ++ } ++ break; ++ } ++ case ROUND_W_D: // Round double to word (round half to even). ++ { ++ double rounded = std::floor(fs + 0.5); ++ int32_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_invalid_result(fs, rounded); ++ } ++ } break; ++ case TRUNC_W_D: // Truncate double to word (round towards 0). ++ { ++ double rounded = trunc(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_invalid_result(fs, rounded); ++ } ++ } break; ++ case FLOOR_W_D: // Round double to word towards negative infinity. ++ { ++ double rounded = std::floor(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_invalid_result(fs, rounded); ++ } ++ } break; ++ case CEIL_W_D: // Round double to word towards positive infinity. ++ { ++ double rounded = std::ceil(fs); ++ int32_t result = static_cast(rounded); ++ SetFPUWordResult2(fd_reg(), result); ++ if (set_fcsr_round_error(fs, rounded)) { ++ set_fpu_register_invalid_result(fs, rounded); ++ } ++ } break; ++ case CVT_S_D: // Convert double to float (single). ++ SetFPUFloatResult(fd_reg(), static_cast(fs)); ++ break; ++ case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. ++ double rounded; ++ int64_t result; ++ round64_according_to_fcsr(fs, rounded, result, fs); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case ROUND_L_D: { // Mips64r2 instruction. ++ double rounded = std::floor(fs + 0.5); ++ int64_t result = static_cast(rounded); ++ if ((result & 1) != 0 && result - fs == 0.5) { ++ // If the number is halfway between two integers, ++ // round to the even one. ++ result--; ++ } ++ int64_t i64 = static_cast(result); ++ SetFPUResult(fd_reg(), i64); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case TRUNC_L_D: { // Mips64r2 instruction. ++ double rounded = trunc(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case FLOOR_L_D: { // Mips64r2 instruction. ++ double rounded = floor(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case CEIL_L_D: { // Mips64r2 instruction. ++ double rounded = ceil(fs); ++ int64_t result = static_cast(rounded); ++ SetFPUResult(fd_reg(), result); ++ if (set_fcsr_round64_error(fs, rounded)) { ++ set_fpu_register_invalid_result64(fs, rounded); ++ } ++ break; ++ } ++ case CLASS_D: { // Mips64r6 instruction ++ // Convert double input to uint64_t for easier bit manipulation ++ uint64_t classed = bit_cast(fs); ++ ++ // Extracting sign, exponent and mantissa from the input double ++ uint32_t sign = (classed >> 63) & 1; ++ uint32_t exponent = (classed >> 52) & 0x00000000000007FF; ++ uint64_t mantissa = classed & 0x000FFFFFFFFFFFFF; ++ uint64_t result; ++ double dResult; ++ ++ // Setting flags if input double is negative infinity, ++ // positive infinity, negative zero or positive zero ++ bool negInf = (classed == 0xFFF0000000000000); ++ bool posInf = (classed == 0x7FF0000000000000); ++ bool negZero = (classed == 0x8000000000000000); ++ bool posZero = (classed == 0x0000000000000000); ++ ++ bool signalingNan; ++ bool quietNan; ++ bool negSubnorm; ++ bool posSubnorm; ++ bool negNorm; ++ bool posNorm; ++ ++ // Setting flags if double is NaN ++ signalingNan = false; ++ quietNan = false; ++ if (!negInf && !posInf && exponent == 0x7FF) { ++ quietNan = ((mantissa & 0x0008000000000000) != 0) && ++ ((mantissa & (0x0008000000000000 - 1)) == 0); ++ signalingNan = !quietNan; ++ } ++ ++ // Setting flags if double is subnormal number ++ posSubnorm = false; ++ negSubnorm = false; ++ if ((exponent == 0) && (mantissa != 0)) { ++ DCHECK(sign == 0 || sign == 1); ++ posSubnorm = (sign == 0); ++ negSubnorm = (sign == 1); ++ } ++ ++ // Setting flags if double is normal number ++ posNorm = false; ++ negNorm = false; ++ if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && ++ !quietNan && !negZero && !posZero) { ++ DCHECK(sign == 0 || sign == 1); ++ posNorm = (sign == 0); ++ negNorm = (sign == 1); ++ } ++ ++ // Calculating result according to description of CLASS.D instruction ++ result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | ++ (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | ++ (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; ++ ++ DCHECK_NE(result, 0); ++ ++ dResult = bit_cast(result); ++ SetFPUDoubleResult(fd_reg(), dResult); ++ break; ++ } ++ case C_F_D: { ++ set_fcsr_bit(fcsr_cc, false); ++ TraceRegWr(test_fcsr_bit(fcsr_cc)); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterWRsType() { ++ float fs = get_fpu_register_float(fs_reg()); ++ float ft = get_fpu_register_float(ft_reg()); ++ int64_t alu_out = 0x12345678; ++ switch (instr_.FunctionFieldRaw()) { ++ case CVT_S_W: // Convert word to float (single). ++ alu_out = get_fpu_register_signed_word(fs_reg()); ++ SetFPUFloatResult(fd_reg(), static_cast(alu_out)); ++ break; ++ case CVT_D_W: // Convert word to double. ++ alu_out = get_fpu_register_signed_word(fs_reg()); ++ SetFPUDoubleResult(fd_reg(), static_cast(alu_out)); ++ break; ++ case CMP_AF: ++ SetFPUWordResult2(fd_reg(), 0); ++ break; ++ case CMP_UN: ++ if (std::isnan(fs) || std::isnan(ft)) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_EQ: ++ if (fs == ft) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_UEQ: ++ if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_LT: ++ if (fs < ft) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_ULT: ++ if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_LE: ++ if (fs <= ft) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_ULE: ++ if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_OR: ++ if (!std::isnan(fs) && !std::isnan(ft)) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_UNE: ++ if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ case CMP_NE: ++ if (fs != ft) { ++ SetFPUWordResult2(fd_reg(), -1); ++ } else { ++ SetFPUWordResult2(fd_reg(), 0); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterLRsType() { ++ double fs = get_fpu_register_double(fs_reg()); ++ double ft = get_fpu_register_double(ft_reg()); ++ int64_t i64; ++ switch (instr_.FunctionFieldRaw()) { ++ case CVT_D_L: // Mips32r2 instruction. ++ i64 = get_fpu_register(fs_reg()); ++ SetFPUDoubleResult(fd_reg(), static_cast(i64)); ++ break; ++ case CVT_S_L: ++ i64 = get_fpu_register(fs_reg()); ++ SetFPUFloatResult(fd_reg(), static_cast(i64)); ++ break; ++ case CMP_AF: ++ SetFPUResult(fd_reg(), 0); ++ break; ++ case CMP_UN: ++ if (std::isnan(fs) || std::isnan(ft)) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_EQ: ++ if (fs == ft) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_UEQ: ++ if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_LT: ++ if (fs < ft) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_ULT: ++ if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_LE: ++ if (fs <= ft) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_ULE: ++ if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_OR: ++ if (!std::isnan(fs) && !std::isnan(ft)) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_UNE: ++ if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ case CMP_NE: ++ if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { ++ SetFPUResult(fd_reg(), -1); ++ } else { ++ SetFPUResult(fd_reg(), 0); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterCOP1() { ++ switch (instr_.RsFieldRaw()) { ++ case BC1: // Branch on coprocessor condition. ++ case BC1EQZ: ++ case BC1NEZ: ++ UNREACHABLE(); ++ break; ++ case CFC1: ++ // At the moment only FCSR is supported. ++ DCHECK_EQ(fs_reg(), kFCSRRegister); ++ SetResult(rt_reg(), FCSR_); ++ break; ++ case MFC1: ++ set_register(rt_reg(), ++ static_cast(get_fpu_register_word(fs_reg()))); ++ TraceRegWr(get_register(rt_reg()), WORD_DWORD); ++ break; ++ case DMFC1: ++ SetResult(rt_reg(), get_fpu_register(fs_reg())); ++ break; ++ case MFHC1: ++ SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg())); ++ break; ++ case CTC1: { ++ // At the moment only FCSR is supported. ++ DCHECK_EQ(fs_reg(), kFCSRRegister); ++ uint32_t reg = static_cast(rt()); ++ if (kArchVariant == kMips64r6) { ++ FCSR_ = reg | kFCSRNaN2008FlagMask; ++ } else { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ FCSR_ = reg & ~kFCSRNaN2008FlagMask; ++ } ++ TraceRegWr(FCSR_); ++ break; ++ } ++ case MTC1: ++ // Hardware writes upper 32-bits to zero on mtc1. ++ set_fpu_register_hi_word(fs_reg(), 0); ++ set_fpu_register_word(fs_reg(), static_cast(rt())); ++ TraceRegWr(get_fpu_register(fs_reg()), FLOAT_DOUBLE); ++ break; ++ case DMTC1: ++ SetFPUResult2(fs_reg(), rt()); ++ break; ++ case MTHC1: ++ set_fpu_register_hi_word(fs_reg(), static_cast(rt())); ++ TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); ++ break; ++ case S: ++ DecodeTypeRegisterSRsType(); ++ break; ++ case D: ++ DecodeTypeRegisterDRsType(); ++ break; ++ case W: ++ DecodeTypeRegisterWRsType(); ++ break; ++ case L: ++ DecodeTypeRegisterLRsType(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterCOP1X() { ++ switch (instr_.FunctionFieldRaw()) { ++ case MADD_S: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ float fr, ft, fs; ++ fr = get_fpu_register_float(fr_reg()); ++ fs = get_fpu_register_float(fs_reg()); ++ ft = get_fpu_register_float(ft_reg()); ++ SetFPUFloatResult(fd_reg(), fs * ft + fr); ++ break; ++ } ++ case MSUB_S: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ float fr, ft, fs; ++ fr = get_fpu_register_float(fr_reg()); ++ fs = get_fpu_register_float(fs_reg()); ++ ft = get_fpu_register_float(ft_reg()); ++ SetFPUFloatResult(fd_reg(), fs * ft - fr); ++ break; ++ } ++ case MADD_D: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ double fr, ft, fs; ++ fr = get_fpu_register_double(fr_reg()); ++ fs = get_fpu_register_double(fs_reg()); ++ ft = get_fpu_register_double(ft_reg()); ++ SetFPUDoubleResult(fd_reg(), fs * ft + fr); ++ break; ++ } ++ case MSUB_D: { ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ double fr, ft, fs; ++ fr = get_fpu_register_double(fr_reg()); ++ fs = get_fpu_register_double(fs_reg()); ++ ft = get_fpu_register_double(ft_reg()); ++ SetFPUDoubleResult(fd_reg(), fs * ft - fr); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterSPECIAL() { ++ int64_t i64hilo; ++ uint64_t u64hilo; ++ int64_t alu_out; ++ bool do_interrupt = false; ++ ++ switch (instr_.FunctionFieldRaw()) { ++ case SELEQZ_S: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetResult(rd_reg(), rt() == 0 ? rs() : 0); ++ break; ++ case SELNEZ_S: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetResult(rd_reg(), rt() != 0 ? rs() : 0); ++ break; ++ case JR: { ++ int64_t next_pc = rs(); ++ int64_t current_pc = get_pc(); ++ Instruction* branch_delay_instr = ++ reinterpret_cast(current_pc + Instruction::kInstrSize); ++ BranchDelayInstructionDecode(branch_delay_instr); ++ set_pc(next_pc); ++ pc_modified_ = true; ++ break; ++ } ++ case JALR: { ++ int64_t next_pc = rs(); ++ int64_t current_pc = get_pc(); ++ int32_t return_addr_reg = rd_reg(); ++ Instruction* branch_delay_instr = ++ reinterpret_cast(current_pc + Instruction::kInstrSize); ++ BranchDelayInstructionDecode(branch_delay_instr); ++ set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); ++ set_pc(next_pc); ++ pc_modified_ = true; ++ break; ++ } ++ case SLL: ++ SetResult(rd_reg(), static_cast(rt()) << sa()); ++ break; ++ case DSLL: ++ SetResult(rd_reg(), rt() << sa()); ++ break; ++ case DSLL32: ++ SetResult(rd_reg(), rt() << sa() << 32); ++ break; ++ case SRL: ++ if (rs_reg() == 0) { ++ // Regular logical right shift of a word by a fixed number of ++ // bits instruction. RS field is always equal to 0. ++ // Sign-extend the 32-bit result. ++ alu_out = static_cast(static_cast(rt_u()) >> sa()); ++ } else if (rs_reg() == 1) { ++ // Logical right-rotate of a word by a fixed number of bits. This ++ // is special case of SRL instruction, added in MIPS32 Release 2. ++ // RS field is equal to 00001. ++ alu_out = static_cast( ++ base::bits::RotateRight32(static_cast(rt_u()), ++ static_cast(sa()))); ++ } else { ++ UNREACHABLE(); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case DSRL: ++ if (rs_reg() == 0) { ++ // Regular logical right shift of a word by a fixed number of ++ // bits instruction. RS field is always equal to 0. ++ // Sign-extend the 64-bit result. ++ alu_out = static_cast(rt_u() >> sa()); ++ } else if (rs_reg() == 1) { ++ // Logical right-rotate of a word by a fixed number of bits. This ++ // is special case of SRL instruction, added in MIPS32 Release 2. ++ // RS field is equal to 00001. ++ alu_out = static_cast(base::bits::RotateRight64(rt_u(), sa())); ++ } else { ++ UNREACHABLE(); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case DSRL32: ++ if (rs_reg() == 0) { ++ // Regular logical right shift of a word by a fixed number of ++ // bits instruction. RS field is always equal to 0. ++ // Sign-extend the 64-bit result. ++ alu_out = static_cast(rt_u() >> sa() >> 32); ++ } else if (rs_reg() == 1) { ++ // Logical right-rotate of a word by a fixed number of bits. This ++ // is special case of SRL instruction, added in MIPS32 Release 2. ++ // RS field is equal to 00001. ++ alu_out = ++ static_cast(base::bits::RotateRight64(rt_u(), sa() + 32)); ++ } else { ++ UNREACHABLE(); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case SRA: ++ SetResult(rd_reg(), (int32_t)rt() >> sa()); ++ break; ++ case DSRA: ++ SetResult(rd_reg(), rt() >> sa()); ++ break; ++ case DSRA32: ++ SetResult(rd_reg(), rt() >> sa() >> 32); ++ break; ++ case SLLV: ++ SetResult(rd_reg(), (int32_t)rt() << rs()); ++ break; ++ case DSLLV: ++ SetResult(rd_reg(), rt() << rs()); ++ break; ++ case SRLV: ++ if (sa() == 0) { ++ // Regular logical right-shift of a word by a variable number of ++ // bits instruction. SA field is always equal to 0. ++ alu_out = static_cast((uint32_t)rt_u() >> rs()); ++ } else { ++ // Logical right-rotate of a word by a variable number of bits. ++ // This is special case od SRLV instruction, added in MIPS32 ++ // Release 2. SA field is equal to 00001. ++ alu_out = static_cast( ++ base::bits::RotateRight32(static_cast(rt_u()), ++ static_cast(rs_u()))); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case DSRLV: ++ if (sa() == 0) { ++ // Regular logical right-shift of a word by a variable number of ++ // bits instruction. SA field is always equal to 0. ++ alu_out = static_cast(rt_u() >> rs()); ++ } else { ++ // Logical right-rotate of a word by a variable number of bits. ++ // This is special case od SRLV instruction, added in MIPS32 ++ // Release 2. SA field is equal to 00001. ++ alu_out = ++ static_cast(base::bits::RotateRight64(rt_u(), rs_u())); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case SRAV: ++ SetResult(rd_reg(), (int32_t)rt() >> rs()); ++ break; ++ case DSRAV: ++ SetResult(rd_reg(), rt() >> rs()); ++ break; ++ case LSA: { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int8_t sa = lsa_sa() + 1; ++ int32_t _rt = static_cast(rt()); ++ int32_t _rs = static_cast(rs()); ++ int32_t res = _rs << sa; ++ res += _rt; ++ SetResult(rd_reg(), static_cast(res)); ++ break; ++ } ++ case DLSA: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); ++ break; ++ case MFHI: // MFHI == CLZ on R6. ++ if (kArchVariant != kMips64r6) { ++ DCHECK_EQ(sa(), 0); ++ alu_out = get_register(HI); ++ } else { ++ // MIPS spec: If no bits were set in GPR rs(), the result written to ++ // GPR rd() is 32. ++ DCHECK_EQ(sa(), 1); ++ alu_out = base::bits::CountLeadingZeros32(static_cast(rs_u())); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ case MFLO: // MFLO == DCLZ on R6. ++ if (kArchVariant != kMips64r6) { ++ DCHECK_EQ(sa(), 0); ++ alu_out = get_register(LO); ++ } else { ++ // MIPS spec: If no bits were set in GPR rs(), the result written to ++ // GPR rd() is 64. ++ DCHECK_EQ(sa(), 1); ++ alu_out = base::bits::CountLeadingZeros64(static_cast(rs_u())); ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ // Instructions using HI and LO registers. ++ case MULT: { // MULT == D_MUL_MUH. ++ int32_t rs_lo = static_cast(rs()); ++ int32_t rt_lo = static_cast(rt()); ++ i64hilo = static_cast(rs_lo) * static_cast(rt_lo); ++ if (kArchVariant != kMips64r6) { ++ set_register(LO, static_cast(i64hilo & 0xFFFFFFFF)); ++ set_register(HI, static_cast(i64hilo >> 32)); ++ } else { ++ switch (sa()) { ++ case MUL_OP: ++ SetResult(rd_reg(), static_cast(i64hilo & 0xFFFFFFFF)); ++ break; ++ case MUH_OP: ++ SetResult(rd_reg(), static_cast(i64hilo >> 32)); ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ } ++ break; ++ } ++ case MULTU: ++ u64hilo = static_cast(rs_u() & 0xFFFFFFFF) * ++ static_cast(rt_u() & 0xFFFFFFFF); ++ if (kArchVariant != kMips64r6) { ++ set_register(LO, static_cast(u64hilo & 0xFFFFFFFF)); ++ set_register(HI, static_cast(u64hilo >> 32)); ++ } else { ++ switch (sa()) { ++ case MUL_OP: ++ SetResult(rd_reg(), static_cast(u64hilo & 0xFFFFFFFF)); ++ break; ++ case MUH_OP: ++ SetResult(rd_reg(), static_cast(u64hilo >> 32)); ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ } ++ break; ++ case DMULT: // DMULT == D_MUL_MUH. ++ if (kArchVariant != kMips64r6) { ++ set_register(LO, rs() * rt()); ++ set_register(HI, MultiplyHighSigned(rs(), rt())); ++ } else { ++ switch (sa()) { ++ case MUL_OP: ++ SetResult(rd_reg(), rs() * rt()); ++ break; ++ case MUH_OP: ++ SetResult(rd_reg(), MultiplyHighSigned(rs(), rt())); ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ } ++ break; ++ case DMULTU: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ case DIV: ++ case DDIV: { ++ const int64_t int_min_value = ++ instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; ++ switch (kArchVariant) { ++ case kMips64r2: ++ // Divide by zero and overflow was not checked in the ++ // configuration step - div and divu do not raise exceptions. On ++ // division by 0 the result will be UNPREDICTABLE. On overflow ++ // (INT_MIN/-1), return INT_MIN which is what the hardware does. ++ if (rs() == int_min_value && rt() == -1) { ++ set_register(LO, int_min_value); ++ set_register(HI, 0); ++ } else if (rt() != 0) { ++ set_register(LO, rs() / rt()); ++ set_register(HI, rs() % rt()); ++ } ++ break; ++ case kMips64r6: ++ switch (sa()) { ++ case DIV_OP: ++ if (rs() == int_min_value && rt() == -1) { ++ SetResult(rd_reg(), int_min_value); ++ } else if (rt() != 0) { ++ SetResult(rd_reg(), rs() / rt()); ++ } ++ break; ++ case MOD_OP: ++ if (rs() == int_min_value && rt() == -1) { ++ SetResult(rd_reg(), 0); ++ } else if (rt() != 0) { ++ SetResult(rd_reg(), rs() % rt()); ++ } ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ break; ++ default: ++ break; ++ } ++ break; ++ } ++ case DIVU: ++ switch (kArchVariant) { ++ case kMips64r6: { ++ uint32_t rt_u_32 = static_cast(rt_u()); ++ uint32_t rs_u_32 = static_cast(rs_u()); ++ switch (sa()) { ++ case DIV_OP: ++ if (rt_u_32 != 0) { ++ SetResult(rd_reg(), rs_u_32 / rt_u_32); ++ } ++ break; ++ case MOD_OP: ++ if (rt_u() != 0) { ++ SetResult(rd_reg(), rs_u_32 % rt_u_32); ++ } ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ } break; ++ default: { ++ if (rt_u() != 0) { ++ uint32_t rt_u_32 = static_cast(rt_u()); ++ uint32_t rs_u_32 = static_cast(rs_u()); ++ set_register(LO, rs_u_32 / rt_u_32); ++ set_register(HI, rs_u_32 % rt_u_32); ++ } ++ } ++ } ++ break; ++ case DDIVU: ++ switch (kArchVariant) { ++ case kMips64r6: { ++ switch (instr_.SaValue()) { ++ case DIV_OP: ++ if (rt_u() != 0) { ++ SetResult(rd_reg(), rs_u() / rt_u()); ++ } ++ break; ++ case MOD_OP: ++ if (rt_u() != 0) { ++ SetResult(rd_reg(), rs_u() % rt_u()); ++ } ++ break; ++ default: ++ UNIMPLEMENTED_MIPS(); ++ break; ++ } ++ } break; ++ default: { ++ if (rt_u() != 0) { ++ set_register(LO, rs_u() / rt_u()); ++ set_register(HI, rs_u() % rt_u()); ++ } ++ } ++ } ++ break; ++ case ADD: ++ case DADD: ++ if (HaveSameSign(rs(), rt())) { ++ if (rs() > 0) { ++ if (rs() > (Registers::kMaxValue - rt())) { ++ SignalException(kIntegerOverflow); ++ } ++ } else if (rs() < 0) { ++ if (rs() < (Registers::kMinValue - rt())) { ++ SignalException(kIntegerUnderflow); ++ } ++ } ++ } ++ SetResult(rd_reg(), rs() + rt()); ++ break; ++ case ADDU: { ++ int32_t alu32_out = static_cast(rs() + rt()); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ break; ++ } ++ case DADDU: ++ SetResult(rd_reg(), rs() + rt()); ++ break; ++ case SUB: ++ case DSUB: ++ if (!HaveSameSign(rs(), rt())) { ++ if (rs() > 0) { ++ if (rs() > (Registers::kMaxValue + rt())) { ++ SignalException(kIntegerOverflow); ++ } ++ } else if (rs() < 0) { ++ if (rs() < (Registers::kMinValue + rt())) { ++ SignalException(kIntegerUnderflow); ++ } ++ } ++ } ++ SetResult(rd_reg(), rs() - rt()); ++ break; ++ case SUBU: { ++ int32_t alu32_out = static_cast(rs() - rt()); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rd_reg(), static_cast(alu32_out)); ++ break; ++ } ++ case DSUBU: ++ SetResult(rd_reg(), rs() - rt()); ++ break; ++ case AND: ++ SetResult(rd_reg(), rs() & rt()); ++ break; ++ case OR: ++ SetResult(rd_reg(), rs() | rt()); ++ break; ++ case XOR: ++ SetResult(rd_reg(), rs() ^ rt()); ++ break; ++ case NOR: ++ SetResult(rd_reg(), ~(rs() | rt())); ++ break; ++ case SLT: ++ SetResult(rd_reg(), rs() < rt() ? 1 : 0); ++ break; ++ case SLTU: ++ SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); ++ break; ++ // Break and trap instructions. ++ case BREAK: ++ do_interrupt = true; ++ break; ++ case TGE: ++ do_interrupt = rs() >= rt(); ++ break; ++ case TGEU: ++ do_interrupt = rs_u() >= rt_u(); ++ break; ++ case TLT: ++ do_interrupt = rs() < rt(); ++ break; ++ case TLTU: ++ do_interrupt = rs_u() < rt_u(); ++ break; ++ case TEQ: ++ do_interrupt = rs() == rt(); ++ break; ++ case TNE: ++ do_interrupt = rs() != rt(); ++ break; ++ case SYNC: ++ // TODO(palfia): Ignore sync instruction for now. ++ break; ++ // Conditional moves. ++ case MOVN: ++ if (rt()) { ++ SetResult(rd_reg(), rs()); ++ } ++ break; ++ case MOVCI: { ++ uint32_t cc = instr_.FBccValue(); ++ uint32_t fcsr_cc = get_fcsr_condition_bit(cc); ++ if (instr_.Bit(16)) { // Read Tf bit. ++ if (test_fcsr_bit(fcsr_cc)) SetResult(rd_reg(), rs()); ++ } else { ++ if (!test_fcsr_bit(fcsr_cc)) SetResult(rd_reg(), rs()); ++ } ++ break; ++ } ++ case MOVZ: ++ if (!rt()) { ++ SetResult(rd_reg(), rs()); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ if (do_interrupt) { ++ SoftwareInterrupt(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterSPECIAL2() { ++ int64_t alu_out; ++ switch (instr_.FunctionFieldRaw()) { ++ case MUL: ++ alu_out = static_cast(rs_u()) * static_cast(rt_u()); ++ SetResult(rd_reg(), alu_out); ++ // HI and LO are UNPREDICTABLE after the operation. ++ set_register(LO, Unpredictable); ++ set_register(HI, Unpredictable); ++ break; ++ case CLZ: ++ // MIPS32 spec: If no bits were set in GPR rs(), the result written to ++ // GPR rd is 32. ++ alu_out = base::bits::CountLeadingZeros32(static_cast(rs_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ case DCLZ: ++ // MIPS64 spec: If no bits were set in GPR rs(), the result written to ++ // GPR rd is 64. ++ alu_out = base::bits::CountLeadingZeros64(static_cast(rs_u())); ++ SetResult(rd_reg(), alu_out); ++ break; ++ default: ++ alu_out = 0x12345678; ++ UNREACHABLE(); ++ } ++} ++ ++ ++void Simulator::DecodeTypeRegisterSPECIAL3() { ++ int64_t alu_out; ++ switch (instr_.FunctionFieldRaw()) { ++ case EXT: { // Mips32r2 instruction. ++ // Interpret rd field as 5-bit msbd of extract. ++ uint16_t msbd = rd_reg(); ++ // Interpret sa field as 5-bit lsb of extract. ++ uint16_t lsb = sa(); ++ uint16_t size = msbd + 1; ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = static_cast((rs_u() & (mask << lsb)) >> lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DEXT: { // Mips64r2 instruction. ++ // Interpret rd field as 5-bit msbd of extract. ++ uint16_t msbd = rd_reg(); ++ // Interpret sa field as 5-bit lsb of extract. ++ uint16_t lsb = sa(); ++ uint16_t size = msbd + 1; ++ uint64_t mask = (size == 64) ? UINT64_MAX : (1ULL << size) - 1; ++ alu_out = static_cast((rs_u() & (mask << lsb)) >> lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DEXTM: { ++ // Interpret rd field as 5-bit msbdminus32 of extract. ++ uint16_t msbdminus32 = rd_reg(); ++ // Interpret sa field as 5-bit lsb of extract. ++ uint16_t lsb = sa(); ++ uint16_t size = msbdminus32 + 1 + 32; ++ uint64_t mask = (size == 64) ? UINT64_MAX : (1ULL << size) - 1; ++ alu_out = static_cast((rs_u() & (mask << lsb)) >> lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DEXTU: { ++ // Interpret rd field as 5-bit msbd of extract. ++ uint16_t msbd = rd_reg(); ++ // Interpret sa field as 5-bit lsbminus32 of extract and add 32 to get ++ // lsb. ++ uint16_t lsb = sa() + 32; ++ uint16_t size = msbd + 1; ++ uint64_t mask = (size == 64) ? UINT64_MAX : (1ULL << size) - 1; ++ alu_out = static_cast((rs_u() & (mask << lsb)) >> lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case INS: { // Mips32r2 instruction. ++ // Interpret rd field as 5-bit msb of insert. ++ uint16_t msb = rd_reg(); ++ // Interpret sa field as 5-bit lsb of insert. ++ uint16_t lsb = sa(); ++ uint16_t size = msb - lsb + 1; ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = static_cast((rt_u() & ~(mask << lsb)) | ++ ((rs_u() & mask) << lsb)); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DINS: { // Mips64r2 instruction. ++ // Interpret rd field as 5-bit msb of insert. ++ uint16_t msb = rd_reg(); ++ // Interpret sa field as 5-bit lsb of insert. ++ uint16_t lsb = sa(); ++ uint16_t size = msb - lsb + 1; ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DINSM: { // Mips64r2 instruction. ++ // Interpret rd field as 5-bit msbminus32 of insert. ++ uint16_t msbminus32 = rd_reg(); ++ // Interpret sa field as 5-bit lsb of insert. ++ uint16_t lsb = sa(); ++ uint16_t size = msbminus32 + 32 - lsb + 1; ++ uint64_t mask; ++ if (size < 64) ++ mask = (1ULL << size) - 1; ++ else ++ mask = std::numeric_limits::max(); ++ alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case DINSU: { // Mips64r2 instruction. ++ // Interpret rd field as 5-bit msbminus32 of insert. ++ uint16_t msbminus32 = rd_reg(); ++ // Interpret rd field as 5-bit lsbminus32 of insert. ++ uint16_t lsbminus32 = sa(); ++ uint16_t lsb = lsbminus32 + 32; ++ uint16_t size = msbminus32 + 32 - lsb + 1; ++ uint64_t mask = (1ULL << size) - 1; ++ alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); ++ SetResult(rt_reg(), alu_out); ++ break; ++ } ++ case BSHFL: { ++ int32_t sa = instr_.SaFieldRaw() >> kSaShift; ++ switch (sa) { ++ case BITSWAP: { ++ uint32_t input = static_cast(rt()); ++ uint32_t output = 0; ++ uint8_t i_byte, o_byte; ++ ++ // Reverse the bit in byte for each individual byte ++ for (int i = 0; i < 4; i++) { ++ output = output >> 8; ++ i_byte = input & 0xFF; ++ ++ // Fast way to reverse bits in byte ++ // Devised by Sean Anderson, July 13, 2001 ++ o_byte = static_cast(((i_byte * 0x0802LU & 0x22110LU) | ++ (i_byte * 0x8020LU & 0x88440LU)) * ++ 0x10101LU >> ++ 16); ++ ++ output = output | (static_cast(o_byte << 24)); ++ input = input >> 8; ++ } ++ ++ alu_out = static_cast(static_cast(output)); ++ break; ++ } ++ case SEB: { ++ uint8_t input = static_cast(rt()); ++ uint32_t output = input; ++ uint32_t mask = 0x00000080; ++ ++ // Extending sign ++ if (mask & input) { ++ output |= 0xFFFFFF00; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ case SEH: { ++ uint16_t input = static_cast(rt()); ++ uint32_t output = input; ++ uint32_t mask = 0x00008000; ++ ++ // Extending sign ++ if (mask & input) { ++ output |= 0xFFFF0000; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ case WSBH: { ++ uint32_t input = static_cast(rt()); ++ uint64_t output = 0; ++ ++ uint32_t mask = 0xFF000000; ++ for (int i = 0; i < 4; i++) { ++ uint32_t tmp = mask & input; ++ if (i % 2 == 0) { ++ tmp = tmp >> 8; ++ } else { ++ tmp = tmp << 8; ++ } ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ mask = 0x80000000; ++ ++ // Extending sign ++ if (mask & output) { ++ output |= 0xFFFFFFFF00000000; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ default: { ++ const uint8_t bp2 = instr_.Bp2Value(); ++ sa >>= kBp2Bits; ++ switch (sa) { ++ case ALIGN: { ++ if (bp2 == 0) { ++ alu_out = static_cast(rt()); ++ } else { ++ uint64_t rt_hi = rt() << (8 * bp2); ++ uint64_t rs_lo = rs() >> (8 * (4 - bp2)); ++ alu_out = static_cast(rt_hi | rs_lo); ++ } ++ break; ++ } ++ default: ++ alu_out = 0x12345678; ++ UNREACHABLE(); ++ break; ++ } ++ break; ++ } ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ case DBSHFL: { ++ int32_t sa = instr_.SaFieldRaw() >> kSaShift; ++ switch (sa) { ++ case DBITSWAP: { ++ switch (sa) { ++ case DBITSWAP_SA: { // Mips64r6 ++ uint64_t input = static_cast(rt()); ++ uint64_t output = 0; ++ uint8_t i_byte, o_byte; ++ ++ // Reverse the bit in byte for each individual byte ++ for (int i = 0; i < 8; i++) { ++ output = output >> 8; ++ i_byte = input & 0xFF; ++ ++ // Fast way to reverse bits in byte ++ // Devised by Sean Anderson, July 13, 2001 ++ o_byte = ++ static_cast(((i_byte * 0x0802LU & 0x22110LU) | ++ (i_byte * 0x8020LU & 0x88440LU)) * ++ 0x10101LU >> ++ 16); ++ ++ output = output | ((static_cast(o_byte) << 56)); ++ input = input >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ } ++ break; ++ } ++ case DSBH: { ++ uint64_t input = static_cast(rt()); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFF00000000000000; ++ for (int i = 0; i < 8; i++) { ++ uint64_t tmp = mask & input; ++ if (i % 2 == 0) ++ tmp = tmp >> 8; ++ else ++ tmp = tmp << 8; ++ ++ output = output | tmp; ++ mask = mask >> 8; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ case DSHD: { ++ uint64_t input = static_cast(rt()); ++ uint64_t output = 0; ++ ++ uint64_t mask = 0xFFFF000000000000; ++ for (int i = 0; i < 4; i++) { ++ uint64_t tmp = mask & input; ++ if (i == 0) ++ tmp = tmp >> 48; ++ else if (i == 1) ++ tmp = tmp >> 16; ++ else if (i == 2) ++ tmp = tmp << 16; ++ else ++ tmp = tmp << 48; ++ output = output | tmp; ++ mask = mask >> 16; ++ } ++ ++ alu_out = static_cast(output); ++ break; ++ } ++ default: { ++ const uint8_t bp3 = instr_.Bp3Value(); ++ sa >>= kBp3Bits; ++ switch (sa) { ++ case DALIGN: { ++ if (bp3 == 0) { ++ alu_out = static_cast(rt()); ++ } else { ++ uint64_t rt_hi = rt() << (8 * bp3); ++ uint64_t rs_lo = rs() >> (8 * (8 - bp3)); ++ alu_out = static_cast(rt_hi | rs_lo); ++ } ++ break; ++ } ++ default: ++ alu_out = 0x12345678; ++ UNREACHABLE(); ++ break; ++ } ++ break; ++ } ++ } ++ SetResult(rd_reg(), alu_out); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++int Simulator::DecodeMsaDataFormat() { ++ int df = -1; ++ if (instr_.IsMSABranchInstr()) { ++ switch (instr_.RsFieldRaw()) { ++ case BZ_V: ++ case BNZ_V: ++ df = MSA_VECT; ++ break; ++ case BZ_B: ++ case BNZ_B: ++ df = MSA_BYTE; ++ break; ++ case BZ_H: ++ case BNZ_H: ++ df = MSA_HALF; ++ break; ++ case BZ_W: ++ case BNZ_W: ++ df = MSA_WORD; ++ break; ++ case BZ_D: ++ case BNZ_D: ++ df = MSA_DWORD; ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } else { ++ int DF[] = {MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD}; ++ switch (instr_.MSAMinorOpcodeField()) { ++ case kMsaMinorI5: ++ case kMsaMinorI10: ++ case kMsaMinor3R: ++ df = DF[instr_.Bits(22, 21)]; ++ break; ++ case kMsaMinorMI10: ++ df = DF[instr_.Bits(1, 0)]; ++ break; ++ case kMsaMinorBIT: ++ df = DF[instr_.MsaBitDf()]; ++ break; ++ case kMsaMinorELM: ++ df = DF[instr_.MsaElmDf()]; ++ break; ++ case kMsaMinor3RF: { ++ uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; ++ switch (opcode) { ++ case FEXDO: ++ case FTQ: ++ case MUL_Q: ++ case MADD_Q: ++ case MSUB_Q: ++ case MULR_Q: ++ case MADDR_Q: ++ case MSUBR_Q: ++ df = DF[1 + instr_.Bit(21)]; ++ break; ++ default: ++ df = DF[2 + instr_.Bit(21)]; ++ break; ++ } ++ } break; ++ case kMsaMinor2R: ++ df = DF[instr_.Bits(17, 16)]; ++ break; ++ case kMsaMinor2RF: ++ df = DF[2 + instr_.Bit(16)]; ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ } ++ return df; ++} ++ ++void Simulator::DecodeTypeMsaI8() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaI8Mask; ++ int8_t i8 = instr_.MsaImm8Value(); ++ msa_reg_t ws, wd; ++ ++ switch (opcode) { ++ case ANDI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = ws.b[i] & i8; ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case ORI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = ws.b[i] | i8; ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case NORI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = ~(ws.b[i] | i8); ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case XORI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = ws.b[i] ^ i8; ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case BMNZI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ get_msa_register(instr_.WdValue(), wd.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = (ws.b[i] & i8) | (wd.b[i] & ~i8); ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case BMZI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ get_msa_register(instr_.WdValue(), wd.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = (ws.b[i] & ~i8) | (wd.b[i] & i8); ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case BSELI_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ get_msa_register(instr_.WdValue(), wd.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = (ws.b[i] & ~wd.b[i]) | (wd.b[i] & i8); ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case SHF_B: ++ get_msa_register(instr_.WsValue(), ws.b); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ int j = i % 4; ++ int k = (i8 >> (2 * j)) & 0x3; ++ wd.b[i] = ws.b[i - j + k]; ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ case SHF_H: ++ get_msa_register(instr_.WsValue(), ws.h); ++ for (int i = 0; i < kMSALanesHalf; i++) { ++ int j = i % 4; ++ int k = (i8 >> (2 * j)) & 0x3; ++ wd.h[i] = ws.h[i - j + k]; ++ } ++ set_msa_register(instr_.WdValue(), wd.h); ++ TraceMSARegWr(wd.h); ++ break; ++ case SHF_W: ++ get_msa_register(instr_.WsValue(), ws.w); ++ for (int i = 0; i < kMSALanesWord; i++) { ++ int j = (i8 >> (2 * i)) & 0x3; ++ wd.w[i] = ws.w[j]; ++ } ++ set_msa_register(instr_.WdValue(), wd.w); ++ TraceMSARegWr(wd.w); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++template ++T Simulator::MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5) { ++ T res; ++ uint32_t ui5 = i5 & 0x1Fu; ++ uint64_t ws_u64 = static_cast(ws); ++ uint64_t ui5_u64 = static_cast(ui5); ++ ++ switch (opcode) { ++ case ADDVI: ++ res = static_cast(ws + ui5); ++ break; ++ case SUBVI: ++ res = static_cast(ws - ui5); ++ break; ++ case MAXI_S: ++ res = static_cast(Max(ws, static_cast(i5))); ++ break; ++ case MINI_S: ++ res = static_cast(Min(ws, static_cast(i5))); ++ break; ++ case MAXI_U: ++ res = static_cast(Max(ws_u64, ui5_u64)); ++ break; ++ case MINI_U: ++ res = static_cast(Min(ws_u64, ui5_u64)); ++ break; ++ case CEQI: ++ res = static_cast(!Compare(ws, static_cast(i5)) ? -1ull : 0ull); ++ break; ++ case CLTI_S: ++ res = static_cast((Compare(ws, static_cast(i5)) == -1) ? -1ull ++ : 0ull); ++ break; ++ case CLTI_U: ++ res = static_cast((Compare(ws_u64, ui5_u64) == -1) ? -1ull : 0ull); ++ break; ++ case CLEI_S: ++ res = ++ static_cast((Compare(ws, static_cast(i5)) != 1) ? -1ull : 0ull); ++ break; ++ case CLEI_U: ++ res = static_cast((Compare(ws_u64, ui5_u64) != 1) ? -1ull : 0ull); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ return res; ++} ++ ++void Simulator::DecodeTypeMsaI5() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; ++ msa_reg_t ws, wd; ++ ++ // sign extend 5bit value to int32_t ++ int32_t i5 = static_cast(instr_.MsaImm5Value() << 27) >> 27; ++ ++#define MSA_I5_DF(elem, num_of_lanes) \ ++ get_msa_register(instr_.WsValue(), ws.elem); \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ wd.elem[i] = MsaI5InstrHelper(opcode, ws.elem[i], i5); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ MSA_I5_DF(b, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ MSA_I5_DF(h, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ MSA_I5_DF(w, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ MSA_I5_DF(d, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef MSA_I5_DF ++} ++ ++void Simulator::DecodeTypeMsaI10() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask; ++ int64_t s10 = (static_cast(instr_.MsaImm10Value()) << 54) >> 54; ++ msa_reg_t wd; ++ ++#define MSA_I10_DF(elem, num_of_lanes, T) \ ++ for (int i = 0; i < num_of_lanes; ++i) { \ ++ wd.elem[i] = static_cast(s10); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ if (opcode == LDI) { ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ MSA_I10_DF(b, kMSALanesByte, int8_t); ++ break; ++ case MSA_HALF: ++ MSA_I10_DF(h, kMSALanesHalf, int16_t); ++ break; ++ case MSA_WORD: ++ MSA_I10_DF(w, kMSALanesWord, int32_t); ++ break; ++ case MSA_DWORD: ++ MSA_I10_DF(d, kMSALanesDword, int64_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } else { ++ UNREACHABLE(); ++ } ++#undef MSA_I10_DF ++} ++ ++void Simulator::DecodeTypeMsaELM() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaLongerELMMask; ++ int32_t n = instr_.MsaElmNValue(); ++ int64_t alu_out; ++ switch (opcode) { ++ case CTCMSA: ++ DCHECK_EQ(sa(), kMSACSRRegister); ++ MSACSR_ = bit_cast( ++ static_cast(registers_[rd_reg()] & kMaxUInt32)); ++ TraceRegWr(static_cast(MSACSR_)); ++ break; ++ case CFCMSA: ++ DCHECK_EQ(rd_reg(), kMSACSRRegister); ++ SetResult(sa(), static_cast(bit_cast(MSACSR_))); ++ break; ++ case MOVE_V: { ++ msa_reg_t ws; ++ get_msa_register(ws_reg(), &ws); ++ set_msa_register(wd_reg(), &ws); ++ TraceMSARegWr(&ws); ++ } break; ++ default: ++ opcode &= kMsaELMMask; ++ switch (opcode) { ++ case COPY_S: ++ case COPY_U: { ++ msa_reg_t ws; ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ DCHECK_LT(n, kMSALanesByte); ++ get_msa_register(instr_.WsValue(), ws.b); ++ alu_out = static_cast(ws.b[n]); ++ SetResult(wd_reg(), ++ (opcode == COPY_U) ? alu_out & 0xFFu : alu_out); ++ break; ++ case MSA_HALF: ++ DCHECK_LT(n, kMSALanesHalf); ++ get_msa_register(instr_.WsValue(), ws.h); ++ alu_out = static_cast(ws.h[n]); ++ SetResult(wd_reg(), ++ (opcode == COPY_U) ? alu_out & 0xFFFFu : alu_out); ++ break; ++ case MSA_WORD: ++ DCHECK_LT(n, kMSALanesWord); ++ get_msa_register(instr_.WsValue(), ws.w); ++ alu_out = static_cast(ws.w[n]); ++ SetResult(wd_reg(), ++ (opcode == COPY_U) ? alu_out & 0xFFFFFFFFu : alu_out); ++ break; ++ case MSA_DWORD: ++ DCHECK_LT(n, kMSALanesDword); ++ get_msa_register(instr_.WsValue(), ws.d); ++ alu_out = static_cast(ws.d[n]); ++ SetResult(wd_reg(), alu_out); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } break; ++ case INSERT: { ++ msa_reg_t wd; ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: { ++ DCHECK_LT(n, kMSALanesByte); ++ int64_t rs = get_register(instr_.WsValue()); ++ get_msa_register(instr_.WdValue(), wd.b); ++ wd.b[n] = rs & 0xFFu; ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ } ++ case MSA_HALF: { ++ DCHECK_LT(n, kMSALanesHalf); ++ int64_t rs = get_register(instr_.WsValue()); ++ get_msa_register(instr_.WdValue(), wd.h); ++ wd.h[n] = rs & 0xFFFFu; ++ set_msa_register(instr_.WdValue(), wd.h); ++ TraceMSARegWr(wd.h); ++ break; ++ } ++ case MSA_WORD: { ++ DCHECK_LT(n, kMSALanesWord); ++ int64_t rs = get_register(instr_.WsValue()); ++ get_msa_register(instr_.WdValue(), wd.w); ++ wd.w[n] = rs & 0xFFFFFFFFu; ++ set_msa_register(instr_.WdValue(), wd.w); ++ TraceMSARegWr(wd.w); ++ break; ++ } ++ case MSA_DWORD: { ++ DCHECK_LT(n, kMSALanesDword); ++ int64_t rs = get_register(instr_.WsValue()); ++ get_msa_register(instr_.WdValue(), wd.d); ++ wd.d[n] = rs; ++ set_msa_register(instr_.WdValue(), wd.d); ++ TraceMSARegWr(wd.d); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++ } break; ++ case SLDI: { ++ uint8_t v[32]; ++ msa_reg_t ws; ++ msa_reg_t wd; ++ get_msa_register(ws_reg(), &ws); ++ get_msa_register(wd_reg(), &wd); ++#define SLDI_DF(s, k) \ ++ for (unsigned i = 0; i < s; i++) { \ ++ v[i] = ws.b[s * k + i]; \ ++ v[i + s] = wd.b[s * k + i]; \ ++ } \ ++ for (unsigned i = 0; i < s; i++) { \ ++ wd.b[s * k + i] = v[i + n]; \ ++ } ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ DCHECK(n < kMSALanesByte); ++ SLDI_DF(kMSARegSize / sizeof(int8_t) / kBitsPerByte, 0) ++ break; ++ case MSA_HALF: ++ DCHECK(n < kMSALanesHalf); ++ for (int k = 0; k < 2; ++k) { ++ SLDI_DF(kMSARegSize / sizeof(int16_t) / kBitsPerByte, k) ++ } ++ break; ++ case MSA_WORD: ++ DCHECK(n < kMSALanesWord); ++ for (int k = 0; k < 4; ++k) { ++ SLDI_DF(kMSARegSize / sizeof(int32_t) / kBitsPerByte, k) ++ } ++ break; ++ case MSA_DWORD: ++ DCHECK(n < kMSALanesDword); ++ for (int k = 0; k < 8; ++k) { ++ SLDI_DF(kMSARegSize / sizeof(int64_t) / kBitsPerByte, k) ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ set_msa_register(wd_reg(), &wd); ++ TraceMSARegWr(&wd); ++ } break; ++#undef SLDI_DF ++ case SPLATI: ++ case INSVE: ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++} ++ ++template ++T Simulator::MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m) { ++ typedef typename std::make_unsigned::type uT; ++ T res; ++ switch (opcode) { ++ case SLLI: ++ res = static_cast(ws << m); ++ break; ++ case SRAI: ++ res = static_cast(ArithmeticShiftRight(ws, m)); ++ break; ++ case SRLI: ++ res = static_cast(static_cast(ws) >> m); ++ break; ++ case BCLRI: ++ res = static_cast(static_cast(~(1ull << m)) & ws); ++ break; ++ case BSETI: ++ res = static_cast(static_cast(1ull << m) | ws); ++ break; ++ case BNEGI: ++ res = static_cast(static_cast(1ull << m) ^ ws); ++ break; ++ case BINSLI: { ++ int elem_size = 8 * sizeof(T); ++ int bits = m + 1; ++ if (bits == elem_size) { ++ res = static_cast(ws); ++ } else { ++ uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); ++ res = static_cast((static_cast(mask) & ws) | ++ (static_cast(~mask) & wd)); ++ } ++ } break; ++ case BINSRI: { ++ int elem_size = 8 * sizeof(T); ++ int bits = m + 1; ++ if (bits == elem_size) { ++ res = static_cast(ws); ++ } else { ++ uint64_t mask = (1ull << bits) - 1; ++ res = static_cast((static_cast(mask) & ws) | ++ (static_cast(~mask) & wd)); ++ } ++ } break; ++ case SAT_S: { ++#define M_MAX_INT(x) static_cast((1LL << ((x)-1)) - 1) ++#define M_MIN_INT(x) static_cast(-(1LL << ((x)-1))) ++ int shift = 64 - 8 * sizeof(T); ++ int64_t ws_i64 = (static_cast(ws) << shift) >> shift; ++ res = static_cast(ws_i64 < M_MIN_INT(m + 1) ++ ? M_MIN_INT(m + 1) ++ : ws_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1) ++ : ws_i64); ++#undef M_MAX_INT ++#undef M_MIN_INT ++ } break; ++ case SAT_U: { ++#define M_MAX_UINT(x) static_cast(-1ULL >> (64 - (x))) ++ uint64_t mask = static_cast(-1ULL >> (64 - 8 * sizeof(T))); ++ uint64_t ws_u64 = static_cast(ws) & mask; ++ res = static_cast(ws_u64 < M_MAX_UINT(m + 1) ? ws_u64 ++ : M_MAX_UINT(m + 1)); ++#undef M_MAX_UINT ++ } break; ++ case SRARI: ++ if (!m) { ++ res = static_cast(ws); ++ } else { ++ res = static_cast(ArithmeticShiftRight(ws, m)) + ++ static_cast((ws >> (m - 1)) & 0x1); ++ } ++ break; ++ case SRLRI: ++ if (!m) { ++ res = static_cast(ws); ++ } else { ++ res = static_cast(static_cast(ws) >> m) + ++ static_cast((ws >> (m - 1)) & 0x1); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ return res; ++} ++ ++void Simulator::DecodeTypeMsaBIT() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaBITMask; ++ int32_t m = instr_.MsaBitMValue(); ++ msa_reg_t wd, ws; ++ ++#define MSA_BIT_DF(elem, num_of_lanes) \ ++ get_msa_register(instr_.WsValue(), ws.elem); \ ++ if (opcode == BINSLI || opcode == BINSRI) { \ ++ get_msa_register(instr_.WdValue(), wd.elem); \ ++ } \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ wd.elem[i] = MsaBitInstrHelper(opcode, wd.elem[i], ws.elem[i], m); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ DCHECK(m < kMSARegSize / kMSALanesByte); ++ MSA_BIT_DF(b, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ DCHECK(m < kMSARegSize / kMSALanesHalf); ++ MSA_BIT_DF(h, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ DCHECK(m < kMSARegSize / kMSALanesWord); ++ MSA_BIT_DF(w, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ DCHECK(m < kMSARegSize / kMSALanesDword); ++ MSA_BIT_DF(d, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef MSA_BIT_DF ++} ++ ++void Simulator::DecodeTypeMsaMI10() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaMI10Mask; ++ int64_t s10 = (static_cast(instr_.MsaImmMI10Value()) << 54) >> 54; ++ int64_t rs = get_register(instr_.WsValue()); ++ int64_t addr; ++ msa_reg_t wd; ++ ++#define MSA_MI10_LOAD(elem, num_of_lanes, T) \ ++ for (int i = 0; i < num_of_lanes; ++i) { \ ++ addr = rs + (s10 + i) * sizeof(T); \ ++ wd.elem[i] = ReadMem(addr, instr_.instr()); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); ++ ++#define MSA_MI10_STORE(elem, num_of_lanes, T) \ ++ get_msa_register(instr_.WdValue(), wd.elem); \ ++ for (int i = 0; i < num_of_lanes; ++i) { \ ++ addr = rs + (s10 + i) * sizeof(T); \ ++ WriteMem(addr, wd.elem[i], instr_.instr()); \ ++ } ++ ++ if (opcode == MSA_LD) { ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ MSA_MI10_LOAD(b, kMSALanesByte, int8_t); ++ break; ++ case MSA_HALF: ++ MSA_MI10_LOAD(h, kMSALanesHalf, int16_t); ++ break; ++ case MSA_WORD: ++ MSA_MI10_LOAD(w, kMSALanesWord, int32_t); ++ break; ++ case MSA_DWORD: ++ MSA_MI10_LOAD(d, kMSALanesDword, int64_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } else if (opcode == MSA_ST) { ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ MSA_MI10_STORE(b, kMSALanesByte, int8_t); ++ break; ++ case MSA_HALF: ++ MSA_MI10_STORE(h, kMSALanesHalf, int16_t); ++ break; ++ case MSA_WORD: ++ MSA_MI10_STORE(w, kMSALanesWord, int32_t); ++ break; ++ case MSA_DWORD: ++ MSA_MI10_STORE(d, kMSALanesDword, int64_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } else { ++ UNREACHABLE(); ++ } ++ ++#undef MSA_MI10_LOAD ++#undef MSA_MI10_STORE ++} ++ ++template ++T Simulator::Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt) { ++ typedef typename std::make_unsigned::type uT; ++ T res; ++ int wt_modulo = wt % (sizeof(T) * 8); ++ switch (opcode) { ++ case SLL_MSA: ++ res = static_cast(ws << wt_modulo); ++ break; ++ case SRA_MSA: ++ res = static_cast(ArithmeticShiftRight(ws, wt_modulo)); ++ break; ++ case SRL_MSA: ++ res = static_cast(static_cast(ws) >> wt_modulo); ++ break; ++ case BCLR: ++ res = static_cast(static_cast(~(1ull << wt_modulo)) & ws); ++ break; ++ case BSET: ++ res = static_cast(static_cast(1ull << wt_modulo) | ws); ++ break; ++ case BNEG: ++ res = static_cast(static_cast(1ull << wt_modulo) ^ ws); ++ break; ++ case BINSL: { ++ int elem_size = 8 * sizeof(T); ++ int bits = wt_modulo + 1; ++ if (bits == elem_size) { ++ res = static_cast(ws); ++ } else { ++ uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits); ++ res = static_cast((static_cast(mask) & ws) | ++ (static_cast(~mask) & wd)); ++ } ++ } break; ++ case BINSR: { ++ int elem_size = 8 * sizeof(T); ++ int bits = wt_modulo + 1; ++ if (bits == elem_size) { ++ res = static_cast(ws); ++ } else { ++ uint64_t mask = (1ull << bits) - 1; ++ res = static_cast((static_cast(mask) & ws) | ++ (static_cast(~mask) & wd)); ++ } ++ } break; ++ case ADDV: ++ res = ws + wt; ++ break; ++ case SUBV: ++ res = ws - wt; ++ break; ++ case MAX_S: ++ res = Max(ws, wt); ++ break; ++ case MAX_U: ++ res = static_cast(Max(static_cast(ws), static_cast(wt))); ++ break; ++ case MIN_S: ++ res = Min(ws, wt); ++ break; ++ case MIN_U: ++ res = static_cast(Min(static_cast(ws), static_cast(wt))); ++ break; ++ case MAX_A: ++ // We use negative abs in order to avoid problems ++ // with corner case for MIN_INT ++ res = Nabs(ws) < Nabs(wt) ? ws : wt; ++ break; ++ case MIN_A: ++ // We use negative abs in order to avoid problems ++ // with corner case for MIN_INT ++ res = Nabs(ws) > Nabs(wt) ? ws : wt; ++ break; ++ case CEQ: ++ res = static_cast(!Compare(ws, wt) ? -1ull : 0ull); ++ break; ++ case CLT_S: ++ res = static_cast((Compare(ws, wt) == -1) ? -1ull : 0ull); ++ break; ++ case CLT_U: ++ res = static_cast( ++ (Compare(static_cast(ws), static_cast(wt)) == -1) ? -1ull ++ : 0ull); ++ break; ++ case CLE_S: ++ res = static_cast((Compare(ws, wt) != 1) ? -1ull : 0ull); ++ break; ++ case CLE_U: ++ res = static_cast( ++ (Compare(static_cast(ws), static_cast(wt)) != 1) ? -1ull ++ : 0ull); ++ break; ++ case ADD_A: ++ res = static_cast(Abs(ws) + Abs(wt)); ++ break; ++ case ADDS_A: { ++ T ws_nabs = Nabs(ws); ++ T wt_nabs = Nabs(wt); ++ if (ws_nabs < -std::numeric_limits::max() - wt_nabs) { ++ res = std::numeric_limits::max(); ++ } else { ++ res = -(ws_nabs + wt_nabs); ++ } ++ } break; ++ case ADDS_S: ++ res = SaturateAdd(ws, wt); ++ break; ++ case ADDS_U: { ++ uT ws_u = static_cast(ws); ++ uT wt_u = static_cast(wt); ++ res = static_cast(SaturateAdd(ws_u, wt_u)); ++ } break; ++ case AVE_S: ++ res = static_cast((wt & ws) + ((wt ^ ws) >> 1)); ++ break; ++ case AVE_U: { ++ uT ws_u = static_cast(ws); ++ uT wt_u = static_cast(wt); ++ res = static_cast((wt_u & ws_u) + ((wt_u ^ ws_u) >> 1)); ++ } break; ++ case AVER_S: ++ res = static_cast((wt | ws) - ((wt ^ ws) >> 1)); ++ break; ++ case AVER_U: { ++ uT ws_u = static_cast(ws); ++ uT wt_u = static_cast(wt); ++ res = static_cast((wt_u | ws_u) - ((wt_u ^ ws_u) >> 1)); ++ } break; ++ case SUBS_S: ++ res = SaturateSub(ws, wt); ++ break; ++ case SUBS_U: { ++ uT ws_u = static_cast(ws); ++ uT wt_u = static_cast(wt); ++ res = static_cast(SaturateSub(ws_u, wt_u)); ++ } break; ++ case SUBSUS_U: { ++ uT wsu = static_cast(ws); ++ if (wt > 0) { ++ uT wtu = static_cast(wt); ++ if (wtu > wsu) { ++ res = 0; ++ } else { ++ res = static_cast(wsu - wtu); ++ } ++ } else { ++ if (wsu > std::numeric_limits::max() + wt) { ++ res = static_cast(std::numeric_limits::max()); ++ } else { ++ res = static_cast(wsu - wt); ++ } ++ } ++ } break; ++ case SUBSUU_S: { ++ uT wsu = static_cast(ws); ++ uT wtu = static_cast(wt); ++ uT wdu; ++ if (wsu > wtu) { ++ wdu = wsu - wtu; ++ if (wdu > std::numeric_limits::max()) { ++ res = std::numeric_limits::max(); ++ } else { ++ res = static_cast(wdu); ++ } ++ } else { ++ wdu = wtu - wsu; ++ CHECK(-std::numeric_limits::max() == ++ std::numeric_limits::min() + 1); ++ if (wdu <= std::numeric_limits::max()) { ++ res = -static_cast(wdu); ++ } else { ++ res = std::numeric_limits::min(); ++ } ++ } ++ } break; ++ case ASUB_S: ++ res = static_cast(Abs(ws - wt)); ++ break; ++ case ASUB_U: { ++ uT wsu = static_cast(ws); ++ uT wtu = static_cast(wt); ++ res = static_cast(wsu > wtu ? wsu - wtu : wtu - wsu); ++ } break; ++ case MULV: ++ res = ws * wt; ++ break; ++ case MADDV: ++ res = wd + ws * wt; ++ break; ++ case MSUBV: ++ res = wd - ws * wt; ++ break; ++ case DIV_S_MSA: ++ res = wt != 0 ? ws / wt : static_cast(Unpredictable); ++ break; ++ case DIV_U: ++ res = wt != 0 ? static_cast(static_cast(ws) / static_cast(wt)) ++ : static_cast(Unpredictable); ++ break; ++ case MOD_S: ++ res = wt != 0 ? ws % wt : static_cast(Unpredictable); ++ break; ++ case MOD_U: ++ res = wt != 0 ? static_cast(static_cast(ws) % static_cast(wt)) ++ : static_cast(Unpredictable); ++ break; ++ case DOTP_S: ++ case DOTP_U: ++ case DPADD_S: ++ case DPADD_U: ++ case DPSUB_S: ++ case DPSUB_U: ++ case SLD: ++ case SPLAT: ++ UNIMPLEMENTED(); ++ break; ++ case SRAR: { ++ int bit = wt_modulo == 0 ? 0 : (ws >> (wt_modulo - 1)) & 1; ++ res = static_cast(ArithmeticShiftRight(ws, wt_modulo) + bit); ++ } break; ++ case SRLR: { ++ uT wsu = static_cast(ws); ++ int bit = wt_modulo == 0 ? 0 : (wsu >> (wt_modulo - 1)) & 1; ++ res = static_cast((wsu >> wt_modulo) + bit); ++ } break; ++ default: ++ UNREACHABLE(); ++ } ++ return res; ++} ++template ++void Msa3RInstrHelper_shuffle(const uint32_t opcode, T_reg ws, T_reg wt, ++ T_reg wd, const int i, const int num_of_lanes) { ++ T_int *ws_p, *wt_p, *wd_p; ++ ws_p = reinterpret_cast(ws); ++ wt_p = reinterpret_cast(wt); ++ wd_p = reinterpret_cast(wd); ++ switch (opcode) { ++ case PCKEV: ++ wd_p[i] = wt_p[2 * i]; ++ wd_p[i + num_of_lanes / 2] = ws_p[2 * i]; ++ break; ++ case PCKOD: ++ wd_p[i] = wt_p[2 * i + 1]; ++ wd_p[i + num_of_lanes / 2] = ws_p[2 * i + 1]; ++ break; ++ case ILVL: ++ wd_p[2 * i] = wt_p[i + num_of_lanes / 2]; ++ wd_p[2 * i + 1] = ws_p[i + num_of_lanes / 2]; ++ break; ++ case ILVR: ++ wd_p[2 * i] = wt_p[i]; ++ wd_p[2 * i + 1] = ws_p[i]; ++ break; ++ case ILVEV: ++ wd_p[2 * i] = wt_p[2 * i]; ++ wd_p[2 * i + 1] = ws_p[2 * i]; ++ break; ++ case ILVOD: ++ wd_p[2 * i] = wt_p[2 * i + 1]; ++ wd_p[2 * i + 1] = ws_p[2 * i + 1]; ++ break; ++ case VSHF: { ++ const int mask_not_valid = 0xC0; ++ const int mask_6_bits = 0x3F; ++ if ((wd_p[i] & mask_not_valid)) { ++ wd_p[i] = 0; ++ } else { ++ int k = (wd_p[i] & mask_6_bits) % (num_of_lanes * 2); ++ wd_p[i] = k >= num_of_lanes ? ws_p[k - num_of_lanes] : wt_p[k]; ++ } ++ } break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++template ++void Msa3RInstrHelper_horizontal(const uint32_t opcode, T_reg ws, T_reg wt, ++ T_reg wd, const int i, ++ const int num_of_lanes) { ++ typedef typename std::make_unsigned::type T_uint; ++ typedef typename std::make_unsigned::type T_smaller_uint; ++ T_int* wd_p; ++ T_smaller_int *ws_p, *wt_p; ++ ws_p = reinterpret_cast(ws); ++ wt_p = reinterpret_cast(wt); ++ wd_p = reinterpret_cast(wd); ++ T_uint* wd_pu; ++ T_smaller_uint *ws_pu, *wt_pu; ++ ws_pu = reinterpret_cast(ws); ++ wt_pu = reinterpret_cast(wt); ++ wd_pu = reinterpret_cast(wd); ++ switch (opcode) { ++ case HADD_S: ++ wd_p[i] = ++ static_cast(ws_p[2 * i + 1]) + static_cast(wt_p[2 * i]); ++ break; ++ case HADD_U: ++ wd_pu[i] = static_cast(ws_pu[2 * i + 1]) + ++ static_cast(wt_pu[2 * i]); ++ break; ++ case HSUB_S: ++ wd_p[i] = ++ static_cast(ws_p[2 * i + 1]) - static_cast(wt_p[2 * i]); ++ break; ++ case HSUB_U: ++ wd_pu[i] = static_cast(ws_pu[2 * i + 1]) - ++ static_cast(wt_pu[2 * i]); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeMsa3R() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsa3RMask; ++ msa_reg_t ws, wd, wt; ++ get_msa_register(ws_reg(), &ws); ++ get_msa_register(wt_reg(), &wt); ++ get_msa_register(wd_reg(), &wd); ++ switch (opcode) { ++ case HADD_S: ++ case HADD_U: ++ case HSUB_S: ++ case HSUB_U: ++#define HORIZONTAL_ARITHMETIC_DF(num_of_lanes, int_type, lesser_int_type) \ ++ for (int i = 0; i < num_of_lanes; ++i) { \ ++ Msa3RInstrHelper_horizontal( \ ++ opcode, &ws, &wt, &wd, i, num_of_lanes); \ ++ } ++ switch (DecodeMsaDataFormat()) { ++ case MSA_HALF: ++ HORIZONTAL_ARITHMETIC_DF(kMSALanesHalf, int16_t, int8_t); ++ break; ++ case MSA_WORD: ++ HORIZONTAL_ARITHMETIC_DF(kMSALanesWord, int32_t, int16_t); ++ break; ++ case MSA_DWORD: ++ HORIZONTAL_ARITHMETIC_DF(kMSALanesDword, int64_t, int32_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++#undef HORIZONTAL_ARITHMETIC_DF ++ case VSHF: ++#define VSHF_DF(num_of_lanes, int_type) \ ++ for (int i = 0; i < num_of_lanes; ++i) { \ ++ Msa3RInstrHelper_shuffle(opcode, &ws, &wt, &wd, i, \ ++ num_of_lanes); \ ++ } ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ VSHF_DF(kMSALanesByte, int8_t); ++ break; ++ case MSA_HALF: ++ VSHF_DF(kMSALanesHalf, int16_t); ++ break; ++ case MSA_WORD: ++ VSHF_DF(kMSALanesWord, int32_t); ++ break; ++ case MSA_DWORD: ++ VSHF_DF(kMSALanesDword, int64_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef VSHF_DF ++ break; ++ case PCKEV: ++ case PCKOD: ++ case ILVL: ++ case ILVR: ++ case ILVEV: ++ case ILVOD: ++#define INTERLEAVE_PACK_DF(num_of_lanes, int_type) \ ++ for (int i = 0; i < num_of_lanes / 2; ++i) { \ ++ Msa3RInstrHelper_shuffle(opcode, &ws, &wt, &wd, i, \ ++ num_of_lanes); \ ++ } ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ INTERLEAVE_PACK_DF(kMSALanesByte, int8_t); ++ break; ++ case MSA_HALF: ++ INTERLEAVE_PACK_DF(kMSALanesHalf, int16_t); ++ break; ++ case MSA_WORD: ++ INTERLEAVE_PACK_DF(kMSALanesWord, int32_t); ++ break; ++ case MSA_DWORD: ++ INTERLEAVE_PACK_DF(kMSALanesDword, int64_t); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++#undef INTERLEAVE_PACK_DF ++ default: ++#define MSA_3R_DF(elem, num_of_lanes) \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ wd.elem[i] = Msa3RInstrHelper(opcode, wd.elem[i], ws.elem[i], wt.elem[i]); \ ++ } ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ MSA_3R_DF(b, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ MSA_3R_DF(h, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ MSA_3R_DF(w, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ MSA_3R_DF(d, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef MSA_3R_DF ++ break; ++ } ++ set_msa_register(wd_reg(), &wd); ++ TraceMSARegWr(&wd); ++} ++ ++template ++void Msa3RFInstrHelper(uint32_t opcode, T_reg ws, T_reg wt, T_reg& wd) { ++ const T_int all_ones = static_cast(-1); ++ const T_fp s_element = *reinterpret_cast(&ws); ++ const T_fp t_element = *reinterpret_cast(&wt); ++ switch (opcode) { ++ case FCUN: { ++ if (std::isnan(s_element) || std::isnan(t_element)) { ++ wd = all_ones; ++ } else { ++ wd = 0; ++ } ++ } break; ++ case FCEQ: { ++ if (s_element != t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = 0; ++ } else { ++ wd = all_ones; ++ } ++ } break; ++ case FCUEQ: { ++ if (s_element == t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = all_ones; ++ } else { ++ wd = 0; ++ } ++ } break; ++ case FCLT: { ++ if (s_element >= t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = 0; ++ } else { ++ wd = all_ones; ++ } ++ } break; ++ case FCULT: { ++ if (s_element < t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = all_ones; ++ } else { ++ wd = 0; ++ } ++ } break; ++ case FCLE: { ++ if (s_element > t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = 0; ++ } else { ++ wd = all_ones; ++ } ++ } break; ++ case FCULE: { ++ if (s_element <= t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = all_ones; ++ } else { ++ wd = 0; ++ } ++ } break; ++ case FCOR: { ++ if (std::isnan(s_element) || std::isnan(t_element)) { ++ wd = 0; ++ } else { ++ wd = all_ones; ++ } ++ } break; ++ case FCUNE: { ++ if (s_element != t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = all_ones; ++ } else { ++ wd = 0; ++ } ++ } break; ++ case FCNE: { ++ if (s_element == t_element || std::isnan(s_element) || ++ std::isnan(t_element)) { ++ wd = 0; ++ } else { ++ wd = all_ones; ++ } ++ } break; ++ case FADD: ++ wd = bit_cast(s_element + t_element); ++ break; ++ case FSUB: ++ wd = bit_cast(s_element - t_element); ++ break; ++ case FMUL: ++ wd = bit_cast(s_element * t_element); ++ break; ++ case FDIV: { ++ if (t_element == 0) { ++ wd = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ wd = bit_cast(s_element / t_element); ++ } ++ } break; ++ case FMADD: ++ wd = bit_cast( ++ std::fma(s_element, t_element, *reinterpret_cast(&wd))); ++ break; ++ case FMSUB: ++ wd = bit_cast( ++ std::fma(-s_element, t_element, *reinterpret_cast(&wd))); ++ break; ++ case FEXP2: ++ wd = bit_cast(std::ldexp(s_element, static_cast(wt))); ++ break; ++ case FMIN: ++ wd = bit_cast(std::min(s_element, t_element)); ++ break; ++ case FMAX: ++ wd = bit_cast(std::max(s_element, t_element)); ++ break; ++ case FMIN_A: { ++ wd = bit_cast( ++ std::fabs(s_element) < std::fabs(t_element) ? s_element : t_element); ++ } break; ++ case FMAX_A: { ++ wd = bit_cast( ++ std::fabs(s_element) > std::fabs(t_element) ? s_element : t_element); ++ } break; ++ case FSOR: ++ case FSUNE: ++ case FSNE: ++ case FSAF: ++ case FSUN: ++ case FSEQ: ++ case FSUEQ: ++ case FSLT: ++ case FSULT: ++ case FSLE: ++ case FSULE: ++ UNIMPLEMENTED(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++template ++void Msa3RFInstrHelper2(uint32_t opcode, T_reg ws, T_reg wt, T_reg& wd) { ++ // typedef typename std::make_unsigned::type T_uint; ++ typedef typename std::make_unsigned::type T_uint_dbl; ++ const T_int max_int = std::numeric_limits::max(); ++ const T_int min_int = std::numeric_limits::min(); ++ const int shift = kBitsPerByte * sizeof(T_int) - 1; ++ const T_int_dbl reg_s = ws; ++ const T_int_dbl reg_t = wt; ++ T_int_dbl product, result; ++ product = reg_s * reg_t; ++ switch (opcode) { ++ case MUL_Q: { ++ const T_int_dbl min_fix_dbl = ++ bit_cast(std::numeric_limits::min()) >> 1U; ++ const T_int_dbl max_fix_dbl = std::numeric_limits::max() >> 1U; ++ if (product == min_fix_dbl) { ++ product = max_fix_dbl; ++ } ++ wd = static_cast(product >> shift); ++ } break; ++ case MADD_Q: { ++ result = (product + (static_cast(wd) << shift)) >> shift; ++ wd = static_cast( ++ result > max_int ? max_int : result < min_int ? min_int : result); ++ } break; ++ case MSUB_Q: { ++ result = (-product + (static_cast(wd) << shift)) >> shift; ++ wd = static_cast( ++ result > max_int ? max_int : result < min_int ? min_int : result); ++ } break; ++ case MULR_Q: { ++ const T_int_dbl min_fix_dbl = ++ bit_cast(std::numeric_limits::min()) >> 1U; ++ const T_int_dbl max_fix_dbl = std::numeric_limits::max() >> 1U; ++ if (product == min_fix_dbl) { ++ wd = static_cast(max_fix_dbl >> shift); ++ break; ++ } ++ wd = static_cast((product + (1 << (shift - 1))) >> shift); ++ } break; ++ case MADDR_Q: { ++ result = (product + (static_cast(wd) << shift) + ++ (1 << (shift - 1))) >> ++ shift; ++ wd = static_cast( ++ result > max_int ? max_int : result < min_int ? min_int : result); ++ } break; ++ case MSUBR_Q: { ++ result = (-product + (static_cast(wd) << shift) + ++ (1 << (shift - 1))) >> ++ shift; ++ wd = static_cast( ++ result > max_int ? max_int : result < min_int ? min_int : result); ++ } break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void Simulator::DecodeTypeMsa3RF() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask; ++ msa_reg_t wd, ws, wt; ++ if (opcode != FCAF) { ++ get_msa_register(ws_reg(), &ws); ++ get_msa_register(wt_reg(), &wt); ++ } ++ switch (opcode) { ++ case FCAF: ++ wd.d[0] = 0; ++ wd.d[1] = 0; ++ break; ++ case FEXDO: ++#define PACK_FLOAT16(sign, exp, frac) \ ++ static_cast(((sign) << 15) + ((exp) << 10) + (frac)) ++#define FEXDO_DF(source, dst) \ ++ do { \ ++ element = source; \ ++ aSign = element >> 31; \ ++ aExp = element >> 23 & 0xFF; \ ++ aFrac = element & 0x007FFFFF; \ ++ if (aExp == 0xFF) { \ ++ if (aFrac) { \ ++ /* Input is a NaN */ \ ++ dst = 0x7DFFU; \ ++ break; \ ++ } \ ++ /* Infinity */ \ ++ dst = PACK_FLOAT16(aSign, 0x1F, 0); \ ++ break; \ ++ } else if (aExp == 0 && aFrac == 0) { \ ++ dst = PACK_FLOAT16(aSign, 0, 0); \ ++ break; \ ++ } else { \ ++ int maxexp = 29; \ ++ uint32_t mask; \ ++ uint32_t increment; \ ++ bool rounding_bumps_exp; \ ++ aFrac |= 0x00800000; \ ++ aExp -= 0x71; \ ++ if (aExp < 1) { \ ++ /* Will be denormal in halfprec */ \ ++ mask = 0x00FFFFFF; \ ++ if (aExp >= -11) { \ ++ mask >>= 11 + aExp; \ ++ } \ ++ } else { \ ++ /* Normal number in halfprec */ \ ++ mask = 0x00001FFF; \ ++ } \ ++ switch (MSACSR_ & 3) { \ ++ case kRoundToNearest: \ ++ increment = (mask + 1) >> 1; \ ++ if ((aFrac & mask) == increment) { \ ++ increment = aFrac & (increment << 1); \ ++ } \ ++ break; \ ++ case kRoundToPlusInf: \ ++ increment = aSign ? 0 : mask; \ ++ break; \ ++ case kRoundToMinusInf: \ ++ increment = aSign ? mask : 0; \ ++ break; \ ++ case kRoundToZero: \ ++ increment = 0; \ ++ break; \ ++ } \ ++ rounding_bumps_exp = (aFrac + increment >= 0x01000000); \ ++ if (aExp > maxexp || (aExp == maxexp && rounding_bumps_exp)) { \ ++ dst = PACK_FLOAT16(aSign, 0x1F, 0); \ ++ break; \ ++ } \ ++ aFrac += increment; \ ++ if (rounding_bumps_exp) { \ ++ aFrac >>= 1; \ ++ aExp++; \ ++ } \ ++ if (aExp < -10) { \ ++ dst = PACK_FLOAT16(aSign, 0, 0); \ ++ break; \ ++ } \ ++ if (aExp < 0) { \ ++ aFrac >>= -aExp; \ ++ aExp = 0; \ ++ } \ ++ dst = PACK_FLOAT16(aSign, aExp, aFrac >> 13); \ ++ } \ ++ } while (0); ++ switch (DecodeMsaDataFormat()) { ++ case MSA_HALF: ++ for (int i = 0; i < kMSALanesWord; i++) { ++ uint_fast32_t element; ++ uint_fast32_t aSign, aFrac; ++ int_fast32_t aExp; ++ FEXDO_DF(ws.uw[i], wd.uh[i + kMSALanesHalf / 2]) ++ FEXDO_DF(wt.uw[i], wd.uh[i]) ++ } ++ break; ++ case MSA_WORD: ++ for (int i = 0; i < kMSALanesDword; i++) { ++ wd.w[i + kMSALanesWord / 2] = bit_cast( ++ static_cast(bit_cast(ws.d[i]))); ++ wd.w[i] = bit_cast( ++ static_cast(bit_cast(wt.d[i]))); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++#undef PACK_FLOAT16 ++#undef FEXDO_DF ++ case FTQ: ++#define FTQ_DF(source, dst, fp_type, int_type) \ ++ element = bit_cast(source) * \ ++ (1U << (sizeof(int_type) * kBitsPerByte - 1)); \ ++ if (element > std::numeric_limits::max()) { \ ++ dst = std::numeric_limits::max(); \ ++ } else if (element < std::numeric_limits::min()) { \ ++ dst = std::numeric_limits::min(); \ ++ } else if (std::isnan(element)) { \ ++ dst = 0; \ ++ } else { \ ++ int_type fixed_point; \ ++ round_according_to_msacsr(element, element, fixed_point); \ ++ dst = fixed_point; \ ++ } ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_HALF: ++ for (int i = 0; i < kMSALanesWord; i++) { ++ float element; ++ FTQ_DF(ws.w[i], wd.h[i + kMSALanesHalf / 2], float, int16_t) ++ FTQ_DF(wt.w[i], wd.h[i], float, int16_t) ++ } ++ break; ++ case MSA_WORD: ++ double element; ++ for (int i = 0; i < kMSALanesDword; i++) { ++ FTQ_DF(ws.d[i], wd.w[i + kMSALanesWord / 2], double, int32_t) ++ FTQ_DF(wt.d[i], wd.w[i], double, int32_t) ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++#undef FTQ_DF ++#define MSA_3RF_DF(T1, T2, Lanes, ws, wt, wd) \ ++ for (int i = 0; i < Lanes; i++) { \ ++ Msa3RFInstrHelper(opcode, ws, wt, wd); \ ++ } ++#define MSA_3RF_DF2(T1, T2, Lanes, ws, wt, wd) \ ++ for (int i = 0; i < Lanes; i++) { \ ++ Msa3RFInstrHelper2(opcode, ws, wt, wd); \ ++ } ++ case MADD_Q: ++ case MSUB_Q: ++ case MADDR_Q: ++ case MSUBR_Q: ++ get_msa_register(wd_reg(), &wd); ++ V8_FALLTHROUGH; ++ case MUL_Q: ++ case MULR_Q: ++ switch (DecodeMsaDataFormat()) { ++ case MSA_HALF: ++ MSA_3RF_DF2(int16_t, int32_t, kMSALanesHalf, ws.h[i], wt.h[i], ++ wd.h[i]) ++ break; ++ case MSA_WORD: ++ MSA_3RF_DF2(int32_t, int64_t, kMSALanesWord, ws.w[i], wt.w[i], ++ wd.w[i]) ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ default: ++ if (opcode == FMADD || opcode == FMSUB) { ++ get_msa_register(wd_reg(), &wd); ++ } ++ switch (DecodeMsaDataFormat()) { ++ case MSA_WORD: ++ MSA_3RF_DF(int32_t, float, kMSALanesWord, ws.w[i], wt.w[i], wd.w[i]) ++ break; ++ case MSA_DWORD: ++ MSA_3RF_DF(int64_t, double, kMSALanesDword, ws.d[i], wt.d[i], wd.d[i]) ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++#undef MSA_3RF_DF ++#undef MSA_3RF_DF2 ++ } ++ set_msa_register(wd_reg(), &wd); ++ TraceMSARegWr(&wd); ++} ++ ++void Simulator::DecodeTypeMsaVec() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsaVECMask; ++ msa_reg_t wd, ws, wt; ++ ++ get_msa_register(instr_.WsValue(), ws.d); ++ get_msa_register(instr_.WtValue(), wt.d); ++ if (opcode == BMNZ_V || opcode == BMZ_V || opcode == BSEL_V) { ++ get_msa_register(instr_.WdValue(), wd.d); ++ } ++ ++ for (int i = 0; i < kMSALanesDword; i++) { ++ switch (opcode) { ++ case AND_V: ++ wd.d[i] = ws.d[i] & wt.d[i]; ++ break; ++ case OR_V: ++ wd.d[i] = ws.d[i] | wt.d[i]; ++ break; ++ case NOR_V: ++ wd.d[i] = ~(ws.d[i] | wt.d[i]); ++ break; ++ case XOR_V: ++ wd.d[i] = ws.d[i] ^ wt.d[i]; ++ break; ++ case BMNZ_V: ++ wd.d[i] = (wt.d[i] & ws.d[i]) | (~wt.d[i] & wd.d[i]); ++ break; ++ case BMZ_V: ++ wd.d[i] = (~wt.d[i] & ws.d[i]) | (wt.d[i] & wd.d[i]); ++ break; ++ case BSEL_V: ++ wd.d[i] = (~wd.d[i] & ws.d[i]) | (wd.d[i] & wt.d[i]); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++ set_msa_register(instr_.WdValue(), wd.d); ++ TraceMSARegWr(wd.d); ++} ++ ++void Simulator::DecodeTypeMsa2R() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsa2RMask; ++ msa_reg_t wd, ws; ++ switch (opcode) { ++ case FILL: ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: { ++ int64_t rs = get_register(instr_.WsValue()); ++ for (int i = 0; i < kMSALanesByte; i++) { ++ wd.b[i] = rs & 0xFFu; ++ } ++ set_msa_register(instr_.WdValue(), wd.b); ++ TraceMSARegWr(wd.b); ++ break; ++ } ++ case MSA_HALF: { ++ int64_t rs = get_register(instr_.WsValue()); ++ for (int i = 0; i < kMSALanesHalf; i++) { ++ wd.h[i] = rs & 0xFFFFu; ++ } ++ set_msa_register(instr_.WdValue(), wd.h); ++ TraceMSARegWr(wd.h); ++ break; ++ } ++ case MSA_WORD: { ++ int64_t rs = get_register(instr_.WsValue()); ++ for (int i = 0; i < kMSALanesWord; i++) { ++ wd.w[i] = rs & 0xFFFFFFFFu; ++ } ++ set_msa_register(instr_.WdValue(), wd.w); ++ TraceMSARegWr(wd.w); ++ break; ++ } ++ case MSA_DWORD: { ++ int64_t rs = get_register(instr_.WsValue()); ++ wd.d[0] = wd.d[1] = rs; ++ set_msa_register(instr_.WdValue(), wd.d); ++ TraceMSARegWr(wd.d); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ case PCNT: ++#define PCNT_DF(elem, num_of_lanes) \ ++ get_msa_register(instr_.WsValue(), ws.elem); \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ uint64_t u64elem = static_cast(ws.elem[i]); \ ++ wd.elem[i] = base::bits::CountPopulation(u64elem); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ PCNT_DF(ub, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ PCNT_DF(uh, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ PCNT_DF(uw, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ PCNT_DF(ud, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef PCNT_DF ++ break; ++ case NLOC: ++#define NLOC_DF(elem, num_of_lanes) \ ++ get_msa_register(instr_.WsValue(), ws.elem); \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ const uint64_t mask = (num_of_lanes == kMSALanesDword) \ ++ ? UINT64_MAX \ ++ : (1ULL << (kMSARegSize / num_of_lanes)) - 1; \ ++ uint64_t u64elem = static_cast(~ws.elem[i]) & mask; \ ++ wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \ ++ (64 - kMSARegSize / num_of_lanes); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ NLOC_DF(ub, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ NLOC_DF(uh, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ NLOC_DF(uw, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ NLOC_DF(ud, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef NLOC_DF ++ break; ++ case NLZC: ++#define NLZC_DF(elem, num_of_lanes) \ ++ get_msa_register(instr_.WsValue(), ws.elem); \ ++ for (int i = 0; i < num_of_lanes; i++) { \ ++ uint64_t u64elem = static_cast(ws.elem[i]); \ ++ wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \ ++ (64 - kMSARegSize / num_of_lanes); \ ++ } \ ++ set_msa_register(instr_.WdValue(), wd.elem); \ ++ TraceMSARegWr(wd.elem) ++ ++ switch (DecodeMsaDataFormat()) { ++ case MSA_BYTE: ++ NLZC_DF(ub, kMSALanesByte); ++ break; ++ case MSA_HALF: ++ NLZC_DF(uh, kMSALanesHalf); ++ break; ++ case MSA_WORD: ++ NLZC_DF(uw, kMSALanesWord); ++ break; ++ case MSA_DWORD: ++ NLZC_DF(ud, kMSALanesDword); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++#undef NLZC_DF ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++#define BIT(n) (0x1LL << n) ++#define QUIET_BIT_S(nan) (bit_cast(nan) & BIT(22)) ++#define QUIET_BIT_D(nan) (bit_cast(nan) & BIT(51)) ++static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); } ++static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); } ++#undef QUIET_BIT_S ++#undef QUIET_BIT_D ++ ++template ++T_int Msa2RFInstrHelper(uint32_t opcode, T_src src, T_dst& dst, ++ Simulator* sim) { ++ typedef typename std::make_unsigned::type T_uint; ++ switch (opcode) { ++ case FCLASS: { ++#define SNAN_BIT BIT(0) ++#define QNAN_BIT BIT(1) ++#define NEG_INFINITY_BIT BIT(2) ++#define NEG_NORMAL_BIT BIT(3) ++#define NEG_SUBNORMAL_BIT BIT(4) ++#define NEG_ZERO_BIT BIT(5) ++#define POS_INFINITY_BIT BIT(6) ++#define POS_NORMAL_BIT BIT(7) ++#define POS_SUBNORMAL_BIT BIT(8) ++#define POS_ZERO_BIT BIT(9) ++ T_fp element = *reinterpret_cast(&src); ++ switch (std::fpclassify(element)) { ++ case FP_INFINITE: ++ if (std::signbit(element)) { ++ dst = NEG_INFINITY_BIT; ++ } else { ++ dst = POS_INFINITY_BIT; ++ } ++ break; ++ case FP_NAN: ++ if (isSnan(element)) { ++ dst = SNAN_BIT; ++ } else { ++ dst = QNAN_BIT; ++ } ++ break; ++ case FP_NORMAL: ++ if (std::signbit(element)) { ++ dst = NEG_NORMAL_BIT; ++ } else { ++ dst = POS_NORMAL_BIT; ++ } ++ break; ++ case FP_SUBNORMAL: ++ if (std::signbit(element)) { ++ dst = NEG_SUBNORMAL_BIT; ++ } else { ++ dst = POS_SUBNORMAL_BIT; ++ } ++ break; ++ case FP_ZERO: ++ if (std::signbit(element)) { ++ dst = NEG_ZERO_BIT; ++ } else { ++ dst = POS_ZERO_BIT; ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++#undef BIT ++#undef SNAN_BIT ++#undef QNAN_BIT ++#undef NEG_INFINITY_BIT ++#undef NEG_NORMAL_BIT ++#undef NEG_SUBNORMAL_BIT ++#undef NEG_ZERO_BIT ++#undef POS_INFINITY_BIT ++#undef POS_NORMAL_BIT ++#undef POS_SUBNORMAL_BIT ++#undef POS_ZERO_BIT ++ case FTRUNC_S: { ++ T_fp element = bit_cast(src); ++ const T_int max_int = std::numeric_limits::max(); ++ const T_int min_int = std::numeric_limits::min(); ++ if (std::isnan(element)) { ++ dst = 0; ++ } else if (element >= max_int || element <= min_int) { ++ dst = element >= max_int ? max_int : min_int; ++ } else { ++ dst = static_cast(std::trunc(element)); ++ } ++ break; ++ } ++ case FTRUNC_U: { ++ T_fp element = bit_cast(src); ++ const T_uint max_int = std::numeric_limits::max(); ++ if (std::isnan(element)) { ++ dst = 0; ++ } else if (element >= max_int || element <= 0) { ++ dst = element >= max_int ? max_int : 0; ++ } else { ++ dst = static_cast(std::trunc(element)); ++ } ++ break; ++ } ++ case FSQRT: { ++ T_fp element = bit_cast(src); ++ if (element < 0 || std::isnan(element)) { ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ dst = bit_cast(std::sqrt(element)); ++ } ++ break; ++ } ++ case FRSQRT: { ++ T_fp element = bit_cast(src); ++ if (element < 0 || std::isnan(element)) { ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ dst = bit_cast(1 / std::sqrt(element)); ++ } ++ break; ++ } ++ case FRCP: { ++ T_fp element = bit_cast(src); ++ if (std::isnan(element)) { ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ dst = bit_cast(1 / element); ++ } ++ break; ++ } ++ case FRINT: { ++ T_fp element = bit_cast(src); ++ if (std::isnan(element)) { ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ T_int dummy; ++ sim->round_according_to_msacsr(element, element, dummy); ++ dst = bit_cast(element); ++ } ++ break; ++ } ++ case FLOG2: { ++ T_fp element = bit_cast(src); ++ switch (std::fpclassify(element)) { ++ case FP_NORMAL: ++ case FP_SUBNORMAL: ++ dst = bit_cast(std::logb(element)); ++ break; ++ case FP_ZERO: ++ dst = bit_cast(-std::numeric_limits::infinity()); ++ break; ++ case FP_NAN: ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ break; ++ case FP_INFINITE: ++ if (element < 0) { ++ dst = bit_cast(std::numeric_limits::quiet_NaN()); ++ } else { ++ dst = bit_cast(std::numeric_limits::infinity()); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++ case FTINT_S: { ++ T_fp element = bit_cast(src); ++ const T_int max_int = std::numeric_limits::max(); ++ const T_int min_int = std::numeric_limits::min(); ++ if (std::isnan(element)) { ++ dst = 0; ++ } else if (element < min_int || element > max_int) { ++ dst = element > max_int ? max_int : min_int; ++ } else { ++ sim->round_according_to_msacsr(element, element, dst); ++ } ++ break; ++ } ++ case FTINT_U: { ++ T_fp element = bit_cast(src); ++ const T_uint max_uint = std::numeric_limits::max(); ++ if (std::isnan(element)) { ++ dst = 0; ++ } else if (element < 0 || element > max_uint) { ++ dst = element > max_uint ? max_uint : 0; ++ } else { ++ T_uint res; ++ sim->round_according_to_msacsr(element, element, res); ++ dst = *reinterpret_cast(&res); ++ } ++ break; ++ } ++ case FFINT_S: ++ dst = bit_cast(static_cast(src)); ++ break; ++ case FFINT_U: ++ typedef typename std::make_unsigned::type uT_src; ++ dst = bit_cast(static_cast(bit_cast(src))); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ return 0; ++} ++ ++template ++T_int Msa2RFInstrHelper2(uint32_t opcode, T_reg ws, int i) { ++ switch (opcode) { ++#define EXTRACT_FLOAT16_SIGN(fp16) (fp16 >> 15) ++#define EXTRACT_FLOAT16_EXP(fp16) (fp16 >> 10 & 0x1F) ++#define EXTRACT_FLOAT16_FRAC(fp16) (fp16 & 0x3FF) ++#define PACK_FLOAT32(sign, exp, frac) \ ++ static_cast(((sign) << 31) + ((exp) << 23) + (frac)) ++#define FEXUP_DF(src_index) \ ++ uint_fast16_t element = ws.uh[src_index]; \ ++ uint_fast32_t aSign, aFrac; \ ++ int_fast32_t aExp; \ ++ aSign = EXTRACT_FLOAT16_SIGN(element); \ ++ aExp = EXTRACT_FLOAT16_EXP(element); \ ++ aFrac = EXTRACT_FLOAT16_FRAC(element); \ ++ if (V8_LIKELY(aExp && aExp != 0x1F)) { \ ++ return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \ ++ } else if (aExp == 0x1F) { \ ++ if (aFrac) { \ ++ return bit_cast(std::numeric_limits::quiet_NaN()); \ ++ } else { \ ++ return bit_cast(std::numeric_limits::infinity()) | \ ++ static_cast(aSign) << 31; \ ++ } \ ++ } else { \ ++ if (aFrac == 0) { \ ++ return PACK_FLOAT32(aSign, 0, 0); \ ++ } else { \ ++ int_fast16_t shiftCount = \ ++ base::bits::CountLeadingZeros32(static_cast(aFrac)) - 21; \ ++ aFrac <<= shiftCount; \ ++ aExp = -shiftCount; \ ++ return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13); \ ++ } \ ++ } ++ case FEXUPL: ++ if (std::is_same::value) { ++ FEXUP_DF(i + kMSALanesWord) ++ } else { ++ return bit_cast( ++ static_cast(bit_cast(ws.w[i + kMSALanesDword]))); ++ } ++ case FEXUPR: ++ if (std::is_same::value) { ++ FEXUP_DF(i) ++ } else { ++ return bit_cast(static_cast(bit_cast(ws.w[i]))); ++ } ++ case FFQL: { ++ if (std::is_same::value) { ++ return bit_cast(static_cast(ws.h[i + kMSALanesWord]) / ++ (1U << 15)); ++ } else { ++ return bit_cast(static_cast(ws.w[i + kMSALanesDword]) / ++ (1U << 31)); ++ } ++ break; ++ } ++ case FFQR: { ++ if (std::is_same::value) { ++ return bit_cast(static_cast(ws.h[i]) / (1U << 15)); ++ } else { ++ return bit_cast(static_cast(ws.w[i]) / (1U << 31)); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++#undef EXTRACT_FLOAT16_SIGN ++#undef EXTRACT_FLOAT16_EXP ++#undef EXTRACT_FLOAT16_FRAC ++#undef PACK_FLOAT32 ++#undef FEXUP_DF ++} ++ ++void Simulator::DecodeTypeMsa2RF() { ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK(CpuFeatures::IsSupported(MIPS_SIMD)); ++ uint32_t opcode = instr_.InstructionBits() & kMsa2RFMask; ++ msa_reg_t wd, ws; ++ get_msa_register(ws_reg(), &ws); ++ if (opcode == FEXUPL || opcode == FEXUPR || opcode == FFQL || ++ opcode == FFQR) { ++ switch (DecodeMsaDataFormat()) { ++ case MSA_WORD: ++ for (int i = 0; i < kMSALanesWord; i++) { ++ wd.w[i] = Msa2RFInstrHelper2(opcode, ws, i); ++ } ++ break; ++ case MSA_DWORD: ++ for (int i = 0; i < kMSALanesDword; i++) { ++ wd.d[i] = Msa2RFInstrHelper2(opcode, ws, i); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } else { ++ switch (DecodeMsaDataFormat()) { ++ case MSA_WORD: ++ for (int i = 0; i < kMSALanesWord; i++) { ++ Msa2RFInstrHelper(opcode, ws.w[i], wd.w[i], this); ++ } ++ break; ++ case MSA_DWORD: ++ for (int i = 0; i < kMSALanesDword; i++) { ++ Msa2RFInstrHelper(opcode, ws.d[i], wd.d[i], this); ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ } ++ set_msa_register(wd_reg(), &wd); ++ TraceMSARegWr(&wd); ++} ++ ++void Simulator::DecodeTypeRegister() { ++ // ---------- Execution. ++ switch (instr_.OpcodeFieldRaw()) { ++ case COP1: ++ DecodeTypeRegisterCOP1(); ++ break; ++ case COP1X: ++ DecodeTypeRegisterCOP1X(); ++ break; ++ case SPECIAL: ++ DecodeTypeRegisterSPECIAL(); ++ break; ++ case SPECIAL2: ++ DecodeTypeRegisterSPECIAL2(); ++ break; ++ case SPECIAL3: ++ DecodeTypeRegisterSPECIAL3(); ++ break; ++ case MSA: ++ switch (instr_.MSAMinorOpcodeField()) { ++ case kMsaMinor3R: ++ DecodeTypeMsa3R(); ++ break; ++ case kMsaMinor3RF: ++ DecodeTypeMsa3RF(); ++ break; ++ case kMsaMinorVEC: ++ DecodeTypeMsaVec(); ++ break; ++ case kMsaMinor2R: ++ DecodeTypeMsa2R(); ++ break; ++ case kMsaMinor2RF: ++ DecodeTypeMsa2RF(); ++ break; ++ case kMsaMinorELM: ++ DecodeTypeMsaELM(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ // Unimplemented opcodes raised an error in the configuration step before, ++ // so we can use the default here to set the destination register in common ++ // cases. ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++ ++// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). ++void Simulator::DecodeTypeImmediate() { ++ // Instruction fields. ++ Opcode op = instr_.OpcodeFieldRaw(); ++ int32_t rs_reg = instr_.RsValue(); ++ int64_t rs = get_register(instr_.RsValue()); ++ uint64_t rs_u = static_cast(rs); ++ int32_t rt_reg = instr_.RtValue(); // Destination register. ++ int64_t rt = get_register(rt_reg); ++ int16_t imm16 = instr_.Imm16Value(); ++ int32_t imm18 = instr_.Imm18Value(); ++ ++ int32_t ft_reg = instr_.FtValue(); // Destination register. ++ ++ // Zero extended immediate. ++ uint64_t oe_imm16 = 0xFFFF & imm16; ++ // Sign extended immediate. ++ int64_t se_imm16 = imm16; ++ int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xFFFFFFFFFFFC0000 : 0); ++ ++ // Next pc. ++ int64_t next_pc = bad_ra; ++ ++ // Used for conditional branch instructions. ++ bool execute_branch_delay_instruction = false; ++ ++ // Used for arithmetic instructions. ++ int64_t alu_out = 0; ++ ++ // Used for memory instructions. ++ int64_t addr = 0x0; ++ // Alignment for 32-bit integers used in LWL, LWR, etc. ++ const int kInt32AlignmentMask = sizeof(uint32_t) - 1; ++ // Alignment for 64-bit integers used in LDL, LDR, etc. ++ const int kInt64AlignmentMask = sizeof(uint64_t) - 1; ++ ++ // Branch instructions common part. ++ auto BranchAndLinkHelper = ++ [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { ++ execute_branch_delay_instruction = true; ++ int64_t current_pc = get_pc(); ++ if (do_branch) { ++ int16_t imm16 = instr_.Imm16Value(); ++ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; ++ set_register(31, current_pc + 2 * Instruction::kInstrSize); ++ } else { ++ next_pc = current_pc + 2 * Instruction::kInstrSize; ++ } ++ }; ++ ++ auto BranchHelper = [this, &next_pc, ++ &execute_branch_delay_instruction](bool do_branch) { ++ execute_branch_delay_instruction = true; ++ int64_t current_pc = get_pc(); ++ if (do_branch) { ++ int16_t imm16 = instr_.Imm16Value(); ++ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; ++ } else { ++ next_pc = current_pc + 2 * Instruction::kInstrSize; ++ } ++ }; ++ ++ auto BranchHelper_MSA = [this, &next_pc, imm16, ++ &execute_branch_delay_instruction](bool do_branch) { ++ execute_branch_delay_instruction = true; ++ int64_t current_pc = get_pc(); ++ const int32_t bitsIn16Int = sizeof(int16_t) * kBitsPerByte; ++ if (do_branch) { ++ if (FLAG_debug_code) { ++ int16_t bits = imm16 & 0xFC; ++ if (imm16 >= 0) { ++ CHECK_EQ(bits, 0); ++ } else { ++ CHECK_EQ(bits ^ 0xFC, 0); ++ } ++ } ++ // jump range :[pc + kInstrSize - 512 * kInstrSize, ++ // pc + kInstrSize + 511 * kInstrSize] ++ int16_t offset = static_cast(imm16 << (bitsIn16Int - 10)) >> ++ (bitsIn16Int - 12); ++ next_pc = current_pc + offset + Instruction::kInstrSize; ++ } else { ++ next_pc = current_pc + 2 * Instruction::kInstrSize; ++ } ++ }; ++ ++ auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) { ++ int64_t current_pc = get_pc(); ++ CheckForbiddenSlot(current_pc); ++ if (do_branch) { ++ int32_t imm = instr_.ImmValue(bits); ++ imm <<= 32 - bits; ++ imm >>= 32 - bits; ++ next_pc = current_pc + (imm << 2) + Instruction::kInstrSize; ++ set_register(31, current_pc + Instruction::kInstrSize); ++ } ++ }; ++ ++ auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) { ++ int64_t current_pc = get_pc(); ++ CheckForbiddenSlot(current_pc); ++ if (do_branch) { ++ int32_t imm = instr_.ImmValue(bits); ++ imm <<= 32 - bits; ++ imm >>= 32 - bits; ++ next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize; ++ } ++ }; ++ ++ switch (op) { ++ // ------------- COP1. Coprocessor instructions. ++ case COP1: ++ switch (instr_.RsFieldRaw()) { ++ case BC1: { // Branch on coprocessor condition. ++ uint32_t cc = instr_.FBccValue(); ++ uint32_t fcsr_cc = get_fcsr_condition_bit(cc); ++ uint32_t cc_value = test_fcsr_bit(fcsr_cc); ++ bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value; ++ BranchHelper(do_branch); ++ break; ++ } ++ case BC1EQZ: ++ BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); ++ break; ++ case BC1NEZ: ++ BranchHelper(get_fpu_register(ft_reg) & 0x1); ++ break; ++ case BZ_V: { ++ msa_reg_t wt; ++ get_msa_register(wt_reg(), &wt); ++ BranchHelper_MSA(wt.d[0] == 0 && wt.d[1] == 0); ++ } break; ++#define BZ_DF(witdh, lanes) \ ++ { \ ++ msa_reg_t wt; \ ++ get_msa_register(wt_reg(), &wt); \ ++ int i; \ ++ for (i = 0; i < lanes; ++i) { \ ++ if (wt.witdh[i] == 0) { \ ++ break; \ ++ } \ ++ } \ ++ BranchHelper_MSA(i != lanes); \ ++ } ++ case BZ_B: ++ BZ_DF(b, kMSALanesByte) ++ break; ++ case BZ_H: ++ BZ_DF(h, kMSALanesHalf) ++ break; ++ case BZ_W: ++ BZ_DF(w, kMSALanesWord) ++ break; ++ case BZ_D: ++ BZ_DF(d, kMSALanesDword) ++ break; ++#undef BZ_DF ++ case BNZ_V: { ++ msa_reg_t wt; ++ get_msa_register(wt_reg(), &wt); ++ BranchHelper_MSA(wt.d[0] != 0 || wt.d[1] != 0); ++ } break; ++#define BNZ_DF(witdh, lanes) \ ++ { \ ++ msa_reg_t wt; \ ++ get_msa_register(wt_reg(), &wt); \ ++ int i; \ ++ for (i = 0; i < lanes; ++i) { \ ++ if (wt.witdh[i] == 0) { \ ++ break; \ ++ } \ ++ } \ ++ BranchHelper_MSA(i == lanes); \ ++ } ++ case BNZ_B: ++ BNZ_DF(b, kMSALanesByte) ++ break; ++ case BNZ_H: ++ BNZ_DF(h, kMSALanesHalf) ++ break; ++ case BNZ_W: ++ BNZ_DF(w, kMSALanesWord) ++ break; ++ case BNZ_D: ++ BNZ_DF(d, kMSALanesDword) ++ break; ++#undef BNZ_DF ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ // ------------- REGIMM class. ++ case REGIMM: ++ switch (instr_.RtFieldRaw()) { ++ case BLTZ: ++ BranchHelper(rs < 0); ++ break; ++ case BGEZ: ++ BranchHelper(rs >= 0); ++ break; ++ case BLTZAL: ++ BranchAndLinkHelper(rs < 0); ++ break; ++ case BGEZAL: ++ BranchAndLinkHelper(rs >= 0); ++ break; ++ case DAHI: ++ SetResult(rs_reg, rs + (se_imm16 << 32)); ++ break; ++ case DATI: ++ SetResult(rs_reg, rs + (se_imm16 << 48)); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ break; // case REGIMM. ++ // ------------- Branch instructions. ++ // When comparing to zero, the encoding of rt field is always 0, so we don't ++ // need to replace rt with zero. ++ case BEQ: ++ BranchHelper(rs == rt); ++ break; ++ case BNE: ++ BranchHelper(rs != rt); ++ break; ++ case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rt_reg != 0) { ++ if (rs_reg == 0) { // BLEZALC ++ BranchAndLinkCompactHelper(rt <= 0, 16); ++ } else { ++ if (rs_reg == rt_reg) { // BGEZALC ++ BranchAndLinkCompactHelper(rt >= 0, 16); ++ } else { // BGEUC ++ BranchCompactHelper( ++ static_cast(rs) >= static_cast(rt), 16); ++ } ++ } ++ } else { // BLEZ ++ BranchHelper(rs <= 0); ++ } ++ } else { // BLEZ ++ BranchHelper(rs <= 0); ++ } ++ break; ++ case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rt_reg != 0) { ++ if (rs_reg == 0) { // BGTZALC ++ BranchAndLinkCompactHelper(rt > 0, 16); ++ } else { ++ if (rt_reg == rs_reg) { // BLTZALC ++ BranchAndLinkCompactHelper(rt < 0, 16); ++ } else { // BLTUC ++ BranchCompactHelper( ++ static_cast(rs) < static_cast(rt), 16); ++ } ++ } ++ } else { // BGTZ ++ BranchHelper(rs > 0); ++ } ++ } else { // BGTZ ++ BranchHelper(rs > 0); ++ } ++ break; ++ case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rt_reg != 0) { ++ if (rs_reg == 0) { // BLEZC ++ BranchCompactHelper(rt <= 0, 16); ++ } else { ++ if (rs_reg == rt_reg) { // BGEZC ++ BranchCompactHelper(rt >= 0, 16); ++ } else { // BGEC/BLEC ++ BranchCompactHelper(rs >= rt, 16); ++ } ++ } ++ } ++ } else { // BLEZL ++ BranchAndLinkHelper(rs <= 0); ++ } ++ break; ++ case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rt_reg != 0) { ++ if (rs_reg == 0) { // BGTZC ++ BranchCompactHelper(rt > 0, 16); ++ } else { ++ if (rs_reg == rt_reg) { // BLTZC ++ BranchCompactHelper(rt < 0, 16); ++ } else { // BLTC/BGTC ++ BranchCompactHelper(rs < rt, 16); ++ } ++ } ++ } ++ } else { // BGTZL ++ BranchAndLinkHelper(rs > 0); ++ } ++ break; ++ case POP66: // BEQZC, JIC ++ if (rs_reg != 0) { // BEQZC ++ BranchCompactHelper(rs == 0, 21); ++ } else { // JIC ++ next_pc = rt + imm16; ++ } ++ break; ++ case POP76: // BNEZC, JIALC ++ if (rs_reg != 0) { // BNEZC ++ BranchCompactHelper(rs != 0, 21); ++ } else { // JIALC ++ int64_t current_pc = get_pc(); ++ set_register(31, current_pc + Instruction::kInstrSize); ++ next_pc = rt + imm16; ++ } ++ break; ++ case BC: ++ BranchCompactHelper(true, 26); ++ break; ++ case BALC: ++ BranchAndLinkCompactHelper(true, 26); ++ break; ++ case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rs_reg >= rt_reg) { // BOVC ++ bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt); ++ BranchCompactHelper(condition, 16); ++ } else { ++ if (rs_reg == 0) { // BEQZALC ++ BranchAndLinkCompactHelper(rt == 0, 16); ++ } else { // BEQC ++ BranchCompactHelper(rt == rs, 16); ++ } ++ } ++ } else { // ADDI ++ if (HaveSameSign(rs, se_imm16)) { ++ if (rs > 0) { ++ if (rs <= Registers::kMaxValue - se_imm16) { ++ SignalException(kIntegerOverflow); ++ } ++ } else if (rs < 0) { ++ if (rs >= Registers::kMinValue - se_imm16) { ++ SignalException(kIntegerUnderflow); ++ } ++ } ++ } ++ SetResult(rt_reg, rs + se_imm16); ++ } ++ break; ++ case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6) ++ if (kArchVariant == kMips64r6) { ++ if (rs_reg >= rt_reg) { // BNVC ++ bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt); ++ BranchCompactHelper(condition, 16); ++ } else { ++ if (rs_reg == 0) { // BNEZALC ++ BranchAndLinkCompactHelper(rt != 0, 16); ++ } else { // BNEC ++ BranchCompactHelper(rt != rs, 16); ++ } ++ } ++ } ++ break; ++ // ------------- Arithmetic instructions. ++ case ADDIU: { ++ int32_t alu32_out = static_cast(rs + se_imm16); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rt_reg, static_cast(alu32_out)); ++ break; ++ } ++ case DADDIU: ++ SetResult(rt_reg, rs + se_imm16); ++ break; ++ case SLTI: ++ SetResult(rt_reg, rs < se_imm16 ? 1 : 0); ++ break; ++ case SLTIU: ++ SetResult(rt_reg, rs_u < static_cast(se_imm16) ? 1 : 0); ++ break; ++ case ANDI: ++ SetResult(rt_reg, rs & oe_imm16); ++ break; ++ case ORI: ++ SetResult(rt_reg, rs | oe_imm16); ++ break; ++ case XORI: ++ SetResult(rt_reg, rs ^ oe_imm16); ++ break; ++ case LUI: ++ if (rs_reg != 0) { ++ // AUI instruction. ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int32_t alu32_out = static_cast(rs + (se_imm16 << 16)); ++ SetResult(rt_reg, static_cast(alu32_out)); ++ } else { ++ // LUI instruction. ++ int32_t alu32_out = static_cast(oe_imm16 << 16); ++ // Sign-extend result of 32bit operation into 64bit register. ++ SetResult(rt_reg, static_cast(alu32_out)); ++ } ++ break; ++ case DAUI: ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ DCHECK_NE(rs_reg, 0); ++ SetResult(rt_reg, rs + (se_imm16 << 16)); ++ break; ++ // ------------- Memory instructions. ++ case LB: ++ set_register(rt_reg, ReadB(rs + se_imm16)); ++ break; ++ case LH: ++ set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr())); ++ break; ++ case LWL: { ++ // al_offset is offset of the effective address within an aligned word. ++ uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; ++ uint8_t byte_shift = kInt32AlignmentMask - al_offset; ++ uint32_t mask = (1 << byte_shift * 8) - 1; ++ addr = rs + se_imm16 - al_offset; ++ int32_t val = ReadW(addr, instr_.instr()); ++ val <<= byte_shift * 8; ++ val |= rt & mask; ++ set_register(rt_reg, static_cast(val)); ++ break; ++ } ++ case LW: ++ set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); ++ break; ++ case LWU: ++ set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr())); ++ break; ++ case LD: ++ set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr())); ++ break; ++ case LBU: ++ set_register(rt_reg, ReadBU(rs + se_imm16)); ++ break; ++ case LHU: ++ set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr())); ++ break; ++ case LWR: { ++ // al_offset is offset of the effective address within an aligned word. ++ uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; ++ uint8_t byte_shift = kInt32AlignmentMask - al_offset; ++ uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; ++ addr = rs + se_imm16 - al_offset; ++ alu_out = ReadW(addr, instr_.instr()); ++ alu_out = static_cast (alu_out) >> al_offset * 8; ++ alu_out |= rt & mask; ++ set_register(rt_reg, alu_out); ++ break; ++ } ++ case LDL: { ++ // al_offset is offset of the effective address within an aligned word. ++ uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; ++ uint8_t byte_shift = kInt64AlignmentMask - al_offset; ++ uint64_t mask = (1UL << byte_shift * 8) - 1; ++ addr = rs + se_imm16 - al_offset; ++ alu_out = Read2W(addr, instr_.instr()); ++ alu_out <<= byte_shift * 8; ++ alu_out |= rt & mask; ++ set_register(rt_reg, alu_out); ++ break; ++ } ++ case LDR: { ++ // al_offset is offset of the effective address within an aligned word. ++ uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; ++ uint8_t byte_shift = kInt64AlignmentMask - al_offset; ++ uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL; ++ addr = rs + se_imm16 - al_offset; ++ alu_out = Read2W(addr, instr_.instr()); ++ alu_out = alu_out >> al_offset * 8; ++ alu_out |= rt & mask; ++ set_register(rt_reg, alu_out); ++ break; ++ } ++ case SB: ++ WriteB(rs + se_imm16, static_cast(rt)); ++ break; ++ case SH: ++ WriteH(rs + se_imm16, static_cast(rt), instr_.instr()); ++ break; ++ case SWL: { ++ uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; ++ uint8_t byte_shift = kInt32AlignmentMask - al_offset; ++ uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; ++ addr = rs + se_imm16 - al_offset; ++ uint64_t mem_value = ReadW(addr, instr_.instr()) & mask; ++ mem_value |= static_cast(rt) >> byte_shift * 8; ++ WriteW(addr, static_cast(mem_value), instr_.instr()); ++ break; ++ } ++ case SW: ++ WriteW(rs + se_imm16, static_cast(rt), instr_.instr()); ++ break; ++ case SD: ++ Write2W(rs + se_imm16, rt, instr_.instr()); ++ break; ++ case SWR: { ++ uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; ++ uint32_t mask = (1 << al_offset * 8) - 1; ++ addr = rs + se_imm16 - al_offset; ++ uint64_t mem_value = ReadW(addr, instr_.instr()); ++ mem_value = (rt << al_offset * 8) | (mem_value & mask); ++ WriteW(addr, static_cast(mem_value), instr_.instr()); ++ break; ++ } ++ case SDL: { ++ uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; ++ uint8_t byte_shift = kInt64AlignmentMask - al_offset; ++ uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0; ++ addr = rs + se_imm16 - al_offset; ++ uint64_t mem_value = Read2W(addr, instr_.instr()) & mask; ++ mem_value |= static_cast(rt) >> byte_shift * 8; ++ Write2W(addr, mem_value, instr_.instr()); ++ break; ++ } ++ case SDR: { ++ uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; ++ uint64_t mask = (1UL << al_offset * 8) - 1; ++ addr = rs + se_imm16 - al_offset; ++ uint64_t mem_value = Read2W(addr, instr_.instr()); ++ mem_value = (rt << al_offset * 8) | (mem_value & mask); ++ Write2W(addr, mem_value, instr_.instr()); ++ break; ++ } ++ case LL: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); ++ break; ++ } ++ case SC: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ WriteW(rs + se_imm16, static_cast(rt), instr_.instr()); ++ set_register(rt_reg, 1); ++ break; ++ } ++ case LLD: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ set_register(rt_reg, ReadD(rs + se_imm16, instr_.instr())); ++ break; ++ } ++ case SCD: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r2); ++ WriteD(rs + se_imm16, rt, instr_.instr()); ++ set_register(rt_reg, 1); ++ break; ++ } ++ case LWC1: ++ set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. ++ set_fpu_register_word(ft_reg, ++ ReadW(rs + se_imm16, instr_.instr(), FLOAT_DOUBLE)); ++ break; ++ case LDC1: ++ set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr())); ++ TraceMemRd(addr, get_fpu_register(ft_reg), DOUBLE); ++ break; ++ case SWC1: { ++ int32_t alu_out_32 = static_cast(get_fpu_register(ft_reg)); ++ WriteW(rs + se_imm16, alu_out_32, instr_.instr()); ++ break; ++ } ++ case SDC1: ++ WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr()); ++ TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg), DWORD); ++ break; ++ // ------------- PC-Relative instructions. ++ case PCREL: { ++ // rt field: checking 5-bits. ++ int32_t imm21 = instr_.Imm21Value(); ++ int64_t current_pc = get_pc(); ++ uint8_t rt = (imm21 >> kImm16Bits); ++ switch (rt) { ++ case ALUIPC: ++ addr = current_pc + (se_imm16 << 16); ++ alu_out = static_cast(~0x0FFFF) & addr; ++ break; ++ case AUIPC: ++ alu_out = current_pc + (se_imm16 << 16); ++ break; ++ default: { ++ int32_t imm19 = instr_.Imm19Value(); ++ // rt field: checking the most significant 3-bits. ++ rt = (imm21 >> kImm18Bits); ++ switch (rt) { ++ case LDPC: ++ addr = ++ (current_pc & static_cast(~0x7)) + (se_imm18 << 3); ++ alu_out = Read2W(addr, instr_.instr()); ++ break; ++ default: { ++ // rt field: checking the most significant 2-bits. ++ rt = (imm21 >> kImm19Bits); ++ switch (rt) { ++ case LWUPC: { ++ // Set sign. ++ imm19 <<= (kOpcodeBits + kRsBits + 2); ++ imm19 >>= (kOpcodeBits + kRsBits + 2); ++ addr = current_pc + (imm19 << 2); ++ uint32_t* ptr = reinterpret_cast(addr); ++ alu_out = *ptr; ++ break; ++ } ++ case LWPC: { ++ // Set sign. ++ imm19 <<= (kOpcodeBits + kRsBits + 2); ++ imm19 >>= (kOpcodeBits + kRsBits + 2); ++ addr = current_pc + (imm19 << 2); ++ int32_t* ptr = reinterpret_cast(addr); ++ alu_out = *ptr; ++ break; ++ } ++ case ADDIUPC: { ++ int64_t se_imm19 = ++ imm19 | ((imm19 & 0x40000) ? 0xFFFFFFFFFFF80000 : 0); ++ alu_out = current_pc + (se_imm19 << 2); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ break; ++ } ++ } ++ break; ++ } ++ } ++ SetResult(rs_reg, alu_out); ++ break; ++ } ++ case SPECIAL3: { ++ switch (instr_.FunctionFieldRaw()) { ++ case LL_R6: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int64_t base = get_register(instr_.BaseValue()); ++ int32_t offset9 = instr_.Imm9Value(); ++ set_register(rt_reg, ReadW(base + offset9, instr_.instr())); ++ break; ++ } ++ case LLD_R6: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int64_t base = get_register(instr_.BaseValue()); ++ int32_t offset9 = instr_.Imm9Value(); ++ set_register(rt_reg, ReadD(base + offset9, instr_.instr())); ++ break; ++ } ++ case SC_R6: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int64_t base = get_register(instr_.BaseValue()); ++ int32_t offset9 = instr_.Imm9Value(); ++ WriteW(base + offset9, static_cast(rt), instr_.instr()); ++ set_register(rt_reg, 1); ++ break; ++ } ++ case SCD_R6: { ++ // LL/SC sequence cannot be simulated properly ++ DCHECK_EQ(kArchVariant, kMips64r6); ++ int64_t base = get_register(instr_.BaseValue()); ++ int32_t offset9 = instr_.Imm9Value(); ++ WriteD(base + offset9, rt, instr_.instr()); ++ set_register(rt_reg, 1); ++ break; ++ } ++ default: ++ UNREACHABLE(); ++ } ++ break; ++ } ++ ++ case MSA: ++ switch (instr_.MSAMinorOpcodeField()) { ++ case kMsaMinorI8: ++ DecodeTypeMsaI8(); ++ break; ++ case kMsaMinorI5: ++ DecodeTypeMsaI5(); ++ break; ++ case kMsaMinorI10: ++ DecodeTypeMsaI10(); ++ break; ++ case kMsaMinorELM: ++ DecodeTypeMsaELM(); ++ break; ++ case kMsaMinorBIT: ++ DecodeTypeMsaBIT(); ++ break; ++ case kMsaMinorMI10: ++ DecodeTypeMsaMI10(); ++ break; ++ default: ++ UNREACHABLE(); ++ break; ++ } ++ break; ++ default: ++ UNREACHABLE(); ++ } ++ ++ if (execute_branch_delay_instruction) { ++ // Execute branch delay slot ++ // We don't check for end_sim_pc. First it should not be met as the current ++ // pc is valid. Secondly a jump should always execute its branch delay slot. ++ Instruction* branch_delay_instr = ++ reinterpret_cast(get_pc() + Instruction::kInstrSize); ++ BranchDelayInstructionDecode(branch_delay_instr); ++ } ++ ++ // If needed update pc after the branch delay execution. ++ if (next_pc != bad_ra) { ++ set_pc(next_pc); ++ } ++} ++ ++ ++// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). ++void Simulator::DecodeTypeJump() { ++ SimInstruction simInstr = instr_; ++ // Get current pc. ++ int64_t current_pc = get_pc(); ++ // Get unchanged bits of pc. ++ int64_t pc_high_bits = current_pc & 0xFFFFFFFFF0000000; ++ // Next pc. ++ int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2); ++ ++ // Execute branch delay slot. ++ // We don't check for end_sim_pc. First it should not be met as the current pc ++ // is valid. Secondly a jump should always execute its branch delay slot. ++ Instruction* branch_delay_instr = ++ reinterpret_cast(current_pc + Instruction::kInstrSize); ++ BranchDelayInstructionDecode(branch_delay_instr); ++ ++ // Update pc and ra if necessary. ++ // Do this after the branch delay execution. ++ if (simInstr.IsLinkingInstruction()) { ++ set_register(31, current_pc + 2 * Instruction::kInstrSize); ++ } ++ set_pc(next_pc); ++ pc_modified_ = true; ++} ++ ++ ++// Executes the current instruction. ++void Simulator::InstructionDecode(Instruction* instr) { ++ if (v8::internal::FLAG_check_icache) { ++ CheckICache(i_cache(), instr); ++ } ++ pc_modified_ = false; ++ ++ v8::internal::EmbeddedVector buffer; ++ ++ if (::v8::internal::FLAG_trace_sim) { ++ SNPrintF(trace_buf_, " "); ++ disasm::NameConverter converter; ++ disasm::Disassembler dasm(converter); ++ // Use a reasonably large buffer. ++ dasm.InstructionDecode(buffer, reinterpret_cast(instr)); ++ } ++ ++ instr_ = instr; ++ switch (instr_.InstructionType()) { ++ case Instruction::kRegisterType: ++ DecodeTypeRegister(); ++ break; ++ case Instruction::kImmediateType: ++ DecodeTypeImmediate(); ++ break; ++ case Instruction::kJumpType: ++ DecodeTypeJump(); ++ break; ++ default: ++ UNSUPPORTED(); ++ } ++ ++ if (::v8::internal::FLAG_trace_sim) { ++ PrintF(" 0x%08" PRIxPTR " %-44s %s\n", ++ reinterpret_cast(instr), buffer.start(), ++ trace_buf_.start()); ++ } ++ ++ if (!pc_modified_) { ++ set_register(pc, reinterpret_cast(instr) + ++ Instruction::kInstrSize); ++ } ++} ++ ++ ++ ++void Simulator::Execute() { ++ // Get the PC to simulate. Cannot use the accessor here as we need the ++ // raw PC value and not the one used as input to arithmetic instructions. ++ int64_t program_counter = get_pc(); ++ if (::v8::internal::FLAG_stop_sim_at == 0) { ++ // Fast version of the dispatch loop without checking whether the simulator ++ // should be stopping at a particular executed instruction. ++ while (program_counter != end_sim_pc) { ++ Instruction* instr = reinterpret_cast(program_counter); ++ icount_++; ++ InstructionDecode(instr); ++ program_counter = get_pc(); ++ } ++ } else { ++ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when ++ // we reach the particular instruction count. ++ while (program_counter != end_sim_pc) { ++ Instruction* instr = reinterpret_cast(program_counter); ++ icount_++; ++ if (icount_ == static_cast(::v8::internal::FLAG_stop_sim_at)) { ++ MipsDebugger dbg(this); ++ dbg.Debug(); ++ } else { ++ InstructionDecode(instr); ++ } ++ program_counter = get_pc(); ++ } ++ } ++} ++ ++void Simulator::CallInternal(Address entry) { ++ // Adjust JS-based stack limit to C-based stack limit. ++ isolate_->stack_guard()->AdjustStackLimitForSimulator(); ++ ++ // Prepare to execute the code at entry. ++ set_register(pc, static_cast(entry)); ++ // Put down marker for end of simulation. The simulator will stop simulation ++ // when the PC reaches this value. By saving the "end simulation" value into ++ // the LR the simulation stops when returning to this call point. ++ set_register(ra, end_sim_pc); ++ ++ // Remember the values of callee-saved registers. ++ // The code below assumes that r9 is not used as sb (static base) in ++ // simulator code and therefore is regarded as a callee-saved register. ++ int64_t s0_val = get_register(s0); ++ int64_t s1_val = get_register(s1); ++ int64_t s2_val = get_register(s2); ++ int64_t s3_val = get_register(s3); ++ int64_t s4_val = get_register(s4); ++ int64_t s5_val = get_register(s5); ++ int64_t s6_val = get_register(s6); ++ int64_t s7_val = get_register(s7); ++ int64_t gp_val = get_register(gp); ++ int64_t sp_val = get_register(sp); ++ int64_t fp_val = get_register(fp); ++ ++ // Set up the callee-saved registers with a known value. To be able to check ++ // that they are preserved properly across JS execution. ++ int64_t callee_saved_value = icount_; ++ set_register(s0, callee_saved_value); ++ set_register(s1, callee_saved_value); ++ set_register(s2, callee_saved_value); ++ set_register(s3, callee_saved_value); ++ set_register(s4, callee_saved_value); ++ set_register(s5, callee_saved_value); ++ set_register(s6, callee_saved_value); ++ set_register(s7, callee_saved_value); ++ set_register(gp, callee_saved_value); ++ set_register(fp, callee_saved_value); ++ ++ // Start the simulation. ++ Execute(); ++ ++ // Check that the callee-saved registers have been preserved. ++ CHECK_EQ(callee_saved_value, get_register(s0)); ++ CHECK_EQ(callee_saved_value, get_register(s1)); ++ CHECK_EQ(callee_saved_value, get_register(s2)); ++ CHECK_EQ(callee_saved_value, get_register(s3)); ++ CHECK_EQ(callee_saved_value, get_register(s4)); ++ CHECK_EQ(callee_saved_value, get_register(s5)); ++ CHECK_EQ(callee_saved_value, get_register(s6)); ++ CHECK_EQ(callee_saved_value, get_register(s7)); ++ CHECK_EQ(callee_saved_value, get_register(gp)); ++ CHECK_EQ(callee_saved_value, get_register(fp)); ++ ++ // Restore callee-saved registers with the original value. ++ set_register(s0, s0_val); ++ set_register(s1, s1_val); ++ set_register(s2, s2_val); ++ set_register(s3, s3_val); ++ set_register(s4, s4_val); ++ set_register(s5, s5_val); ++ set_register(s6, s6_val); ++ set_register(s7, s7_val); ++ set_register(gp, gp_val); ++ set_register(sp, sp_val); ++ set_register(fp, fp_val); ++} ++ ++intptr_t Simulator::CallImpl(Address entry, int argument_count, ++ const intptr_t* arguments) { ++ constexpr int kRegisterPassedArguments = 8; ++ // Set up arguments. ++ ++ // First four arguments passed in registers in both ABI's. ++ int reg_arg_count = std::min(kRegisterPassedArguments, argument_count); ++ if (reg_arg_count > 0) set_register(a0, arguments[0]); ++ if (reg_arg_count > 1) set_register(a1, arguments[1]); ++ if (reg_arg_count > 2) set_register(a2, arguments[2]); ++ if (reg_arg_count > 2) set_register(a3, arguments[3]); ++ ++ // Up to eight arguments passed in registers in N64 ABI. ++ // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this. ++ if (reg_arg_count > 4) set_register(a4, arguments[4]); ++ if (reg_arg_count > 5) set_register(a5, arguments[5]); ++ if (reg_arg_count > 6) set_register(a6, arguments[6]); ++ if (reg_arg_count > 7) set_register(a7, arguments[7]); ++ ++ // Remaining arguments passed on stack. ++ int64_t original_stack = get_register(sp); ++ // Compute position of stack on entry to generated code. ++ int stack_args_count = argument_count - reg_arg_count; ++ int stack_args_size = stack_args_count * sizeof(*arguments) + kCArgsSlotsSize; ++ int64_t entry_stack = original_stack - stack_args_size; ++ ++ if (base::OS::ActivationFrameAlignment() != 0) { ++ entry_stack &= -base::OS::ActivationFrameAlignment(); ++ } ++ // Store remaining arguments on stack, from low to high memory. ++ intptr_t* stack_argument = reinterpret_cast(entry_stack); ++ memcpy(stack_argument + kCArgSlotCount, arguments + reg_arg_count, ++ stack_args_count * sizeof(*arguments)); ++ set_register(sp, entry_stack); ++ ++ CallInternal(entry); ++ ++ // Pop stack passed arguments. ++ CHECK_EQ(entry_stack, get_register(sp)); ++ set_register(sp, original_stack); ++ ++ return get_register(v0); ++} ++ ++double Simulator::CallFP(Address entry, double d0, double d1) { ++ if (!IsMipsSoftFloatABI) { ++ const FPURegister fparg2 = f13; ++ set_fpu_register_double(f12, d0); ++ set_fpu_register_double(fparg2, d1); ++ } else { ++ int buffer[2]; ++ DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); ++ memcpy(buffer, &d0, sizeof(d0)); ++ set_dw_register(a0, buffer); ++ memcpy(buffer, &d1, sizeof(d1)); ++ set_dw_register(a2, buffer); ++ } ++ CallInternal(entry); ++ if (!IsMipsSoftFloatABI) { ++ return get_fpu_register_double(f0); ++ } else { ++ return get_double_from_register_pair(v0); ++ } ++} ++ ++ ++uintptr_t Simulator::PushAddress(uintptr_t address) { ++ int64_t new_sp = get_register(sp) - sizeof(uintptr_t); ++ uintptr_t* stack_slot = reinterpret_cast(new_sp); ++ *stack_slot = address; ++ set_register(sp, new_sp); ++ return new_sp; ++} ++ ++ ++uintptr_t Simulator::PopAddress() { ++ int64_t current_sp = get_register(sp); ++ uintptr_t* stack_slot = reinterpret_cast(current_sp); ++ uintptr_t address = *stack_slot; ++ set_register(sp, current_sp + sizeof(uintptr_t)); ++ return address; ++} ++ ++ ++#undef UNSUPPORTED ++} // namespace internal ++} // namespace v8 ++ ++#endif // USE_SIMULATOR ++ ++#endif // V8_TARGET_ARCH_MIPS64 +diff --git a/deps/v8/src/loong64/simulator-mips64.h b/deps/v8/src/loong64/simulator-mips64.h +new file mode 100644 +index 0000000..30db7b9 +--- /dev/null ++++ b/deps/v8/src/loong64/simulator-mips64.h +@@ -0,0 +1,584 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++// Declares a Simulator for MIPS instructions if we are not generating a native ++// MIPS binary. This Simulator allows us to run and debug MIPS code generation ++// on regular desktop machines. ++// V8 calls into generated code via the GeneratedCode wrapper, ++// which will start execution in the Simulator or forwards to the real entry ++// on a MIPS HW platform. ++ ++#ifndef V8_MIPS64_SIMULATOR_MIPS64_H_ ++#define V8_MIPS64_SIMULATOR_MIPS64_H_ ++ ++#include "src/allocation.h" ++#include "src/mips64/constants-mips64.h" ++ ++#if defined(USE_SIMULATOR) ++// Running with a simulator. ++ ++#include "src/assembler.h" ++#include "src/base/hashmap.h" ++#include "src/simulator-base.h" ++ ++namespace v8 { ++namespace internal { ++ ++// ----------------------------------------------------------------------------- ++// Utility functions ++ ++class CachePage { ++ public: ++ static const int LINE_VALID = 0; ++ static const int LINE_INVALID = 1; ++ ++ static const int kPageShift = 12; ++ static const int kPageSize = 1 << kPageShift; ++ static const int kPageMask = kPageSize - 1; ++ static const int kLineShift = 2; // The cache line is only 4 bytes right now. ++ static const int kLineLength = 1 << kLineShift; ++ static const int kLineMask = kLineLength - 1; ++ ++ CachePage() { ++ memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); ++ } ++ ++ char* ValidityByte(int offset) { ++ return &validity_map_[offset >> kLineShift]; ++ } ++ ++ char* CachedData(int offset) { ++ return &data_[offset]; ++ } ++ ++ private: ++ char data_[kPageSize]; // The cached data. ++ static const int kValidityMapSize = kPageSize >> kLineShift; ++ char validity_map_[kValidityMapSize]; // One byte per line. ++}; ++ ++class SimInstructionBase : public InstructionBase { ++ public: ++ Type InstructionType() const { return type_; } ++ inline Instruction* instr() const { return instr_; } ++ inline int32_t operand() const { return operand_; } ++ ++ protected: ++ SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {} ++ explicit SimInstructionBase(Instruction* instr) {} ++ ++ int32_t operand_; ++ Instruction* instr_; ++ Type type_; ++ ++ private: ++ DISALLOW_ASSIGN(SimInstructionBase); ++}; ++ ++class SimInstruction : public InstructionGetters { ++ public: ++ SimInstruction() {} ++ ++ explicit SimInstruction(Instruction* instr) { *this = instr; } ++ ++ SimInstruction& operator=(Instruction* instr) { ++ operand_ = *reinterpret_cast(instr); ++ instr_ = instr; ++ type_ = InstructionBase::InstructionType(); ++ DCHECK(reinterpret_cast(&operand_) == this); ++ return *this; ++ } ++}; ++ ++class Simulator : public SimulatorBase { ++ public: ++ friend class MipsDebugger; ++ ++ // Registers are declared in order. See SMRL chapter 2. ++ enum Register { ++ no_reg = -1, ++ zero_reg = 0, ++ at, ++ v0, v1, ++ a0, a1, a2, a3, a4, a5, a6, a7, ++ t0, t1, t2, t3, ++ s0, s1, s2, s3, s4, s5, s6, s7, ++ t8, t9, ++ k0, k1, ++ gp, ++ sp, ++ s8, ++ ra, ++ // LO, HI, and pc. ++ LO, ++ HI, ++ pc, // pc must be the last register. ++ kNumSimuRegisters, ++ // aliases ++ fp = s8 ++ }; ++ ++ // Coprocessor registers. ++ // Generated code will always use doubles. So we will only use even registers. ++ enum FPURegister { ++ f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, ++ f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters. ++ f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, ++ f26, f27, f28, f29, f30, f31, ++ kNumFPURegisters ++ }; ++ ++ // MSA registers ++ enum MSARegister { ++ w0, ++ w1, ++ w2, ++ w3, ++ w4, ++ w5, ++ w6, ++ w7, ++ w8, ++ w9, ++ w10, ++ w11, ++ w12, ++ w13, ++ w14, ++ w15, ++ w16, ++ w17, ++ w18, ++ w19, ++ w20, ++ w21, ++ w22, ++ w23, ++ w24, ++ w25, ++ w26, ++ w27, ++ w28, ++ w29, ++ w30, ++ w31, ++ kNumMSARegisters ++ }; ++ ++ explicit Simulator(Isolate* isolate); ++ ~Simulator(); ++ ++ // The currently executing Simulator instance. Potentially there can be one ++ // for each native thread. ++ V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); ++ ++ // Accessors for register state. Reading the pc value adheres to the MIPS ++ // architecture specification and is off by a 8 from the currently executing ++ // instruction. ++ void set_register(int reg, int64_t value); ++ void set_register_word(int reg, int32_t value); ++ void set_dw_register(int dreg, const int* dbl); ++ int64_t get_register(int reg) const; ++ double get_double_from_register_pair(int reg); ++ // Same for FPURegisters. ++ void set_fpu_register(int fpureg, int64_t value); ++ void set_fpu_register_word(int fpureg, int32_t value); ++ void set_fpu_register_hi_word(int fpureg, int32_t value); ++ void set_fpu_register_float(int fpureg, float value); ++ void set_fpu_register_double(int fpureg, double value); ++ void set_fpu_register_invalid_result64(float original, float rounded); ++ void set_fpu_register_invalid_result(float original, float rounded); ++ void set_fpu_register_word_invalid_result(float original, float rounded); ++ void set_fpu_register_invalid_result64(double original, double rounded); ++ void set_fpu_register_invalid_result(double original, double rounded); ++ void set_fpu_register_word_invalid_result(double original, double rounded); ++ int64_t get_fpu_register(int fpureg) const; ++ int32_t get_fpu_register_word(int fpureg) const; ++ int32_t get_fpu_register_signed_word(int fpureg) const; ++ int32_t get_fpu_register_hi_word(int fpureg) const; ++ float get_fpu_register_float(int fpureg) const; ++ double get_fpu_register_double(int fpureg) const; ++ template ++ void get_msa_register(int wreg, T* value); ++ template ++ void set_msa_register(int wreg, const T* value); ++ void set_fcsr_bit(uint32_t cc, bool value); ++ bool test_fcsr_bit(uint32_t cc); ++ bool set_fcsr_round_error(double original, double rounded); ++ bool set_fcsr_round64_error(double original, double rounded); ++ bool set_fcsr_round_error(float original, float rounded); ++ bool set_fcsr_round64_error(float original, float rounded); ++ void round_according_to_fcsr(double toRound, double& rounded, ++ int32_t& rounded_int, double fs); ++ void round64_according_to_fcsr(double toRound, double& rounded, ++ int64_t& rounded_int, double fs); ++ void round_according_to_fcsr(float toRound, float& rounded, ++ int32_t& rounded_int, float fs); ++ void round64_according_to_fcsr(float toRound, float& rounded, ++ int64_t& rounded_int, float fs); ++ template ++ void round_according_to_msacsr(T_fp toRound, T_fp& rounded, ++ T_int& rounded_int); ++ void set_fcsr_rounding_mode(FPURoundingMode mode); ++ void set_msacsr_rounding_mode(FPURoundingMode mode); ++ unsigned int get_fcsr_rounding_mode(); ++ unsigned int get_msacsr_rounding_mode(); ++ // Special case of set_register and get_register to access the raw PC value. ++ void set_pc(int64_t value); ++ int64_t get_pc() const; ++ ++ Address get_sp() const { return static_cast
(get_register(sp)); } ++ ++ // Accessor to the internal simulator stack area. ++ uintptr_t StackLimit(uintptr_t c_limit) const; ++ ++ // Executes MIPS instructions until the PC reaches end_sim_pc. ++ void Execute(); ++ ++ template ++ Return Call(Address entry, Args... args) { ++ return VariadicCall(this, &Simulator::CallImpl, entry, args...); ++ } ++ ++ // Alternative: call a 2-argument double function. ++ double CallFP(Address entry, double d0, double d1); ++ ++ // Push an address onto the JS stack. ++ uintptr_t PushAddress(uintptr_t address); ++ ++ // Pop an address from the JS stack. ++ uintptr_t PopAddress(); ++ ++ // Debugger input. ++ void set_last_debugger_input(char* input); ++ char* last_debugger_input() { return last_debugger_input_; } ++ ++ // Redirection support. ++ static void SetRedirectInstruction(Instruction* instruction); ++ ++ // ICache checking. ++ static bool ICacheMatch(void* one, void* two); ++ static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, ++ size_t size); ++ ++ // Returns true if pc register contains one of the 'special_values' defined ++ // below (bad_ra, end_sim_pc). ++ bool has_bad_pc() const; ++ ++ private: ++ enum special_values { ++ // Known bad pc value to ensure that the simulator does not execute ++ // without being properly setup. ++ bad_ra = -1, ++ // A pc value used to signal the simulator to stop execution. Generally ++ // the ra is set to this value on transition from native C code to ++ // simulated execution, so that the simulator can "return" to the native ++ // C code. ++ end_sim_pc = -2, ++ // Unpredictable value. ++ Unpredictable = 0xbadbeaf ++ }; ++ ++ V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, ++ const intptr_t* arguments); ++ ++ // Unsupported instructions use Format to print an error and stop execution. ++ void Format(Instruction* instr, const char* format); ++ ++ // Helpers for data value tracing. ++ enum TraceType { ++ BYTE, ++ HALF, ++ WORD, ++ DWORD, ++ FLOAT, ++ DOUBLE, ++ FLOAT_DOUBLE, ++ WORD_DWORD ++ }; ++ ++ // MSA Data Format ++ enum MSADataFormat { MSA_VECT = 0, MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD }; ++ typedef union { ++ int8_t b[kMSALanesByte]; ++ uint8_t ub[kMSALanesByte]; ++ int16_t h[kMSALanesHalf]; ++ uint16_t uh[kMSALanesHalf]; ++ int32_t w[kMSALanesWord]; ++ uint32_t uw[kMSALanesWord]; ++ int64_t d[kMSALanesDword]; ++ uint64_t ud[kMSALanesDword]; ++ } msa_reg_t; ++ ++ // Read and write memory. ++ inline uint32_t ReadBU(int64_t addr); ++ inline int32_t ReadB(int64_t addr); ++ inline void WriteB(int64_t addr, uint8_t value); ++ inline void WriteB(int64_t addr, int8_t value); ++ ++ inline uint16_t ReadHU(int64_t addr, Instruction* instr); ++ inline int16_t ReadH(int64_t addr, Instruction* instr); ++ // Note: Overloaded on the sign of the value. ++ inline void WriteH(int64_t addr, uint16_t value, Instruction* instr); ++ inline void WriteH(int64_t addr, int16_t value, Instruction* instr); ++ ++ inline uint32_t ReadWU(int64_t addr, Instruction* instr); ++ inline int32_t ReadW(int64_t addr, Instruction* instr, TraceType t = WORD); ++ inline void WriteW(int64_t addr, int32_t value, Instruction* instr); ++ inline int64_t Read2W(int64_t addr, Instruction* instr); ++ inline void Write2W(int64_t addr, int64_t value, Instruction* instr); ++ ++ inline double ReadD(int64_t addr, Instruction* instr); ++ inline void WriteD(int64_t addr, double value, Instruction* instr); ++ ++ template ++ T ReadMem(int64_t addr, Instruction* instr); ++ template ++ void WriteMem(int64_t addr, T value, Instruction* instr); ++ ++ // Helper for debugging memory access. ++ inline void DieOrDebug(); ++ ++ void TraceRegWr(int64_t value, TraceType t = DWORD); ++ template ++ void TraceMSARegWr(T* value, TraceType t); ++ template ++ void TraceMSARegWr(T* value); ++ void TraceMemWr(int64_t addr, int64_t value, TraceType t); ++ void TraceMemRd(int64_t addr, int64_t value, TraceType t = DWORD); ++ template ++ void TraceMemRd(int64_t addr, T value); ++ template ++ void TraceMemWr(int64_t addr, T value); ++ ++ // Operations depending on endianness. ++ // Get Double Higher / Lower word. ++ inline int32_t GetDoubleHIW(double* addr); ++ inline int32_t GetDoubleLOW(double* addr); ++ // Set Double Higher / Lower word. ++ inline int32_t SetDoubleHIW(double* addr); ++ inline int32_t SetDoubleLOW(double* addr); ++ ++ SimInstruction instr_; ++ ++ // functions called from DecodeTypeRegister. ++ void DecodeTypeRegisterCOP1(); ++ ++ void DecodeTypeRegisterCOP1X(); ++ ++ void DecodeTypeRegisterSPECIAL(); ++ ++ ++ void DecodeTypeRegisterSPECIAL2(); ++ ++ void DecodeTypeRegisterSPECIAL3(); ++ ++ void DecodeTypeRegisterSRsType(); ++ ++ void DecodeTypeRegisterDRsType(); ++ ++ void DecodeTypeRegisterWRsType(); ++ ++ void DecodeTypeRegisterLRsType(); ++ ++ int DecodeMsaDataFormat(); ++ void DecodeTypeMsaI8(); ++ void DecodeTypeMsaI5(); ++ void DecodeTypeMsaI10(); ++ void DecodeTypeMsaELM(); ++ void DecodeTypeMsaBIT(); ++ void DecodeTypeMsaMI10(); ++ void DecodeTypeMsa3R(); ++ void DecodeTypeMsa3RF(); ++ void DecodeTypeMsaVec(); ++ void DecodeTypeMsa2R(); ++ void DecodeTypeMsa2RF(); ++ template ++ T MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5); ++ template ++ T MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m); ++ template ++ T Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt); ++ ++ // Executing is handled based on the instruction type. ++ void DecodeTypeRegister(); ++ ++ inline int32_t rs_reg() const { return instr_.RsValue(); } ++ inline int64_t rs() const { return get_register(rs_reg()); } ++ inline uint64_t rs_u() const { ++ return static_cast(get_register(rs_reg())); ++ } ++ inline int32_t rt_reg() const { return instr_.RtValue(); } ++ inline int64_t rt() const { return get_register(rt_reg()); } ++ inline uint64_t rt_u() const { ++ return static_cast(get_register(rt_reg())); ++ } ++ inline int32_t rd_reg() const { return instr_.RdValue(); } ++ inline int32_t fr_reg() const { return instr_.FrValue(); } ++ inline int32_t fs_reg() const { return instr_.FsValue(); } ++ inline int32_t ft_reg() const { return instr_.FtValue(); } ++ inline int32_t fd_reg() const { return instr_.FdValue(); } ++ inline int32_t sa() const { return instr_.SaValue(); } ++ inline int32_t lsa_sa() const { return instr_.LsaSaValue(); } ++ inline int32_t ws_reg() const { return instr_.WsValue(); } ++ inline int32_t wt_reg() const { return instr_.WtValue(); } ++ inline int32_t wd_reg() const { return instr_.WdValue(); } ++ ++ inline void SetResult(const int32_t rd_reg, const int64_t alu_out) { ++ set_register(rd_reg, alu_out); ++ TraceRegWr(alu_out); ++ } ++ ++ inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) { ++ set_fpu_register_word(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), WORD); ++ } ++ ++ inline void SetFPUWordResult2(int32_t fd_reg, int32_t alu_out) { ++ set_fpu_register_word(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg)); ++ } ++ ++ inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) { ++ set_fpu_register(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg)); ++ } ++ ++ inline void SetFPUResult2(int32_t fd_reg, int64_t alu_out) { ++ set_fpu_register(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), DOUBLE); ++ } ++ ++ inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) { ++ set_fpu_register_float(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), FLOAT); ++ } ++ ++ inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) { ++ set_fpu_register_double(fd_reg, alu_out); ++ TraceRegWr(get_fpu_register(fd_reg), DOUBLE); ++ } ++ ++ void DecodeTypeImmediate(); ++ void DecodeTypeJump(); ++ ++ // Used for breakpoints and traps. ++ void SoftwareInterrupt(); ++ ++ // Compact branch guard. ++ void CheckForbiddenSlot(int64_t current_pc) { ++ Instruction* instr_after_compact_branch = ++ reinterpret_cast(current_pc + Instruction::kInstrSize); ++ if (instr_after_compact_branch->IsForbiddenAfterBranch()) { ++ FATAL( ++ "Error: Unexpected instruction 0x%08x immediately after a " ++ "compact branch instruction.", ++ *reinterpret_cast(instr_after_compact_branch)); ++ } ++ } ++ ++ // Stop helper functions. ++ bool IsWatchpoint(uint64_t code); ++ void PrintWatchpoint(uint64_t code); ++ void HandleStop(uint64_t code, Instruction* instr); ++ bool IsStopInstruction(Instruction* instr); ++ bool IsEnabledStop(uint64_t code); ++ void EnableStop(uint64_t code); ++ void DisableStop(uint64_t code); ++ void IncreaseStopCounter(uint64_t code); ++ void PrintStopInfo(uint64_t code); ++ ++ ++ // Executes one instruction. ++ void InstructionDecode(Instruction* instr); ++ // Execute one instruction placed in a branch delay slot. ++ void BranchDelayInstructionDecode(Instruction* instr) { ++ if (instr->InstructionBits() == nopInstr) { ++ // Short-cut generic nop instructions. They are always valid and they ++ // never change the simulator state. ++ return; ++ } ++ ++ if (instr->IsForbiddenAfterBranch()) { ++ FATAL("Eror:Unexpected %i opcode in a branch delay slot.", ++ instr->OpcodeValue()); ++ } ++ InstructionDecode(instr); ++ SNPrintF(trace_buf_, " "); ++ } ++ ++ // ICache. ++ static void CheckICache(base::CustomMatcherHashMap* i_cache, ++ Instruction* instr); ++ static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, ++ size_t size); ++ static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, ++ void* page); ++ ++ enum Exception { ++ none, ++ kIntegerOverflow, ++ kIntegerUnderflow, ++ kDivideByZero, ++ kNumExceptions ++ }; ++ ++ // Exceptions. ++ void SignalException(Exception e); ++ ++ // Handle arguments and return value for runtime FP functions. ++ void GetFpArgs(double* x, double* y, int32_t* z); ++ void SetFpResult(const double& result); ++ ++ void CallInternal(Address entry); ++ ++ // Architecture state. ++ // Registers. ++ int64_t registers_[kNumSimuRegisters]; ++ // Coprocessor Registers. ++ // Note: FPUregisters_[] array is increased to 64 * 8B = 32 * 16B in ++ // order to support MSA registers ++ int64_t FPUregisters_[kNumFPURegisters * 2]; ++ // FPU control register. ++ uint32_t FCSR_; ++ // MSA control register. ++ uint32_t MSACSR_; ++ ++ // Simulator support. ++ // Allocate 1MB for stack. ++ size_t stack_size_; ++ char* stack_; ++ bool pc_modified_; ++ int64_t icount_; ++ int break_count_; ++ EmbeddedVector trace_buf_; ++ ++ // Debugger input. ++ char* last_debugger_input_; ++ ++ v8::internal::Isolate* isolate_; ++ ++ // Registered breakpoints. ++ Instruction* break_pc_; ++ Instr break_instr_; ++ ++ // Stop is disabled if bit 31 is set. ++ static const uint32_t kStopDisabledBit = 1 << 31; ++ ++ // A stop is enabled, meaning the simulator will stop when meeting the ++ // instruction, if bit 31 of watched_stops_[code].count is unset. ++ // The value watched_stops_[code].count & ~(1 << 31) indicates how many times ++ // the breakpoint was hit or gone through. ++ struct StopCountAndDesc { ++ uint32_t count; ++ char* desc; ++ }; ++ StopCountAndDesc watched_stops_[kMaxStopCode + 1]; ++}; ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // defined(USE_SIMULATOR) ++#endif // V8_MIPS64_SIMULATOR_MIPS64_H_ +diff --git a/deps/v8/src/macro-assembler.h b/deps/v8/src/macro-assembler.h +index d420ab5..33c8410 100644 +--- a/deps/v8/src/macro-assembler.h ++++ b/deps/v8/src/macro-assembler.h +@@ -54,6 +54,9 @@ enum AllocationFlags { + #elif V8_TARGET_ARCH_S390 + #include "src/s390/constants-s390.h" + #include "src/s390/macro-assembler-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/constants-loong64.h" ++#include "src/loong64/macro-assembler-loong64.h" + #else + #error Unsupported target architecture. + #endif +diff --git a/deps/v8/src/objects.h b/deps/v8/src/objects.h +index b630fb5..cd40405 100644 +--- a/deps/v8/src/objects.h ++++ b/deps/v8/src/objects.h +@@ -35,6 +35,8 @@ + #include "src/ppc/constants-ppc.h" // NOLINT + #elif V8_TARGET_ARCH_S390 + #include "src/s390/constants-s390.h" // NOLINT ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/constants-loong64.h" // NOLINT + #endif + + // Has to be the last include (doesn't have include guards): +diff --git a/deps/v8/src/parsing/scanner-character-streams.cc b/deps/v8/src/parsing/scanner-character-streams.cc +index 20aa5c9..caefb7c 100644 +--- a/deps/v8/src/parsing/scanner-character-streams.cc ++++ b/deps/v8/src/parsing/scanner-character-streams.cc +@@ -570,7 +570,7 @@ size_t OneByteExternalStreamingStream::FillBuffer(size_t position) { + return len; + } + +-#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64) ++#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64) + // ---------------------------------------------------------------------------- + // TwoByteExternalStreamingStream + // +@@ -875,7 +875,7 @@ Utf16CharacterStream* ScannerStream::For( + RuntimeCallStats* stats) { + switch (encoding) { + case v8::ScriptCompiler::StreamedSource::TWO_BYTE: +-#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64) ++#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64) + return new TwoByteExternalStreamingStream(source_stream, stats); + #else + return new TwoByteExternalBufferedStream(source_stream, stats); +diff --git a/deps/v8/src/perf-jit.h b/deps/v8/src/perf-jit.h +index bbcc79d..505fd3e 100644 +--- a/deps/v8/src/perf-jit.h ++++ b/deps/v8/src/perf-jit.h +@@ -77,6 +77,7 @@ class PerfJitLogger : public CodeEventLogger { + static const uint32_t kElfMachX64 = 62; + static const uint32_t kElfMachARM = 40; + static const uint32_t kElfMachMIPS = 10; ++ static const uint32_t kElfMachLOONG64 = 258; + static const uint32_t kElfMachARM64 = 183; + + uint32_t GetElfMach() { +@@ -90,6 +91,8 @@ class PerfJitLogger : public CodeEventLogger { + return kElfMachMIPS; + #elif V8_TARGET_ARCH_ARM64 + return kElfMachARM64; ++#elif V8_TARGET_ARCH_LOONG64 ++ return kElfMachLOONG64; + #else + UNIMPLEMENTED(); + return 0; +diff --git a/deps/v8/src/profiler/tick-sample.cc b/deps/v8/src/profiler/tick-sample.cc +index ef44749..a88ad7c 100644 +--- a/deps/v8/src/profiler/tick-sample.cc ++++ b/deps/v8/src/profiler/tick-sample.cc +@@ -102,7 +102,7 @@ bool SimulatorHelper::FillRegisters(Isolate* isolate, + state->pc = reinterpret_cast(simulator->pc()); + state->sp = reinterpret_cast(simulator->sp()); + state->fp = reinterpret_cast(simulator->fp()); +-#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ++#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64 + if (!simulator->has_bad_pc()) { + state->pc = reinterpret_cast(simulator->get_pc()); + } +diff --git a/deps/v8/src/regexp/jsregexp.cc b/deps/v8/src/regexp/jsregexp.cc +index e26ebaa..f0db4b5 100644 +--- a/deps/v8/src/regexp/jsregexp.cc ++++ b/deps/v8/src/regexp/jsregexp.cc +@@ -50,6 +50,8 @@ + #include "src/regexp/mips/regexp-macro-assembler-mips.h" + #elif V8_TARGET_ARCH_MIPS64 + #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/regexp/loong64/regexp-macro-assembler-loong64.h" + #else + #error Unsupported target architecture. + #endif +@@ -6761,6 +6763,9 @@ RegExpEngine::CompilationResult RegExpEngine::Compile( + #elif V8_TARGET_ARCH_MIPS64 + RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode, + (data->capture_count + 1) * 2); ++#elif V8_TARGET_ARCH_LOONG64 ++ RegExpMacroAssemblerLOONG64 macro_assembler(isolate, zone, mode, ++ (data->capture_count + 1) * 2); + #else + #error "Unsupported architecture" + #endif +diff --git a/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.cc b/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.cc +new file mode 100644 +index 0000000..6d4e9d1 +--- /dev/null ++++ b/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.cc +@@ -0,0 +1,1336 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#if V8_TARGET_ARCH_LOONG64 ++ ++#include "src/regexp/loong64/regexp-macro-assembler-loong64.h" ++ ++#include "src/assembler-inl.h" ++#include "src/code-stubs.h" ++#include "src/log.h" ++#include "src/macro-assembler.h" ++#include "src/objects-inl.h" ++#include "src/regexp/regexp-macro-assembler.h" ++#include "src/regexp/regexp-stack.h" ++#include "src/unicode.h" ++ ++namespace v8 { ++namespace internal { ++ ++#ifndef V8_INTERPRETED_REGEXP ++ ++/* clang-format off ++ * ++ * This assembler uses the following register assignment convention ++ * - t3 : Temporarily stores the index of capture start after a matching pass ++ * for a global regexp. ++ * - a5 : Pointer to current code object (Code*) including heap object tag. ++ * - a6 : Current position in input, as negative offset from end of string. ++ * Please notice that this is the byte offset, not the character offset! ++ * - a7 : Currently loaded character. Must be loaded using ++ * LoadCurrentCharacter before using any of the dispatch methods. ++ * - t0 : Points to tip of backtrack stack ++ * - t1 : Unused. ++ * - t2 : End of input (points to byte after last character in input). ++ * - fp : Frame pointer. Used to access arguments, local variables and ++ * RegExp registers. ++ * - sp : Points to tip of C stack. ++ * ++ * The remaining registers are free for computations. ++ * Each call to a public method should retain this convention. ++ * ++ * TODO(plind): O32 documented here with intent of having single 32/64 codebase ++ * in the future. ++ * ++ * The O32 stack will have the following structure: ++ * ++ * - fp[72] Isolate* isolate (address of the current isolate) ++ * - fp[68] direct_call (if 1, direct call from JavaScript code, ++ * if 0, call through the runtime system). ++ * - fp[64] stack_area_base (High end of the memory area to use as ++ * backtracking stack). ++ * - fp[60] capture array size (may fit multiple sets of matches) ++ * - fp[44..59] MIPS O32 four argument slots ++ * - fp[40] int* capture_array (int[num_saved_registers_], for output). ++ * --- sp when called --- ++ * - fp[36] return address (lr). ++ * - fp[32] old frame pointer (r11). ++ * - fp[0..31] backup of registers s0..s7. ++ * --- frame pointer ---- ++ * - fp[-4] end of input (address of end of string). ++ * - fp[-8] start of input (address of first character in string). ++ * - fp[-12] start index (character index of start). ++ * - fp[-16] void* input_string (location of a handle containing the string). ++ * - fp[-20] success counter (only for global regexps to count matches). ++ * - fp[-24] Offset of location before start of input (effectively character ++ * string start - 1). Used to initialize capture registers to a ++ * non-position. ++ * - fp[-28] At start (if 1, we are starting at the start of the ++ * string, otherwise 0) ++ * - fp[-32] register 0 (Only positions must be stored in the first ++ * - register 1 num_saved_registers_ registers) ++ * - ... ++ * - register num_registers-1 ++ * --- sp --- ++ * ++ * ++ * The N64 stack will have the following structure: ++ * ++ * - fp[80] Isolate* isolate (address of the current isolate) kIsolate ++ * kStackFrameHeader ++ * --- sp when called --- ++ * - fp[72] ra Return from RegExp code (ra). kReturnAddress ++ * - fp[64] s9, old-fp Old fp, callee saved(s9). ++ * - fp[0..63] s0..s7 Callee-saved registers s0..s7. ++ * --- frame pointer ---- ++ * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall ++ * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd ++ * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters ++ * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput ++ * - fp[-40] end of input (address of end of string). kInputEnd ++ * - fp[-48] start of input (address of first character in string). kInputStart ++ * - fp[-56] start index (character index of start). kStartIndex ++ * - fp[-64] void* input_string (location of a handle containing the string). kInputString ++ * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures ++ * - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne ++ * position -1). Used to initialize capture registers to a ++ * non-position. ++ * --------- The following output registers are 32-bit values. --------- ++ * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero ++ * - register 1 num_saved_registers_ registers) ++ * - ... ++ * - register num_registers-1 ++ * --- sp --- ++ * ++ * The first num_saved_registers_ registers are initialized to point to ++ * "character -1" in the string (i.e., char_size() bytes before the first ++ * character of the string). The remaining registers start out as garbage. ++ * ++ * The data up to the return address must be placed there by the calling ++ * code and the remaining arguments are passed in registers, e.g. by calling the ++ * code entry as cast to a function with the signature: ++ * int (*match)(String* input_string, ++ * int start_index, ++ * Address start, ++ * Address end, ++ * int* capture_output_array, ++ * int num_capture_registers, ++ * byte* stack_area_base, ++ * bool direct_call = false, ++ * Isolate* isolate); ++ * The call is performed by NativeRegExpMacroAssembler::Execute() ++ * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper. ++ * ++ * clang-format on ++ */ ++ ++#define __ ACCESS_MASM(masm_) ++ ++RegExpMacroAssemblerLOONG64::RegExpMacroAssemblerLOONG64(Isolate* isolate, Zone* zone, ++ Mode mode, ++ int registers_to_save) ++ : NativeRegExpMacroAssembler(isolate, zone), ++ masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize, ++ CodeObjectRequired::kYes)), ++ mode_(mode), ++ num_registers_(registers_to_save), ++ num_saved_registers_(registers_to_save), ++ entry_label_(), ++ start_label_(), ++ success_label_(), ++ backtrack_label_(), ++ exit_label_(), ++ internal_failure_label_() { ++ DCHECK_EQ(0, registers_to_save % 2); ++ __ jmp(&entry_label_); // We'll write the entry code later. ++ // If the code gets too big or corrupted, an internal exception will be ++ // raised, and we will exit right away. ++ __ bind(&internal_failure_label_); ++ __ li(a0, Operand(FAILURE)); ++ __ Ret(); ++ __ bind(&start_label_); // And then continue from here. ++} ++ ++ ++RegExpMacroAssemblerLOONG64::~RegExpMacroAssemblerLOONG64() { ++ delete masm_; ++ // Unuse labels in case we throw away the assembler without calling GetCode. ++ entry_label_.Unuse(); ++ start_label_.Unuse(); ++ success_label_.Unuse(); ++ backtrack_label_.Unuse(); ++ exit_label_.Unuse(); ++ check_preempt_label_.Unuse(); ++ stack_overflow_label_.Unuse(); ++ internal_failure_label_.Unuse(); ++} ++ ++ ++int RegExpMacroAssemblerLOONG64::stack_limit_slack() { ++ return RegExpStack::kStackLimitSlack; ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::AdvanceCurrentPosition(int by) { ++ if (by != 0) { ++ __ Add_d(current_input_offset(), ++ current_input_offset(), Operand(by * char_size())); ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::AdvanceRegister(int reg, int by) { ++ DCHECK_LE(0, reg); ++ DCHECK_GT(num_registers_, reg); ++ if (by != 0) { ++ __ Ld_d(a0, register_location(reg)); ++ __ Add_d(a0, a0, Operand(by)); ++ __ St_d(a0, register_location(reg)); ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::Backtrack() { ++ CheckPreemption(); ++ // Pop Code* offset from backtrack stack, add Code* and jump to location. ++ Pop(a0); ++ __ Add_d(a0, a0, code_pointer()); ++ __ Jump(a0); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::Bind(Label* label) { ++ __ bind(label); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacter(uint32_t c, Label* on_equal) { ++ BranchOrBacktrack(on_equal, eq, current_character(), Operand(c)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacterGT(uc16 limit, Label* on_greater) { ++ BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckAtStart(Label* on_at_start) { ++ __ Ld_d(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ __ Add_d(a0, current_input_offset(), Operand(-char_size())); ++ BranchOrBacktrack(on_at_start, eq, a0, Operand(a1)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotAtStart(int cp_offset, ++ Label* on_not_at_start) { ++ __ Ld_d(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ __ Add_d(a0, current_input_offset(), ++ Operand(-char_size() + cp_offset * char_size())); ++ BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacterLT(uc16 limit, Label* on_less) { ++ BranchOrBacktrack(on_less, lt, current_character(), Operand(limit)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckGreedyLoop(Label* on_equal) { ++ Label backtrack_non_equal; ++ __ Ld_w(a0, MemOperand(backtrack_stackpointer(), 0)); ++ __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0)); ++ __ Add_d(backtrack_stackpointer(), ++ backtrack_stackpointer(), ++ Operand(kIntSize)); ++ __ bind(&backtrack_non_equal); ++ BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotBackReferenceIgnoreCase( ++ int start_reg, bool read_backward, bool unicode, Label* on_no_match) { ++ Label fallthrough; ++ __ Ld_d(a0, register_location(start_reg)); // Index of start of capture. ++ __ Ld_d(a1, register_location(start_reg + 1)); // Index of end of capture. ++ __ Sub_d(a1, a1, a0); // Length of capture. ++ ++ // At this point, the capture registers are either both set or both cleared. ++ // If the capture length is zero, then the capture is either empty or cleared. ++ // Fall through in both cases. ++ __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); ++ ++ if (read_backward) { ++ __ Ld_d(t1, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ __ Add_d(t1, t1, a1); ++ BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1)); ++ } else { ++ __ Add_d(t1, a1, current_input_offset()); ++ // Check that there are enough characters left in the input. ++ BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); ++ } ++ ++ if (mode_ == LATIN1) { ++ Label success; ++ Label fail; ++ Label loop_check; ++ ++ // a0 - offset of start of capture. ++ // a1 - length of capture. ++ __ Add_d(a0, a0, Operand(end_of_input_address())); ++ __ Add_d(a2, end_of_input_address(), Operand(current_input_offset())); ++ if (read_backward) { ++ __ Sub_d(a2, a2, Operand(a1)); ++ } ++ __ Add_d(a1, a0, Operand(a1)); ++ ++ // a0 - Address of start of capture. ++ // a1 - Address of end of capture. ++ // a2 - Address of current input position. ++ ++ Label loop; ++ __ bind(&loop); ++ __ Ld_bu(a3, MemOperand(a0, 0)); ++ __ addi_d(a0, a0, char_size()); ++ __ Ld_bu(a4, MemOperand(a2, 0)); ++ __ addi_d(a2, a2, char_size()); ++ ++ __ Branch(&loop_check, eq, a4, Operand(a3)); ++ ++ // Mismatch, try case-insensitive match (converting letters to lower-case). ++ __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case. ++ __ Or(a4, a4, Operand(0x20)); // Also convert input character. ++ __ Branch(&fail, ne, a4, Operand(a3)); ++ __ Sub_d(a3, a3, Operand('a')); ++ __ Branch(&loop_check, ls, a3, Operand('z' - 'a')); ++ // Latin-1: Check for values in range [224,254] but not 247. ++ __ Sub_d(a3, a3, Operand(224 - 'a')); ++ // Weren't Latin-1 letters. ++ __ Branch(&fail, hi, a3, Operand(254 - 224)); ++ // Check for 247. ++ __ Branch(&fail, eq, a3, Operand(247 - 224)); ++ ++ __ bind(&loop_check); ++ __ Branch(&loop, lt, a0, Operand(a1)); ++ __ jmp(&success); ++ ++ __ bind(&fail); ++ GoTo(on_no_match); ++ ++ __ bind(&success); ++ // Compute new value of character position after the matched part. ++ __ Sub_d(current_input_offset(), a2, end_of_input_address()); ++ if (read_backward) { ++ __ Ld_d(t1, register_location(start_reg)); // Index of start of capture. ++ __ Ld_d(a2, register_location(start_reg + 1)); // Index of end of capture. ++ __ Add_d(current_input_offset(), current_input_offset(), Operand(t1)); ++ __ Sub_d(current_input_offset(), current_input_offset(), Operand(a2)); ++ } ++ } else { ++ DCHECK(mode_ == UC16); ++ // Put regexp engine registers on stack. ++ RegList regexp_registers_to_retain = current_input_offset().bit() | ++ current_character().bit() | backtrack_stackpointer().bit(); ++ __ MultiPush(regexp_registers_to_retain); ++ ++ int argument_count = 4; ++ __ PrepareCallCFunction(argument_count, a2); ++ ++ // a0 - offset of start of capture. ++ // a1 - length of capture. ++ ++ // Put arguments into arguments registers. ++ // Parameters are ++ // a0: Address byte_offset1 - Address captured substring's start. ++ // a1: Address byte_offset2 - Address of current character position. ++ // a2: size_t byte_length - length of capture in bytes(!). ++ // a3: Isolate* isolate or 0 if unicode flag. ++ ++ // Address of start of capture. ++ __ Add_d(a0, a0, Operand(end_of_input_address())); ++ // Length of capture. ++ __ mov(a2, a1); ++ // Save length in callee-save register for use on return. ++ __ mov(s3, a1); ++ // Address of current input position. ++ __ Add_d(a1, current_input_offset(), Operand(end_of_input_address())); ++ if (read_backward) { ++ __ Sub_d(a1, a1, Operand(s3)); ++ } ++ // Isolate. ++#ifdef V8_INTL_SUPPORT ++ if (unicode) { ++ __ mov(a3, zero_reg); ++ } else // NOLINT ++#endif // V8_INTL_SUPPORT ++ { ++ __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate()))); ++ } ++ ++ { ++ AllowExternalCallThatCantCauseGC scope(masm_); ++ ExternalReference function = ++ ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); ++ __ CallCFunction(function, argument_count); ++ } ++ ++ // Restore regexp engine registers. ++ __ MultiPop(regexp_registers_to_retain); ++ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); ++ __ Ld_d(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); ++ ++ // Check if function returned non-zero for success or zero for failure. ++ BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); ++ // On success, increment position by length of capture. ++ if (read_backward) { ++ __ Sub_d(current_input_offset(), current_input_offset(), Operand(s3)); ++ } else { ++ __ Add_d(current_input_offset(), current_input_offset(), Operand(s3)); ++ } ++ } ++ ++ __ bind(&fallthrough); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotBackReference(int start_reg, ++ bool read_backward, ++ Label* on_no_match) { ++ Label fallthrough; ++ Label success; ++ ++ // Find length of back-referenced capture. ++ __ Ld_d(a0, register_location(start_reg)); ++ __ Ld_d(a1, register_location(start_reg + 1)); ++ __ Sub_d(a1, a1, a0); // Length to check. ++ ++ // At this point, the capture registers are either both set or both cleared. ++ // If the capture length is zero, then the capture is either empty or cleared. ++ // Fall through in both cases. ++ __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); ++ ++ if (read_backward) { ++ __ Ld_d(t1, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ __ Add_d(t1, t1, a1); ++ BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1)); ++ } else { ++ __ Add_d(t1, a1, current_input_offset()); ++ // Check that there are enough characters left in the input. ++ BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); ++ } ++ ++ // Compute pointers to match string and capture string. ++ __ Add_d(a0, a0, Operand(end_of_input_address())); ++ __ Add_d(a2, end_of_input_address(), Operand(current_input_offset())); ++ if (read_backward) { ++ __ Sub_d(a2, a2, Operand(a1)); ++ } ++ __ Add_d(a1, a1, Operand(a0)); ++ ++ Label loop; ++ __ bind(&loop); ++ if (mode_ == LATIN1) { ++ __ Ld_bu(a3, MemOperand(a0, 0)); ++ __ addi_d(a0, a0, char_size()); ++ __ Ld_bu(a4, MemOperand(a2, 0)); ++ __ addi_d(a2, a2, char_size()); ++ } else { ++ DCHECK(mode_ == UC16); ++ __ Ld_hu(a3, MemOperand(a0, 0)); ++ __ addi_d(a0, a0, char_size()); ++ __ Ld_hu(a4, MemOperand(a2, 0)); ++ __ addi_d(a2, a2, char_size()); ++ } ++ BranchOrBacktrack(on_no_match, ne, a3, Operand(a4)); ++ __ Branch(&loop, lt, a0, Operand(a1)); ++ ++ // Move current character position to position after match. ++ __ Sub_d(current_input_offset(), a2, end_of_input_address()); ++ if (read_backward) { ++ __ Ld_d(t1, register_location(start_reg)); // Index of start of capture. ++ __ Ld_d(a2, register_location(start_reg + 1)); // Index of end of capture. ++ __ Add_d(current_input_offset(), current_input_offset(), Operand(t1)); ++ __ Sub_d(current_input_offset(), current_input_offset(), Operand(a2)); ++ } ++ __ bind(&fallthrough); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotCharacter(uint32_t c, ++ Label* on_not_equal) { ++ BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacterAfterAnd(uint32_t c, ++ uint32_t mask, ++ Label* on_equal) { ++ __ And(a0, current_character(), Operand(mask)); ++ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); ++ BranchOrBacktrack(on_equal, eq, a0, rhs); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotCharacterAfterAnd(uint32_t c, ++ uint32_t mask, ++ Label* on_not_equal) { ++ __ And(a0, current_character(), Operand(mask)); ++ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); ++ BranchOrBacktrack(on_not_equal, ne, a0, rhs); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckNotCharacterAfterMinusAnd( ++ uc16 c, ++ uc16 minus, ++ uc16 mask, ++ Label* on_not_equal) { ++ DCHECK_GT(String::kMaxUtf16CodeUnit, minus); ++ __ Sub_d(a0, current_character(), Operand(minus)); ++ __ And(a0, a0, Operand(mask)); ++ BranchOrBacktrack(on_not_equal, ne, a0, Operand(c)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacterInRange( ++ uc16 from, ++ uc16 to, ++ Label* on_in_range) { ++ __ Sub_d(a0, current_character(), Operand(from)); ++ // Unsigned lower-or-same condition. ++ BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckCharacterNotInRange( ++ uc16 from, ++ uc16 to, ++ Label* on_not_in_range) { ++ __ Sub_d(a0, current_character(), Operand(from)); ++ // Unsigned higher condition. ++ BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckBitInTable( ++ Handle table, ++ Label* on_bit_set) { ++ __ li(a0, Operand(table)); ++ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { ++ __ And(a1, current_character(), Operand(kTableSize - 1)); ++ __ Add_d(a0, a0, a1); ++ } else { ++ __ Add_d(a0, a0, current_character()); ++ } ++ ++ __ Ld_bu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize)); ++ BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg)); ++} ++ ++ ++bool RegExpMacroAssemblerLOONG64::CheckSpecialCharacterClass(uc16 type, ++ Label* on_no_match) { ++ // Range checks (c in min..max) are generally implemented by an unsigned ++ // (c - min) <= (max - min) check. ++ switch (type) { ++ case 's': ++ // Match space-characters. ++ if (mode_ == LATIN1) { ++ // One byte space characters are '\t'..'\r', ' ' and \u00a0. ++ Label success; ++ __ Branch(&success, eq, current_character(), Operand(' ')); ++ // Check range 0x09..0x0D. ++ __ Sub_d(a0, current_character(), Operand('\t')); ++ __ Branch(&success, ls, a0, Operand('\r' - '\t')); ++ // \u00a0 (NBSP). ++ BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t')); ++ __ bind(&success); ++ return true; ++ } ++ return false; ++ case 'S': ++ // The emitted code for generic character classes is good enough. ++ return false; ++ case 'd': ++ // Match Latin1 digits ('0'..'9'). ++ __ Sub_d(a0, current_character(), Operand('0')); ++ BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0')); ++ return true; ++ case 'D': ++ // Match non Latin1-digits. ++ __ Sub_d(a0, current_character(), Operand('0')); ++ BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0')); ++ return true; ++ case '.': { ++ // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029). ++ __ Xor(a0, current_character(), Operand(0x01)); ++ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C. ++ __ Sub_d(a0, a0, Operand(0x0B)); ++ BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B)); ++ if (mode_ == UC16) { ++ // Compare original value to 0x2028 and 0x2029, using the already ++ // computed (current_char ^ 0x01 - 0x0B). I.e., check for ++ // 0x201D (0x2028 - 0x0B) or 0x201E. ++ __ Sub_d(a0, a0, Operand(0x2028 - 0x0B)); ++ BranchOrBacktrack(on_no_match, ls, a0, Operand(1)); ++ } ++ return true; ++ } ++ case 'n': { ++ // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029). ++ __ Xor(a0, current_character(), Operand(0x01)); ++ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C. ++ __ Sub_d(a0, a0, Operand(0x0B)); ++ if (mode_ == LATIN1) { ++ BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B)); ++ } else { ++ Label done; ++ BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B)); ++ // Compare original value to 0x2028 and 0x2029, using the already ++ // computed (current_char ^ 0x01 - 0x0B). I.e., check for ++ // 0x201D (0x2028 - 0x0B) or 0x201E. ++ __ Sub_d(a0, a0, Operand(0x2028 - 0x0B)); ++ BranchOrBacktrack(on_no_match, hi, a0, Operand(1)); ++ __ bind(&done); ++ } ++ return true; ++ } ++ case 'w': { ++ if (mode_ != LATIN1) { ++ // Table is 256 entries, so all Latin1 characters can be tested. ++ BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z')); ++ } ++ ExternalReference map = ExternalReference::re_word_character_map(isolate()); ++ __ li(a0, Operand(map)); ++ __ Add_d(a0, a0, current_character()); ++ __ Ld_bu(a0, MemOperand(a0, 0)); ++ BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); ++ return true; ++ } ++ case 'W': { ++ Label done; ++ if (mode_ != LATIN1) { ++ // Table is 256 entries, so all Latin1 characters can be tested. ++ __ Branch(&done, hi, current_character(), Operand('z')); ++ } ++ ExternalReference map = ExternalReference::re_word_character_map(isolate()); ++ __ li(a0, Operand(map)); ++ __ Add_d(a0, a0, current_character()); ++ __ Ld_bu(a0, MemOperand(a0, 0)); ++ BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg)); ++ if (mode_ != LATIN1) { ++ __ bind(&done); ++ } ++ return true; ++ } ++ case '*': ++ // Match any character. ++ return true; ++ // No custom implementation (yet): s(UC16), S(UC16). ++ default: ++ return false; ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::Fail() { ++ __ li(a0, Operand(FAILURE)); ++ __ jmp(&exit_label_); ++} ++ ++ ++Handle RegExpMacroAssemblerLOONG64::GetCode(Handle source) { ++ Label return_v0; ++ if (0 /* TODO: masm_->has_exception() */) { ++ // If the code gets corrupted due to long regular expressions and lack of ++ // space on trampolines, an internal exception flag is set. If this case ++ // is detected, we will jump into exit sequence right away. ++ //__ bind_to(&entry_label_, internal_failure_label_.pos()); ++ } else { ++ // Finalize code - write the entry point code now we know how many ++ // registers we need. ++ ++ // Entry code: ++ __ bind(&entry_label_); ++ ++ // Tell the system that we have a stack frame. Because the type is MANUAL, ++ // no is generated. ++ FrameScope scope(masm_, StackFrame::MANUAL); ++ ++ // Actually emit code to start a new stack frame. ++ // Push arguments ++ // Save callee-save registers. ++ // Start new stack frame. ++ // Store link register in existing stack-cell. ++ // Order here should correspond to order of offset constants in header file. ++ // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs ++ // or dont save. ++ RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() | s3.bit() ++ | s4.bit() | s5.bit() | s6.bit() | s7.bit(); ++ RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit(); ++ ++ argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit(); ++ ++ __ MultiPush(ra.bit(), fp.bit(), argument_registers | registers_to_retain); ++ // Set frame pointer in space for it if this is not a direct call ++ // from generated code. ++ // TODO(plind): this 8 is the # of argument regs, should have definition. ++ __ Add_d(frame_pointer(), sp, Operand(8 * kPointerSize)); ++ __ mov(a0, zero_reg); ++ __ push(a0); // Make room for success counter and initialize it to 0. ++ __ push(a0); // Make room for "string start - 1" constant. ++ ++ // Check if we have space on the stack for registers. ++ Label stack_limit_hit; ++ Label stack_ok; ++ ++ ExternalReference stack_limit = ++ ExternalReference::address_of_stack_limit(masm_->isolate()); ++ __ li(a0, Operand(stack_limit)); ++ __ Ld_d(a0, MemOperand(a0, 0)); ++ __ Sub_d(a0, sp, a0); ++ // Handle it if the stack pointer is already below the stack limit. ++ __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg)); ++ // Check if there is room for the variable number of registers above ++ // the stack limit. ++ __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize)); ++ // Exit with OutOfMemory exception. There is not enough space on the stack ++ // for our working registers. ++ __ li(a0, Operand(EXCEPTION)); ++ __ jmp(&return_v0); ++ ++ __ bind(&stack_limit_hit); ++ CallCheckStackGuardState(a0); ++ // If returned value is non-zero, we exit with the returned value as result. ++ __ Branch(&return_v0, ne, a0, Operand(zero_reg)); ++ ++ __ bind(&stack_ok); ++ // Allocate space on stack for registers. ++ __ Sub_d(sp, sp, Operand(num_registers_ * kPointerSize)); ++ // Load string end. ++ __ Ld_d(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); ++ // Load input start. ++ __ Ld_d(a0, MemOperand(frame_pointer(), kInputStart)); ++ // Find negative length (offset of start relative to end). ++ __ Sub_d(current_input_offset(), a0, end_of_input_address()); ++ // Set a0 to address of char before start of the input string ++ // (effectively string position -1). ++ __ Ld_d(a1, MemOperand(frame_pointer(), kStartIndex)); ++ __ Sub_d(a0, current_input_offset(), Operand(char_size())); ++ __ slli_d(t1, a1, (mode_ == UC16) ? 1 : 0); ++ __ Sub_d(a0, a0, t1); ++ // Store this value in a local variable, for use when clearing ++ // position registers. ++ __ St_d(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ ++ // Initialize code pointer register ++ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); ++ ++ Label load_char_start_regexp, start_regexp; ++ // Load newline if index is at start, previous character otherwise. ++ __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg)); ++ __ li(current_character(), Operand('\n')); ++ __ jmp(&start_regexp); ++ ++ // Global regexp restarts matching here. ++ __ bind(&load_char_start_regexp); ++ // Load previous char as initial value of current character register. ++ LoadCurrentCharacterUnchecked(-1, 1); ++ __ bind(&start_regexp); ++ ++ // Initialize on-stack registers. ++ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. ++ // Fill saved registers with initial value = start offset - 1. ++ if (num_saved_registers_ > 8) { ++ // Address of register 0. ++ __ Add_d(a1, frame_pointer(), Operand(kRegisterZero)); ++ __ li(a2, Operand(num_saved_registers_)); ++ Label init_loop; ++ __ bind(&init_loop); ++ __ St_d(a0, MemOperand(a1)); ++ __ Add_d(a1, a1, Operand(-kPointerSize)); ++ __ Sub_d(a2, a2, Operand(1)); ++ __ Branch(&init_loop, ne, a2, Operand(zero_reg)); ++ } else { ++ for (int i = 0; i < num_saved_registers_; i++) { ++ __ St_d(a0, register_location(i)); ++ } ++ } ++ } ++ ++ // Initialize backtrack stack pointer. ++ __ Ld_d(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); ++ ++ __ jmp(&start_label_); ++ ++ ++ // Exit code: ++ if (success_label_.is_linked()) { ++ // Save captures when successful. ++ __ bind(&success_label_); ++ if (num_saved_registers_ > 0) { ++ // Copy captures to output. ++ __ Ld_d(a1, MemOperand(frame_pointer(), kInputStart)); ++ __ Ld_d(a0, MemOperand(frame_pointer(), kRegisterOutput)); ++ __ Ld_d(a2, MemOperand(frame_pointer(), kStartIndex)); ++ __ Sub_d(a1, end_of_input_address(), a1); ++ // a1 is length of input in bytes. ++ if (mode_ == UC16) { ++ __ srli_d(a1, a1, 1); ++ } ++ // a1 is length of input in characters. ++ __ Add_d(a1, a1, Operand(a2)); ++ // a1 is length of string in characters. ++ ++ DCHECK_EQ(0, num_saved_registers_ % 2); ++ // Always an even number of capture registers. This allows us to ++ // unroll the loop once to add an operation between a load of a register ++ // and the following use of that register. ++ for (int i = 0; i < num_saved_registers_; i += 2) { ++ __ Ld_d(a2, register_location(i)); ++ __ Ld_d(a3, register_location(i + 1)); ++ if (i == 0 && global_with_zero_length_check()) { ++ // Keep capture start in a4 for the zero-length check later. ++ __ mov(t3, a2); ++ } ++ if (mode_ == UC16) { ++ __ srai_d(a2, a2, 1); ++ __ Add_d(a2, a2, a1); ++ __ srai_d(a3, a3, 1); ++ __ Add_d(a3, a3, a1); ++ } else { ++ __ Add_d(a2, a1, Operand(a2)); ++ __ Add_d(a3, a1, Operand(a3)); ++ } ++ // V8 expects the output to be an int32_t array. ++ __ St_w(a2, MemOperand(a0)); ++ __ Add_d(a0, a0, kIntSize); ++ __ St_w(a3, MemOperand(a0)); ++ __ Add_d(a0, a0, kIntSize); ++ } ++ } ++ ++ if (global()) { ++ // Restart matching if the regular expression is flagged as global. ++ __ Ld_d(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); ++ __ Ld_d(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); ++ __ Ld_d(a2, MemOperand(frame_pointer(), kRegisterOutput)); ++ // Increment success counter. ++ __ Add_d(a0, a0, 1); ++ __ St_d(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); ++ // Capture results have been stored, so the number of remaining global ++ // output registers is reduced by the number of stored captures. ++ __ Sub_d(a1, a1, num_saved_registers_); ++ // Check whether we have enough room for another set of capture results. ++ //__ mov(v0, a0); ++ __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_)); ++ ++ __ St_d(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); ++ // Advance the location for output. ++ __ Add_d(a2, a2, num_saved_registers_ * kIntSize); ++ __ St_d(a2, MemOperand(frame_pointer(), kRegisterOutput)); ++ ++ // Prepare a0 to initialize registers with its value in the next run. ++ __ Ld_d(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ ++ if (global_with_zero_length_check()) { ++ // Special case for zero-length matches. ++ // t3: capture start index ++ // Not a zero-length match, restart. ++ __ Branch( ++ &load_char_start_regexp, ne, current_input_offset(), Operand(t3)); ++ // Offset from the end is zero if we already reached the end. ++ __ Branch(&exit_label_, eq, current_input_offset(), ++ Operand(zero_reg)); ++ // Advance current position after a zero-length match. ++ Label advance; ++ __ bind(&advance); ++ __ Add_d(current_input_offset(), ++ current_input_offset(), ++ Operand((mode_ == UC16) ? 2 : 1)); ++ if (global_unicode()) CheckNotInSurrogatePair(0, &advance); ++ } ++ ++ __ Branch(&load_char_start_regexp); ++ } else { ++ __ li(a0, Operand(SUCCESS)); ++ } ++ } ++ // Exit and return v0. ++ __ bind(&exit_label_); ++ if (global()) { ++ __ Ld_d(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); ++ } ++ ++ __ bind(&return_v0); ++ // Skip sp past regexp registers and local variables.. ++ __ mov(sp, frame_pointer()); ++ // Restore registers s0..s7 and return (restoring ra to pc). ++ __ MultiPop(ra.bit(), fp.bit(), registers_to_retain); ++ __ Ret(); ++ ++ // Backtrack code (branch target for conditional backtracks). ++ if (backtrack_label_.is_linked()) { ++ __ bind(&backtrack_label_); ++ Backtrack(); ++ } ++ ++ Label exit_with_exception; ++ ++ // Preempt-code. ++ if (check_preempt_label_.is_linked()) { ++ SafeCallTarget(&check_preempt_label_); ++ // Put regexp engine registers on stack. ++ RegList regexp_registers_to_retain = current_input_offset().bit() | ++ current_character().bit() | backtrack_stackpointer().bit(); ++ __ MultiPush(regexp_registers_to_retain); ++ CallCheckStackGuardState(a0); ++ __ MultiPop(regexp_registers_to_retain); ++ // If returning non-zero, we should end execution with the given ++ // result as return value. ++ __ Branch(&return_v0, ne, a0, Operand(zero_reg)); ++ ++ // String might have moved: Reload end of string from frame. ++ __ Ld_d(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); ++ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); ++ SafeReturn(); ++ } ++ ++ // Backtrack stack overflow code. ++ if (stack_overflow_label_.is_linked()) { ++ SafeCallTarget(&stack_overflow_label_); ++ // Reached if the backtrack-stack limit has been hit. ++ // Put regexp engine registers on stack first. ++ RegList regexp_registers = current_input_offset().bit() | ++ current_character().bit(); ++ __ MultiPush(regexp_registers); ++ Label grow_failed; ++ // Call GrowStack(backtrack_stackpointer(), &stack_base) ++ static const int num_arguments = 3; ++ __ PrepareCallCFunction(num_arguments, a0); ++ __ mov(a0, backtrack_stackpointer()); ++ __ Add_d(a1, frame_pointer(), Operand(kStackHighEnd)); ++ __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate()))); ++ ExternalReference grow_stack = ++ ExternalReference::re_grow_stack(masm_->isolate()); ++ __ CallCFunction(grow_stack, num_arguments); ++ // Restore regexp registers. ++ __ MultiPop(regexp_registers); ++ // If return nullptr, we have failed to grow the stack, and ++ // must exit with a stack-overflow exception. ++ __ Branch(&exit_with_exception, eq, a0, Operand(zero_reg)); ++ // Otherwise use return value as new stack pointer. ++ __ mov(backtrack_stackpointer(), a0); ++ // Restore saved registers and continue. ++ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); ++ __ Ld_d(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); ++ SafeReturn(); ++ } ++ ++ if (exit_with_exception.is_linked()) { ++ // If any of the code above needed to exit with an exception. ++ __ bind(&exit_with_exception); ++ // Exit with Result EXCEPTION(-1) to signal thrown exception. ++ __ li(a0, Operand(EXCEPTION)); ++ __ jmp(&return_v0); ++ } ++ } ++ ++ CodeDesc code_desc; ++ masm_->GetCode(isolate(), &code_desc); ++ Handle code = isolate()->factory()->NewCode(code_desc, Code::REGEXP, ++ masm_->CodeObject()); ++ LOG(masm_->isolate(), ++ RegExpCodeCreateEvent(AbstractCode::cast(*code), *source)); ++ return Handle::cast(code); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::GoTo(Label* to) { ++ if (to == nullptr) { ++ Backtrack(); ++ return; ++ } ++ __ jmp(to); ++ return; ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::IfRegisterGE(int reg, ++ int comparand, ++ Label* if_ge) { ++ __ Ld_d(a0, register_location(reg)); ++ BranchOrBacktrack(if_ge, ge, a0, Operand(comparand)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::IfRegisterLT(int reg, ++ int comparand, ++ Label* if_lt) { ++ __ Ld_d(a0, register_location(reg)); ++ BranchOrBacktrack(if_lt, lt, a0, Operand(comparand)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::IfRegisterEqPos(int reg, ++ Label* if_eq) { ++ __ Ld_d(a0, register_location(reg)); ++ BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset())); ++} ++ ++ ++RegExpMacroAssembler::IrregexpImplementation ++ RegExpMacroAssemblerLOONG64::Implementation() { ++ return kLOONG64Implementation; ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::LoadCurrentCharacter(int cp_offset, ++ Label* on_end_of_input, ++ bool check_bounds, ++ int characters) { ++ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works). ++ if (check_bounds) { ++ if (cp_offset >= 0) { ++ CheckPosition(cp_offset + characters - 1, on_end_of_input); ++ } else { ++ CheckPosition(cp_offset, on_end_of_input); ++ } ++ } ++ LoadCurrentCharacterUnchecked(cp_offset, characters); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::PopCurrentPosition() { ++ Pop(current_input_offset()); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::PopRegister(int register_index) { ++ Pop(a0); ++ __ St_d(a0, register_location(register_index)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::PushBacktrack(Label* label) { ++ if (label->is_bound()) { ++ int target = label->pos(); ++ __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); ++ } else { ++ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); ++ Label after_constant; ++ __ Branch(&after_constant); ++ int offset = masm_->pc_offset(); ++ int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag; ++ //__ emit(0); ++ __ nop(); ++ masm_->label_at_put(label, offset); ++ __ bind(&after_constant); ++ if (is_int16(cp_offset)) { ++ __ Ld_wu(a0, MemOperand(code_pointer(), cp_offset)); ++ } else { ++ __ Add_d(a0, code_pointer(), cp_offset); ++ __ Ld_wu(a0, MemOperand(a0, 0)); ++ } ++ } ++ Push(a0); ++ CheckStackLimit(); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::PushCurrentPosition() { ++ Push(current_input_offset()); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::PushRegister(int register_index, ++ StackCheckFlag check_stack_limit) { ++ __ Ld_d(a0, register_location(register_index)); ++ Push(a0); ++ if (check_stack_limit) CheckStackLimit(); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::ReadCurrentPositionFromRegister(int reg) { ++ __ Ld_d(current_input_offset(), register_location(reg)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::ReadStackPointerFromRegister(int reg) { ++ __ Ld_d(backtrack_stackpointer(), register_location(reg)); ++ __ Ld_d(a0, MemOperand(frame_pointer(), kStackHighEnd)); ++ __ Add_d(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::SetCurrentPositionFromEnd(int by) { ++ Label after_position; ++ __ Branch(&after_position, ++ ge, ++ current_input_offset(), ++ Operand(-by * char_size())); ++ __ li(current_input_offset(), -by * char_size()); ++ // On RegExp code entry (where this operation is used), the character before ++ // the current position is expected to be already loaded. ++ // We have advanced the position, so it's safe to read backwards. ++ LoadCurrentCharacterUnchecked(-1, 1); ++ __ bind(&after_position); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::SetRegister(int register_index, int to) { ++ DCHECK(register_index >= num_saved_registers_); // Reserved for positions! ++ __ li(a0, Operand(to)); ++ __ St_d(a0, register_location(register_index)); ++} ++ ++ ++bool RegExpMacroAssemblerLOONG64::Succeed() { ++ __ jmp(&success_label_); ++ return global(); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::WriteCurrentPositionToRegister(int reg, ++ int cp_offset) { ++ if (cp_offset == 0) { ++ __ St_d(current_input_offset(), register_location(reg)); ++ } else { ++ __ Add_d(a0, current_input_offset(), Operand(cp_offset * char_size())); ++ __ St_d(a0, register_location(reg)); ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::ClearRegisters(int reg_from, int reg_to) { ++ DCHECK(reg_from <= reg_to); ++ __ Ld_d(a0, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ for (int reg = reg_from; reg <= reg_to; reg++) { ++ __ St_d(a0, register_location(reg)); ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::WriteStackPointerToRegister(int reg) { ++ __ Ld_d(a1, MemOperand(frame_pointer(), kStackHighEnd)); ++ __ Sub_d(a0, backtrack_stackpointer(), a1); ++ __ St_d(a0, register_location(reg)); ++} ++ ++ ++bool RegExpMacroAssemblerLOONG64::CanReadUnaligned() { ++ return false; ++} ++ ++ ++// Private methods: ++ ++void RegExpMacroAssemblerLOONG64::CallCheckStackGuardState(Register scratch) { ++ int stack_alignment = base::OS::ActivationFrameAlignment(); ++ ++ // Align the stack pointer and save the original sp value on the stack. ++ __ mov(scratch, sp); ++ __ Sub_d(sp, sp, Operand(kPointerSize)); ++ DCHECK(base::bits::IsPowerOfTwo(stack_alignment)); ++ __ And(sp, sp, Operand(-stack_alignment)); ++ __ St_d(scratch, MemOperand(sp)); ++ ++ __ mov(a2, frame_pointer()); ++ // Code* of self. ++ __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE); ++ ++ // We need to make room for the return address on the stack. ++ DCHECK(IsAligned(stack_alignment, kPointerSize)); ++ __ Sub_d(sp, sp, Operand(stack_alignment)); ++ ++ // Stack pointer now points to cell where return address is to be written. ++ // Arguments are in registers, meaning we teat the return address as ++ // argument 5. Since DirectCEntryStub will handleallocating space for the C ++ // argument slots, we don't need to care about that here. This is how the ++ // stack will look (sp meaning the value of sp at this moment): ++ // [sp + 3] - empty slot if needed for alignment. ++ // [sp + 2] - saved sp. ++ // [sp + 1] - second word reserved for return value. ++ // [sp + 0] - first word reserved for return value. ++ ++ // a0 will point to the return address, placed by DirectCEntry. ++ __ mov(a0, sp); ++ ++ ExternalReference stack_guard_check = ++ ExternalReference::re_check_stack_guard_state(masm_->isolate()); ++ __ li(tp, Operand(stack_guard_check)); ++ DirectCEntryStub stub(isolate()); ++ stub.GenerateCall(masm_, tp); ++ ++ // DirectCEntryStub allocated space for the C argument slots so we have to ++ // drop them with the return address from the stack with loading saved sp. ++ // At this point stack must look: ++ // [sp + 7] - empty slot if needed for alignment. ++ // [sp + 6] - saved sp. ++ // [sp + 5] - second word reserved for return value. ++ // [sp + 4] - first word reserved for return value. ++ // [sp + 3] - C argument slot. ++ // [sp + 2] - C argument slot. ++ // [sp + 1] - C argument slot. ++ // [sp + 0] - C argument slot. ++ __ Ld_d(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize)); ++ ++ __ li(code_pointer(), Operand(masm_->CodeObject())); ++} ++ ++ ++// Helper function for reading a value out of a stack frame. ++template ++static T& frame_entry(Address re_frame, int frame_offset) { ++ return reinterpret_cast(Memory::int32_at(re_frame + frame_offset)); ++} ++ ++ ++template ++static T* frame_entry_address(Address re_frame, int frame_offset) { ++ return reinterpret_cast(re_frame + frame_offset); ++} ++ ++ ++int64_t RegExpMacroAssemblerLOONG64::CheckStackGuardState(Address* return_address, ++ Code* re_code, ++ Address re_frame) { ++ return NativeRegExpMacroAssembler::CheckStackGuardState( ++ frame_entry(re_frame, kIsolate), ++ static_cast(frame_entry(re_frame, kStartIndex)), ++ frame_entry(re_frame, kDirectCall) == 1, return_address, re_code, ++ frame_entry_address(re_frame, kInputString), ++ frame_entry_address(re_frame, kInputStart), ++ frame_entry_address(re_frame, kInputEnd)); ++} ++ ++ ++MemOperand RegExpMacroAssemblerLOONG64::register_location(int register_index) { ++ DCHECK(register_index < (1<<30)); ++ if (num_registers_ <= register_index) { ++ num_registers_ = register_index + 1; ++ } ++ return MemOperand(frame_pointer(), ++ kRegisterZero - register_index * kPointerSize); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckPosition(int cp_offset, ++ Label* on_outside_input) { ++ if (cp_offset >= 0) { ++ BranchOrBacktrack(on_outside_input, ge, current_input_offset(), ++ Operand(-cp_offset * char_size())); ++ } else { ++ __ Ld_d(a1, MemOperand(frame_pointer(), kStringStartMinusOne)); ++ __ Add_d(a0, current_input_offset(), Operand(cp_offset * char_size())); ++ BranchOrBacktrack(on_outside_input, le, a0, Operand(a1)); ++ } ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::BranchOrBacktrack(Label* to, ++ Condition condition, ++ Register rs, ++ const Operand& rt) { ++ if (condition == al) { // Unconditional. ++ if (to == nullptr) { ++ Backtrack(); ++ return; ++ } ++ __ jmp(to); ++ return; ++ } ++ if (to == nullptr) { ++ __ Branch(&backtrack_label_, condition, rs, rt); ++ return; ++ } ++ __ Branch(to, condition, rs, rt); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::SafeCall(Label* to, ++ Condition cond, ++ Register rs, ++ const Operand& rt) { ++ __ Branch(to, cond, rs, rt, true); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::SafeReturn() { ++ __ pop(ra); ++ __ Add_d(t1, ra, Operand(masm_->CodeObject())); ++ __ Jump(t1); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::SafeCallTarget(Label* name) { ++ __ bind(name); ++ __ Sub_d(ra, ra, Operand(masm_->CodeObject())); ++ __ push(ra); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::Push(Register source) { ++ DCHECK(source != backtrack_stackpointer()); ++ __ Add_d(backtrack_stackpointer(), ++ backtrack_stackpointer(), ++ Operand(-kIntSize)); ++ __ St_w(source, MemOperand(backtrack_stackpointer())); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::Pop(Register target) { ++ DCHECK(target != backtrack_stackpointer()); ++ __ Ld_w(target, MemOperand(backtrack_stackpointer())); ++ __ Add_d(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckPreemption() { ++ // Check for preemption. ++ ExternalReference stack_limit = ++ ExternalReference::address_of_stack_limit(masm_->isolate()); ++ __ li(a0, Operand(stack_limit)); ++ __ Ld_d(a0, MemOperand(a0, 0)); ++ SafeCall(&check_preempt_label_, ls, sp, Operand(a0)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::CheckStackLimit() { ++ ExternalReference stack_limit = ++ ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); ++ ++ __ li(a0, Operand(stack_limit)); ++ __ Ld_d(a0, MemOperand(a0, 0)); ++ SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0)); ++} ++ ++ ++void RegExpMacroAssemblerLOONG64::LoadCurrentCharacterUnchecked(int cp_offset, ++ int characters) { ++ Register offset = current_input_offset(); ++ if (cp_offset != 0) { ++ // t3 is not being used to store the capture start index at this point. ++ __ Add_d(t3, current_input_offset(), Operand(cp_offset * char_size())); ++ offset = t3; ++ } ++ // We assume that we cannot do unaligned loads on MIPS, so this function ++ // must only be used to load a single character at a time. ++ DCHECK_EQ(1, characters); ++ __ Add_d(t1, end_of_input_address(), Operand(offset)); ++ if (mode_ == LATIN1) { ++ __ Ld_bu(current_character(), MemOperand(t1, 0)); ++ } else { ++ DCHECK(mode_ == UC16); ++ __ Ld_hu(current_character(), MemOperand(t1, 0)); ++ } ++} ++ ++#undef __ ++ ++#endif // V8_INTERPRETED_REGEXP ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_TARGET_ARCH_LOONG64 +diff --git a/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.h b/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.h +new file mode 100644 +index 0000000..9705fb8 +--- /dev/null ++++ b/deps/v8/src/regexp/loong64/regexp-macro-assembler-loong64.h +@@ -0,0 +1,231 @@ ++// Copyright 2011 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_REGEXP_LOONG64_REGEXP_MACRO_ASSEMBLER_LOONG64_H_ ++#define V8_REGEXP_LOONG64_REGEXP_MACRO_ASSEMBLER_LOONG64_H_ ++ ++#include "src/macro-assembler.h" ++#include "src/loong64/assembler-loong64.h" ++#include "src/regexp/regexp-macro-assembler.h" ++ ++namespace v8 { ++namespace internal { ++ ++#ifndef V8_INTERPRETED_REGEXP ++class RegExpMacroAssemblerLOONG64: public NativeRegExpMacroAssembler { ++ public: ++ RegExpMacroAssemblerLOONG64(Isolate* isolate, Zone* zone, Mode mode, ++ int registers_to_save); ++ virtual ~RegExpMacroAssemblerLOONG64(); ++ virtual int stack_limit_slack(); ++ virtual void AdvanceCurrentPosition(int by); ++ virtual void AdvanceRegister(int reg, int by); ++ virtual void Backtrack(); ++ virtual void Bind(Label* label); ++ virtual void CheckAtStart(Label* on_at_start); ++ virtual void CheckCharacter(uint32_t c, Label* on_equal); ++ virtual void CheckCharacterAfterAnd(uint32_t c, ++ uint32_t mask, ++ Label* on_equal); ++ virtual void CheckCharacterGT(uc16 limit, Label* on_greater); ++ virtual void CheckCharacterLT(uc16 limit, Label* on_less); ++ // A "greedy loop" is a loop that is both greedy and with a simple ++ // body. It has a particularly simple implementation. ++ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position); ++ virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start); ++ virtual void CheckNotBackReference(int start_reg, bool read_backward, ++ Label* on_no_match); ++ virtual void CheckNotBackReferenceIgnoreCase(int start_reg, ++ bool read_backward, bool unicode, ++ Label* on_no_match); ++ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal); ++ virtual void CheckNotCharacterAfterAnd(uint32_t c, ++ uint32_t mask, ++ Label* on_not_equal); ++ virtual void CheckNotCharacterAfterMinusAnd(uc16 c, ++ uc16 minus, ++ uc16 mask, ++ Label* on_not_equal); ++ virtual void CheckCharacterInRange(uc16 from, ++ uc16 to, ++ Label* on_in_range); ++ virtual void CheckCharacterNotInRange(uc16 from, ++ uc16 to, ++ Label* on_not_in_range); ++ virtual void CheckBitInTable(Handle table, Label* on_bit_set); ++ ++ // Checks whether the given offset from the current position is before ++ // the end of the string. ++ virtual void CheckPosition(int cp_offset, Label* on_outside_input); ++ virtual bool CheckSpecialCharacterClass(uc16 type, ++ Label* on_no_match); ++ virtual void Fail(); ++ virtual Handle GetCode(Handle source); ++ virtual void GoTo(Label* label); ++ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge); ++ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt); ++ virtual void IfRegisterEqPos(int reg, Label* if_eq); ++ virtual IrregexpImplementation Implementation(); ++ virtual void LoadCurrentCharacter(int cp_offset, ++ Label* on_end_of_input, ++ bool check_bounds = true, ++ int characters = 1); ++ virtual void PopCurrentPosition(); ++ virtual void PopRegister(int register_index); ++ virtual void PushBacktrack(Label* label); ++ virtual void PushCurrentPosition(); ++ virtual void PushRegister(int register_index, ++ StackCheckFlag check_stack_limit); ++ virtual void ReadCurrentPositionFromRegister(int reg); ++ virtual void ReadStackPointerFromRegister(int reg); ++ virtual void SetCurrentPositionFromEnd(int by); ++ virtual void SetRegister(int register_index, int to); ++ virtual bool Succeed(); ++ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset); ++ virtual void ClearRegisters(int reg_from, int reg_to); ++ virtual void WriteStackPointerToRegister(int reg); ++ virtual bool CanReadUnaligned(); ++ ++ // Called from RegExp if the stack-guard is triggered. ++ // If the code object is relocated, the return address is fixed before ++ // returning. ++ static int64_t CheckStackGuardState(Address* return_address, Code* re_code, ++ Address re_frame); ++ ++ void print_regexp_frame_constants(); ++ ++ private: ++ // Offsets from frame_pointer() of function parameters and stored registers. ++ static const int kFramePointer = 0; ++ ++ // Above the frame pointer - Stored registers and stack passed parameters. ++ // Registers s0 to s7, fp, and ra. ++ static const int kStoredRegisters = kFramePointer; ++ // Return address (stored from link register, read into pc on return). ++ ++ // TODO(plind): This 9 - is 8 s-regs (s0..s7) plus fp. ++ ++ static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize; ++ // Stack frame header. ++ static const int kStackFrameHeader = kReturnAddress; ++ // Stack parameters placed by caller. ++ static const int kIsolate = kStackFrameHeader + kPointerSize; ++ ++ // Below the frame pointer. ++ // Register parameters stored by setup code. ++ static const int kDirectCall = kFramePointer - kPointerSize; ++ static const int kStackHighEnd = kDirectCall - kPointerSize; ++ static const int kNumOutputRegisters = kStackHighEnd - kPointerSize; ++ static const int kRegisterOutput = kNumOutputRegisters - kPointerSize; ++ static const int kInputEnd = kRegisterOutput - kPointerSize; ++ static const int kInputStart = kInputEnd - kPointerSize; ++ static const int kStartIndex = kInputStart - kPointerSize; ++ static const int kInputString = kStartIndex - kPointerSize; ++ // When adding local variables remember to push space for them in ++ // the frame in GetCode. ++ static const int kSuccessfulCaptures = kInputString - kPointerSize; ++ static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize; ++ // First register address. Following registers are below it on the stack. ++ static const int kRegisterZero = kStringStartMinusOne - kPointerSize; ++ ++ // Initial size of code buffer. ++ static const size_t kRegExpCodeSize = 1024; ++ ++ // Load a number of characters at the given offset from the ++ // current position, into the current-character register. ++ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count); ++ ++ // Check whether preemption has been requested. ++ void CheckPreemption(); ++ ++ // Check whether we are exceeding the stack limit on the backtrack stack. ++ void CheckStackLimit(); ++ ++ ++ // Generate a call to CheckStackGuardState. ++ void CallCheckStackGuardState(Register scratch); ++ ++ // The ebp-relative location of a regexp register. ++ MemOperand register_location(int register_index); ++ ++ // Register holding the current input position as negative offset from ++ // the end of the string. ++ inline Register current_input_offset() { return a6; } ++ ++ // The register containing the current character after LoadCurrentCharacter. ++ inline Register current_character() { return a7; } ++ ++ // Register holding address of the end of the input string. ++ inline Register end_of_input_address() { return t2; } ++ ++ // Register holding the frame address. Local variables, parameters and ++ // regexp registers are addressed relative to this. ++ inline Register frame_pointer() { return fp; } ++ ++ // The register containing the backtrack stack top. Provides a meaningful ++ // name to the register. ++ inline Register backtrack_stackpointer() { return t0; } ++ ++ // Register holding pointer to the current code object. ++ inline Register code_pointer() { return a5; } ++ ++ // Byte size of chars in the string to match (decided by the Mode argument). ++ inline int char_size() { return static_cast(mode_); } ++ ++ // Equivalent to a conditional branch to the label, unless the label ++ // is nullptr, in which case it is a conditional Backtrack. ++ void BranchOrBacktrack(Label* to, ++ Condition condition, ++ Register rs, ++ const Operand& rt); ++ ++ // Call and return internally in the generated code in a way that ++ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack) ++ inline void SafeCall(Label* to, ++ Condition cond, ++ Register rs, ++ const Operand& rt); ++ inline void SafeReturn(); ++ inline void SafeCallTarget(Label* name); ++ ++ // Pushes the value of a register on the backtrack stack. Decrements the ++ // stack pointer by a word size and stores the register's value there. ++ inline void Push(Register source); ++ ++ // Pops a value from the backtrack stack. Reads the word at the stack pointer ++ // and increments it by a word size. ++ inline void Pop(Register target); ++ ++ Isolate* isolate() const { return masm_->isolate(); } ++ ++ MacroAssembler* masm_; ++ ++ // Which mode to generate code for (Latin1 or UC16). ++ Mode mode_; ++ ++ // One greater than maximal register index actually used. ++ int num_registers_; ++ ++ // Number of registers to output at the end (the saved registers ++ // are always 0..num_saved_registers_-1). ++ int num_saved_registers_; ++ ++ // Labels used internally. ++ Label entry_label_; ++ Label start_label_; ++ Label success_label_; ++ Label backtrack_label_; ++ Label exit_label_; ++ Label check_preempt_label_; ++ Label stack_overflow_label_; ++ Label internal_failure_label_; ++}; ++ ++#endif // V8_INTERPRETED_REGEXP ++ ++ ++} // namespace internal ++} // namespace v8 ++ ++#endif // V8_REGEXP_LOONG64_REGEXP_MACRO_ASSEMBLER_LOONG64_H_ +diff --git a/deps/v8/src/regexp/regexp-macro-assembler.h b/deps/v8/src/regexp/regexp-macro-assembler.h +index 65da431..e70dc62 100644 +--- a/deps/v8/src/regexp/regexp-macro-assembler.h ++++ b/deps/v8/src/regexp/regexp-macro-assembler.h +@@ -40,6 +40,7 @@ class RegExpMacroAssembler { + kARMImplementation, + kARM64Implementation, + kMIPSImplementation, ++ kLOONG64Implementation, + kS390Implementation, + kPPCImplementation, + kX64Implementation, +diff --git a/deps/v8/src/register-configuration.cc b/deps/v8/src/register-configuration.cc +index f71423d..11648e7 100644 +--- a/deps/v8/src/register-configuration.cc ++++ b/deps/v8/src/register-configuration.cc +@@ -84,6 +84,8 @@ static int get_num_allocatable_double_registers() { + kMaxAllocatableDoubleRegisterCount; + #elif V8_TARGET_ARCH_S390 + kMaxAllocatableDoubleRegisterCount; ++#elif V8_TARGET_ARCH_LOONG64 ++ kMaxAllocatableDoubleRegisterCount; + #else + #error Unsupported target architecture. + #endif +diff --git a/deps/v8/src/simulator-base.h b/deps/v8/src/simulator-base.h +index afd01fb..bca44e5 100644 +--- a/deps/v8/src/simulator-base.h ++++ b/deps/v8/src/simulator-base.h +@@ -82,7 +82,7 @@ class SimulatorBase { + static typename std::enable_if::value, intptr_t>::type + ConvertArg(T arg) { + static_assert(sizeof(T) <= sizeof(intptr_t), "type bigger than ptrsize"); +-#if V8_TARGET_ARCH_MIPS64 ++#if defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_LOONG64) + // The MIPS64 calling convention is to sign extend all values, even unsigned + // ones. + using signed_t = typename std::make_signed::type; +@@ -115,6 +115,7 @@ class SimulatorBase { + // - V8_TARGET_ARCH_ARM64: svc (Supervisor Call) + // - V8_TARGET_ARCH_MIPS: swi (software-interrupt) + // - V8_TARGET_ARCH_MIPS64: swi (software-interrupt) ++// - V8_TARGET_ARCH_LOONG64: swi (software-interrupt) + // - V8_TARGET_ARCH_PPC: svc (Supervisor Call) + // - V8_TARGET_ARCH_S390: svc (Supervisor Call) + class Redirection { +diff --git a/deps/v8/src/simulator.h b/deps/v8/src/simulator.h +index a7badaa..37d3748 100644 +--- a/deps/v8/src/simulator.h ++++ b/deps/v8/src/simulator.h +@@ -24,6 +24,8 @@ + #include "src/mips64/simulator-mips64.h" + #elif V8_TARGET_ARCH_S390 + #include "src/s390/simulator-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/simulator-loong64.h" + #else + #error Unsupported target architecture. + #endif +diff --git a/deps/v8/src/snapshot/deserializer.h b/deps/v8/src/snapshot/deserializer.h +index d3b57b2..fbebfb4 100644 +--- a/deps/v8/src/snapshot/deserializer.h ++++ b/deps/v8/src/snapshot/deserializer.h +@@ -22,7 +22,7 @@ class Object; + // of objects found in code. + #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ + defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || \ +- V8_EMBEDDED_CONSTANT_POOL ++ V8_EMBEDDED_CONSTANT_POOL || defined(V8_TARGET_ARCH_LOONG64) + #define V8_CODE_EMBEDS_OBJECT_POINTER 1 + #else + #define V8_CODE_EMBEDS_OBJECT_POINTER 0 +diff --git a/deps/v8/src/snapshot/macros.h b/deps/v8/src/snapshot/macros.h +index 5ea6917..3bb6053 100644 +--- a/deps/v8/src/snapshot/macros.h ++++ b/deps/v8/src/snapshot/macros.h +@@ -32,7 +32,8 @@ + #define V8_ASM_MANGLE_LABEL "" + #define V8_ASM_RODATA_SECTION ".section .rodata\n" + #define V8_ASM_TEXT_SECTION ".section .text\n" +-#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) ++#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ ++ defined(V8_TARGET_ARCH_LOONG64) + #define V8_ASM_DECLARE(NAME) ".global " V8_ASM_MANGLE_LABEL NAME "\n" + #else + #define V8_ASM_DECLARE(NAME) ".local " V8_ASM_MANGLE_LABEL NAME "\n" +diff --git a/deps/v8/src/utils.h b/deps/v8/src/utils.h +index a1f193b..f5f93ee 100644 +--- a/deps/v8/src/utils.h ++++ b/deps/v8/src/utils.h +@@ -1581,7 +1581,8 @@ inline uintptr_t GetCurrentStackPosition() { + template + static inline V ReadUnalignedValue(Address p) { + ASSERT_TRIVIALLY_COPYABLE(V); +-#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) ++#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \ ++ V8_TARGET_ARCH_LOONG64) + return *reinterpret_cast(p); + #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM + V r; +@@ -1593,7 +1594,8 @@ static inline V ReadUnalignedValue(Address p) { + template + static inline void WriteUnalignedValue(Address p, V value) { + ASSERT_TRIVIALLY_COPYABLE(V); +-#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM) ++#if !(V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \ ++ V8_TARGET_ARCH_LOONG64) + *(reinterpret_cast(p)) = value; + #else // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM + memmove(reinterpret_cast(p), &value, sizeof(V)); +diff --git a/deps/v8/src/wasm/baseline/liftoff-assembler-defs.h b/deps/v8/src/wasm/baseline/liftoff-assembler-defs.h +index b7fdf5f..5da04c5 100644 +--- a/deps/v8/src/wasm/baseline/liftoff-assembler-defs.h ++++ b/deps/v8/src/wasm/baseline/liftoff-assembler-defs.h +@@ -15,6 +15,8 @@ + #include "src/mips/assembler-mips.h" + #elif V8_TARGET_ARCH_MIPS64 + #include "src/mips64/assembler-mips64.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/loong64/assembler-loong64.h" + #endif + + namespace v8 { +@@ -64,6 +66,17 @@ constexpr RegList kLiftoffAssemblerFpCacheRegs = + + constexpr Register kNoParamRegister = t0; + ++#elif V8_TARGET_ARCH_LOONG64 ++ ++constexpr RegList kLiftoffAssemblerGpCacheRegs = ++ Register::ListOf(); ++ ++constexpr RegList kLiftoffAssemblerFpCacheRegs = ++ DoubleRegister::ListOf(); ++ ++constexpr Register kNoParamRegister = t0; ++ + #elif V8_TARGET_ARCH_ARM64 + + // x16: ip0, x17: ip1, x26: root, x27: cp, x29: fp, x30: lr, x31: xzr. +@@ -105,7 +118,7 @@ constexpr Condition kUnsignedLessEqual = below_equal; + constexpr Condition kUnsignedGreaterThan = above; + constexpr Condition kUnsignedGreaterEqual = above_equal; + +-#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 ++#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64 + + constexpr Condition kEqual = eq; + constexpr Condition kUnequal = ne; +diff --git a/deps/v8/src/wasm/baseline/liftoff-assembler.h b/deps/v8/src/wasm/baseline/liftoff-assembler.h +index 38dbde0..8a57b4d 100644 +--- a/deps/v8/src/wasm/baseline/liftoff-assembler.h ++++ b/deps/v8/src/wasm/baseline/liftoff-assembler.h +@@ -710,6 +710,8 @@ class LiftoffStackSlots { + #include "src/wasm/baseline/mips64/liftoff-assembler-mips64.h" + #elif V8_TARGET_ARCH_S390 + #include "src/wasm/baseline/s390/liftoff-assembler-s390.h" ++#elif V8_TARGET_ARCH_LOONG64 ++#include "src/wasm/baseline/loong64/liftoff-assembler-loong64.h" + #else + #error Unsupported architecture. + #endif +diff --git a/deps/v8/src/wasm/baseline/loong64/liftoff-assembler-loong64.h b/deps/v8/src/wasm/baseline/loong64/liftoff-assembler-loong64.h +new file mode 100644 +index 0000000..3b98fc3 +--- /dev/null ++++ b/deps/v8/src/wasm/baseline/loong64/liftoff-assembler-loong64.h +@@ -0,0 +1,1171 @@ ++// Copyright 2017 the V8 project authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef V8_WASM_BASELINE_LOONG64_LIFTOFF_ASSEMBLER_LOONG64_H_ ++#define V8_WASM_BASELINE_LOONG64_LIFTOFF_ASSEMBLER_LOONG64_H_ ++ ++#include "src/wasm/baseline/liftoff-assembler.h" ++ ++#define BAILOUT(reason) bailout("loong64 " reason) ++ ++namespace v8 { ++namespace internal { ++namespace wasm { ++ ++namespace liftoff { ++ ++// Liftoff Frames. ++// ++// slot Frame ++// +--------------------+--------------------------- ++// n+4 | optional padding slot to keep the stack 16 byte aligned. ++// n+3 | parameter n | ++// ... | ... | ++// 4 | parameter 1 | or parameter 2 ++// 3 | parameter 0 | or parameter 1 ++// 2 | (result address) | or parameter 0 ++// -----+--------------------+--------------------------- ++// 1 | return addr (ra) | ++// 0 | previous frame (fp)| ++// -----+--------------------+ <-- frame ptr (fp) ++// -1 | 0xa: WASM | ++// -2 | instance | ++// -----+--------------------+--------------------------- ++// -3 | slot 0 | ^ ++// -4 | slot 1 | | ++// | | Frame slots ++// | | | ++// | | v ++// | optional padding slot to keep the stack 16 byte aligned. ++// -----+--------------------+ <-- stack ptr (sp) ++// ++ ++// fp-8 holds the stack marker, fp-16 is the instance parameter, first stack ++// slot is located at fp-24. ++constexpr int32_t kConstantStackSpace = 16; ++constexpr int32_t kFirstStackSlotOffset = ++ kConstantStackSpace + LiftoffAssembler::kStackSlotSize; ++ ++inline MemOperand GetStackSlot(uint32_t index) { ++ int32_t offset = index * LiftoffAssembler::kStackSlotSize; ++ return MemOperand(fp, -kFirstStackSlotOffset - offset); ++} ++ ++inline MemOperand GetInstanceOperand() { return MemOperand(fp, -16); } ++ ++inline void Load(LiftoffAssembler* assm, LiftoffRegister dst, MemOperand src, ++ ValueType type) { ++ switch (type) { ++ case kWasmI32: ++ assm->Ld_w(dst.gp(), src); ++ break; ++ case kWasmI64: ++ assm->Ld_d(dst.gp(), src); ++ break; ++ case kWasmF32: ++ assm->Fld_s(dst.fp(), src); ++ break; ++ case kWasmF64: ++ assm->Fld_d(dst.fp(), src); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++inline void Store(LiftoffAssembler* assm, Register base, int32_t offset, ++ LiftoffRegister src, ValueType type) { ++ MemOperand dst(base, offset); ++ switch (type) { ++ case kWasmI32: ++ assm->St_w(src.gp(), dst); ++ break; ++ case kWasmI64: ++ assm->St_d(src.gp(), dst); ++ break; ++ case kWasmF32: ++ assm->Fst_s(src.fp(), dst); ++ break; ++ case kWasmF64: ++ assm->Fst_d(src.fp(), dst); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++inline void push(LiftoffAssembler* assm, LiftoffRegister reg, ValueType type) { ++ switch (type) { ++ case kWasmI32: ++ case kWasmI64: ++ assm->push(reg.gp()); ++ break; ++ case kWasmF32: ++ assm->addi_d(sp, sp, -kPointerSize); ++ assm->Fst_s(reg.fp(), MemOperand(sp, 0)); ++ break; ++ case kWasmF64: ++ assm->addi_d(sp, sp, -kPointerSize); ++ assm->Fst_d(reg.fp(), MemOperand(sp, 0)); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++} // namespace liftoff ++ ++uint32_t LiftoffAssembler::PrepareStackFrame() { ++ uint32_t offset = static_cast(pc_offset()); ++ // When constant that represents size of stack frame can't be represented ++ // as 16bit we need three instructions to add it to sp, so we reserve space ++ // for this case. ++ addi_d(sp, sp, 0); ++ nop(); ++ nop(); ++ return offset; ++} ++ ++void LiftoffAssembler::PatchPrepareStackFrame(uint32_t offset, ++ uint32_t spill_size) { ++ uint64_t bytes = liftoff::kConstantStackSpace + kStackSlotSize * spill_size; ++ DCHECK_LE(bytes, kMaxInt); ++ // We can't run out of space, just pass anything big enough to not cause the ++ // assembler to try to grow the buffer. ++ constexpr int kAvailableSpace = 256; ++ TurboAssembler patching_assembler(isolate(), buffer_ + offset, ++ kAvailableSpace, CodeObjectRequired::kNo); ++ // If bytes can be represented as 16bit, daddiu will be generated and two ++ // nops will stay untouched. Otherwise, lui-ori sequence will load it to ++ // register and, as third instruction, daddu will be generated. ++ patching_assembler.Add_d(sp, sp, Operand(-bytes)); ++} ++ ++void LiftoffAssembler::FinishCode() {} ++ ++void LiftoffAssembler::AbortCompilation() {} ++ ++void LiftoffAssembler::LoadConstant(LiftoffRegister reg, WasmValue value, ++ RelocInfo::Mode rmode) { ++ switch (value.type()) { ++ case kWasmI32: ++ TurboAssembler::li(reg.gp(), Operand(value.to_i32(), rmode)); ++ break; ++ case kWasmI64: ++ TurboAssembler::li(reg.gp(), Operand(value.to_i64(), rmode)); ++ break; ++ case kWasmF32: ++ TurboAssembler::Move(reg.fp(), value.to_f32_boxed().get_bits()); ++ break; ++ case kWasmF64: ++ TurboAssembler::Move(reg.fp(), value.to_f64_boxed().get_bits()); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::LoadFromInstance(Register dst, uint32_t offset, ++ int size) { ++ DCHECK_LE(offset, kMaxInt); ++ Ld_d(dst, liftoff::GetInstanceOperand()); ++ DCHECK(size == 4 || size == 8); ++ if (size == 4) { ++ Ld_w(dst, MemOperand(dst, offset)); ++ } else { ++ Ld_d(dst, MemOperand(dst, offset)); ++ } ++} ++ ++void LiftoffAssembler::SpillInstance(Register instance) { ++ St_d(instance, liftoff::GetInstanceOperand()); ++} ++ ++void LiftoffAssembler::FillInstanceInto(Register dst) { ++ Ld_d(dst, liftoff::GetInstanceOperand()); ++} ++ ++void LiftoffAssembler::Load(LiftoffRegister dst, Register src_addr, ++ Register offset_reg, uint32_t offset_imm, ++ LoadType type, LiftoffRegList pinned, ++ uint32_t* protected_load_pc, bool is_load_mem) { ++ MemOperand src_op(src_addr, offset_imm); ++ if (offset_reg != no_reg) { ++ Register src = GetUnusedRegister(kGpReg, pinned).gp(); ++ emit_ptrsize_add(src, src_addr, offset_reg); ++ src_op = MemOperand(src, offset_imm); ++ } ++ ++ if (protected_load_pc) *protected_load_pc = pc_offset(); ++ switch (type.value()) { ++ case LoadType::kI32Load8U: ++ case LoadType::kI64Load8U: ++ Ld_bu(dst.gp(), src_op); ++ break; ++ case LoadType::kI32Load8S: ++ case LoadType::kI64Load8S: ++ Ld_b(dst.gp(), src_op); ++ break; ++ case LoadType::kI32Load16U: ++ case LoadType::kI64Load16U: ++ TurboAssembler::Ld_hu(dst.gp(), src_op); ++ break; ++ case LoadType::kI32Load16S: ++ case LoadType::kI64Load16S: ++ TurboAssembler::Ld_h(dst.gp(), src_op); ++ break; ++ case LoadType::kI64Load32U: ++ TurboAssembler::Ld_wu(dst.gp(), src_op); ++ break; ++ case LoadType::kI32Load: ++ case LoadType::kI64Load32S: ++ TurboAssembler::Ld_w(dst.gp(), src_op); ++ break; ++ case LoadType::kI64Load: ++ TurboAssembler::Ld_d(dst.gp(), src_op); ++ break; ++ case LoadType::kF32Load: ++ TurboAssembler::Fld_s(dst.fp(), src_op); ++ break; ++ case LoadType::kF64Load: ++ TurboAssembler::Fld_d(dst.fp(), src_op); ++ break; ++ case LoadType::kS128Load: ++ UNREACHABLE(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::Store(Register dst_addr, Register offset_reg, ++ uint32_t offset_imm, LiftoffRegister src, ++ StoreType type, LiftoffRegList pinned, ++ uint32_t* protected_store_pc, bool is_store_mem) { ++ Register dst = no_reg; ++ if (offset_reg != no_reg) { ++ dst = GetUnusedRegister(kGpReg, pinned).gp(); ++ emit_ptrsize_add(dst, dst_addr, offset_reg); ++ } ++ MemOperand dst_op = (offset_reg != no_reg) ? MemOperand(dst, offset_imm) ++ : MemOperand(dst_addr, offset_imm); ++ ++ if (protected_store_pc) *protected_store_pc = pc_offset(); ++ switch (type.value()) { ++ case StoreType::kI32Store8: ++ case StoreType::kI64Store8: ++ St_b(src.gp(), dst_op); ++ break; ++ case StoreType::kI32Store16: ++ case StoreType::kI64Store16: ++ TurboAssembler::St_h(src.gp(), dst_op); ++ break; ++ case StoreType::kI32Store: ++ case StoreType::kI64Store32: ++ TurboAssembler::St_w(src.gp(), dst_op); ++ break; ++ case StoreType::kI64Store: ++ TurboAssembler::St_d(src.gp(), dst_op); ++ break; ++ case StoreType::kF32Store: ++ TurboAssembler::Fst_s(src.fp(), dst_op); ++ break; ++ case StoreType::kF64Store: ++ TurboAssembler::Fst_d(src.fp(), dst_op); ++ break; ++ case StoreType::kS128Store: ++ UNREACHABLE(); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::LoadCallerFrameSlot(LiftoffRegister dst, ++ uint32_t caller_slot_idx, ++ ValueType type) { ++ MemOperand src(fp, kPointerSize * (caller_slot_idx + 1)); ++ liftoff::Load(this, dst, src, type); ++} ++ ++void LiftoffAssembler::MoveStackValue(uint32_t dst_index, uint32_t src_index, ++ ValueType type) { ++ DCHECK_NE(dst_index, src_index); ++ LiftoffRegister reg = GetUnusedRegister(reg_class_for(type), {}); ++ Fill(reg, src_index, type); ++ Spill(dst_index, reg, type); ++} ++ ++void LiftoffAssembler::Move(Register dst, Register src, ValueType type) { ++ DCHECK_NE(dst, src); ++ // TODO(ksreten): Handle different sizes here. ++ TurboAssembler::Move(dst, src); ++} ++ ++void LiftoffAssembler::Move(DoubleRegister dst, DoubleRegister src, ++ ValueType type) { ++ DCHECK_NE(dst, src); ++ if (type != kWasmS128) { ++ TurboAssembler::Move(dst, src); ++ } else { ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::Spill(uint32_t index, LiftoffRegister reg, ++ ValueType type) { ++ RecordUsedSpillSlot(index); ++ MemOperand dst = liftoff::GetStackSlot(index); ++ switch (type) { ++ case kWasmI32: ++ St_w(reg.gp(), dst); ++ break; ++ case kWasmI64: ++ St_d(reg.gp(), dst); ++ break; ++ case kWasmF32: ++ Fst_s(reg.fp(), dst); ++ break; ++ case kWasmF64: ++ TurboAssembler::Fst_d(reg.fp(), dst); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::Spill(uint32_t index, WasmValue value) { ++ RecordUsedSpillSlot(index); ++ MemOperand dst = liftoff::GetStackSlot(index); ++ switch (value.type()) { ++ case kWasmI32: { ++ LiftoffRegister tmp = GetUnusedRegister(kGpReg, {}); ++ TurboAssembler::li(tmp.gp(), Operand(value.to_i32())); ++ St_w(tmp.gp(), dst); ++ break; ++ } ++ case kWasmI64: { ++ LiftoffRegister tmp = GetUnusedRegister(kGpReg, {}); ++ TurboAssembler::li(tmp.gp(), value.to_i64()); ++ St_d(tmp.gp(), dst); ++ break; ++ } ++ default: ++ // kWasmF32 and kWasmF64 are unreachable, since those ++ // constants are not tracked. ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::Fill(LiftoffRegister reg, uint32_t index, ++ ValueType type) { ++ MemOperand src = liftoff::GetStackSlot(index); ++ switch (type) { ++ case kWasmI32: ++ Ld_w(reg.gp(), src); ++ break; ++ case kWasmI64: ++ Ld_d(reg.gp(), src); ++ break; ++ case kWasmF32: ++ Fld_s(reg.fp(), src); ++ break; ++ case kWasmF64: ++ TurboAssembler::Fld_d(reg.fp(), src); ++ break; ++ default: ++ UNREACHABLE(); ++ } ++} ++ ++void LiftoffAssembler::FillI64Half(Register, uint32_t half_index) { ++ UNREACHABLE(); ++} ++ ++void LiftoffAssembler::emit_i32_mul(Register dst, Register lhs, Register rhs) { ++ TurboAssembler::Mul_w(dst, lhs, rhs); ++} ++ ++void LiftoffAssembler::emit_i32_divs(Register dst, Register lhs, Register rhs, ++ Label* trap_div_by_zero, ++ Label* trap_div_unrepresentable) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); ++ ++ // Check if lhs == kMinInt and rhs == -1, since this case is unrepresentable. ++ TurboAssembler::li(kScratchReg, 1); ++ TurboAssembler::li(kScratchReg2, 1); ++ TurboAssembler::LoadZeroOnCondition(kScratchReg, lhs, Operand(kMinInt), eq); ++ TurboAssembler::LoadZeroOnCondition(kScratchReg2, rhs, Operand(-1), eq); ++ add_d(kScratchReg, kScratchReg, kScratchReg2); ++ TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg, ++ Operand(zero_reg)); ++ ++ TurboAssembler::Div_w(dst, lhs, rhs); ++} ++ ++void LiftoffAssembler::emit_i32_divu(Register dst, Register lhs, Register rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); ++ TurboAssembler::Div_wu(dst, lhs, rhs); ++} ++ ++void LiftoffAssembler::emit_i32_rems(Register dst, Register lhs, Register rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); ++ TurboAssembler::Mod_w(dst, lhs, rhs); ++} ++ ++void LiftoffAssembler::emit_i32_remu(Register dst, Register lhs, Register rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); ++ TurboAssembler::Mod_wu(dst, lhs, rhs); ++} ++ ++#define I32_BINOP(name, instruction) \ ++ void LiftoffAssembler::emit_i32_##name(Register dst, Register lhs, \ ++ Register rhs) { \ ++ instruction(dst, lhs, rhs); \ ++ } ++ ++// clang-format off ++I32_BINOP(add, add_w) ++I32_BINOP(sub, sub_w) ++I32_BINOP(and, and_) ++I32_BINOP(or, or_) ++I32_BINOP(xor, xor_) ++// clang-format on ++ ++#undef I32_BINOP ++ ++bool LiftoffAssembler::emit_i32_clz(Register dst, Register src) { ++ TurboAssembler::Clz_w(dst, src); ++ return true; ++} ++ ++bool LiftoffAssembler::emit_i32_ctz(Register dst, Register src) { ++ TurboAssembler::Ctz_w(dst, src); ++ return true; ++} ++ ++bool LiftoffAssembler::emit_i32_popcnt(Register dst, Register src) { ++ TurboAssembler::Popcnt_w(dst, src); ++ return true; ++} ++ ++#define I32_SHIFTOP(name, instruction) \ ++ void LiftoffAssembler::emit_i32_##name( \ ++ Register dst, Register src, Register amount, LiftoffRegList pinned) { \ ++ instruction(dst, src, amount); \ ++ } ++ ++I32_SHIFTOP(shl, sll_w) ++I32_SHIFTOP(sar, sra_w) ++I32_SHIFTOP(shr, srl_w) ++ ++#undef I32_SHIFTOP ++ ++void LiftoffAssembler::emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs, ++ LiftoffRegister rhs) { ++ TurboAssembler::Mul_d(dst.gp(), lhs.gp(), rhs.gp()); ++} ++ ++bool LiftoffAssembler::emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs, ++ LiftoffRegister rhs, ++ Label* trap_div_by_zero, ++ Label* trap_div_unrepresentable) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); ++ ++ // Check if lhs == MinInt64 and rhs == -1, since this case is unrepresentable. ++ TurboAssembler::li(kScratchReg, 1); ++ TurboAssembler::li(kScratchReg2, 1); ++ TurboAssembler::LoadZeroOnCondition( ++ kScratchReg, lhs.gp(), Operand(std::numeric_limits::min()), eq); ++ TurboAssembler::LoadZeroOnCondition(kScratchReg2, rhs.gp(), Operand(-1), eq); ++ add_d(kScratchReg, kScratchReg, kScratchReg2); ++ TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg, ++ Operand(zero_reg)); ++ ++ TurboAssembler::Div_d(dst.gp(), lhs.gp(), rhs.gp()); ++ return true; ++} ++ ++bool LiftoffAssembler::emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs, ++ LiftoffRegister rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); ++ TurboAssembler::Div_du(dst.gp(), lhs.gp(), rhs.gp()); ++ return true; ++} ++ ++bool LiftoffAssembler::emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs, ++ LiftoffRegister rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); ++ TurboAssembler::Mod_d(dst.gp(), lhs.gp(), rhs.gp()); ++ return true; ++} ++ ++bool LiftoffAssembler::emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs, ++ LiftoffRegister rhs, ++ Label* trap_div_by_zero) { ++ TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); ++ TurboAssembler::Mod_du(dst.gp(), lhs.gp(), rhs.gp()); ++ return true; ++} ++ ++#define I64_BINOP(name, instruction) \ ++ void LiftoffAssembler::emit_i64_##name( \ ++ LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \ ++ instruction(dst.gp(), lhs.gp(), rhs.gp()); \ ++ } ++ ++// clang-format off ++I64_BINOP(add, Add_d) ++I64_BINOP(sub, Sub_d) ++I64_BINOP(and, and_) ++I64_BINOP(or, or_) ++I64_BINOP(xor, xor_) ++// clang-format on ++ ++#undef I64_BINOP ++ ++#define I64_SHIFTOP(name, instruction) \ ++ void LiftoffAssembler::emit_i64_##name(LiftoffRegister dst, \ ++ LiftoffRegister src, Register amount, \ ++ LiftoffRegList pinned) { \ ++ instruction(dst.gp(), src.gp(), amount); \ ++ } ++ ++I64_SHIFTOP(shl, sll_d) ++I64_SHIFTOP(sar, sra_d) ++I64_SHIFTOP(shr, srl_d) ++ ++#undef I64_SHIFTOP ++ ++void LiftoffAssembler::emit_f32_neg(DoubleRegister dst, DoubleRegister src) { ++ TurboAssembler::Neg_s(dst, src); ++} ++ ++void LiftoffAssembler::emit_f64_neg(DoubleRegister dst, DoubleRegister src) { ++ TurboAssembler::Neg_d(dst, src); ++} ++ ++void LiftoffAssembler::emit_f32_min(DoubleRegister dst, DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label ool, done; ++ TurboAssembler::Float32Min(dst, lhs, rhs, &ool); ++ Branch(&done); ++ ++ bind(&ool); ++ TurboAssembler::Float32MinOutOfLine(dst, lhs, rhs); ++ bind(&done); ++} ++ ++void LiftoffAssembler::emit_f32_max(DoubleRegister dst, DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label ool, done; ++ TurboAssembler::Float32Max(dst, lhs, rhs, &ool); ++ Branch(&done); ++ ++ bind(&ool); ++ TurboAssembler::Float32MaxOutOfLine(dst, lhs, rhs); ++ bind(&done); ++} ++ ++void LiftoffAssembler::emit_f64_min(DoubleRegister dst, DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label ool, done; ++ TurboAssembler::Float64Min(dst, lhs, rhs, &ool); ++ Branch(&done); ++ ++ bind(&ool); ++ TurboAssembler::Float64MinOutOfLine(dst, lhs, rhs); ++ bind(&done); ++} ++ ++void LiftoffAssembler::emit_f64_max(DoubleRegister dst, DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label ool, done; ++ TurboAssembler::Float64Max(dst, lhs, rhs, &ool); ++ Branch(&done); ++ ++ bind(&ool); ++ TurboAssembler::Float64MaxOutOfLine(dst, lhs, rhs); ++ bind(&done); ++} ++ ++#define FP_BINOP(name, instruction) \ ++ void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister lhs, \ ++ DoubleRegister rhs) { \ ++ instruction(dst, lhs, rhs); \ ++ } ++#define FP_UNOP(name, instruction) \ ++ void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \ ++ instruction(dst, src); \ ++ } ++#define FP_UNOP_RETURN_TRUE(name, instruction) \ ++ bool LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \ ++ instruction(dst, src); \ ++ return true; \ ++ } ++ ++FP_BINOP(f32_add, fadd_s) ++FP_BINOP(f32_sub, fsub_s) ++FP_BINOP(f32_mul, fmul_s) ++FP_BINOP(f32_div, fdiv_s) ++FP_UNOP(f32_abs, fabs_s) ++FP_UNOP(f32_ceil, Ceil_s) ++FP_UNOP(f32_floor, Floor_s) ++FP_UNOP(f32_trunc, Trunc_s) ++FP_UNOP(f32_nearest_int, Round_s) ++FP_UNOP(f32_sqrt, fsqrt_s) ++FP_BINOP(f64_add, fadd_d) ++FP_BINOP(f64_sub, fsub_d) ++FP_BINOP(f64_mul, fmul_d) ++FP_BINOP(f64_div, fdiv_d) ++FP_UNOP(f64_abs, fabs_d) ++FP_UNOP_RETURN_TRUE(f64_ceil, Ceil_d) ++FP_UNOP_RETURN_TRUE(f64_floor, Floor_d) ++FP_UNOP_RETURN_TRUE(f64_trunc, Trunc_d) ++FP_UNOP_RETURN_TRUE(f64_nearest_int, Round_d) ++FP_UNOP(f64_sqrt, fsqrt_d) ++ ++#undef FP_BINOP ++#undef FP_UNOP ++#undef FP_UNOP_RETURN_TRUE ++ ++bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode, ++ LiftoffRegister dst, ++ LiftoffRegister src, Label* trap) { ++ switch (opcode) { ++ case kExprI32ConvertI64: ++ TurboAssembler::bstrpick_w(dst.gp(), src.gp(), 31, 0); ++ return true; ++ case kExprI32SConvertF32: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_s(rounded.fp(), src.fp()); ++ ftintrz_w_s(kScratchDoubleReg, rounded.fp()); ++ movfr2gr_s(dst.gp(), kScratchDoubleReg); ++ // Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead, ++ // because INT32_MIN allows easier out-of-bounds detection. ++ TurboAssembler::Add_w(kScratchReg, dst.gp(), 1); ++ TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); ++ TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); ++ ++ // Checking if trap. ++ movgr2fr_w(kScratchDoubleReg, dst.gp()); ++ ffint_s_w(converted_back.fp(), kScratchDoubleReg); ++ TurboAssembler::CompareF32(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI32UConvertF32: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_s(rounded.fp(), src.fp()); ++ TurboAssembler::Ftintrz_uw_s(dst.gp(), rounded.fp(), kScratchDoubleReg); ++ // Avoid UINT32_MAX as an overflow indicator and use 0 instead, ++ // because 0 allows easier out-of-bounds detection. ++ TurboAssembler::Add_w(kScratchReg, dst.gp(), 1); ++ TurboAssembler::Movz(dst.gp(), zero_reg, kScratchReg); ++ ++ // Checking if trap. ++ TurboAssembler::Ffint_d_uw(converted_back.fp(), dst.gp()); ++ fcvt_s_d(converted_back.fp(), converted_back.fp()); ++ TurboAssembler::CompareF32(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI32SConvertF64: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_d(rounded.fp(), src.fp()); ++ ftintrz_w_d(kScratchDoubleReg, rounded.fp()); ++ movfr2gr_s(dst.gp(), kScratchDoubleReg); ++ ++ // Checking if trap. ++ ffint_d_w(converted_back.fp(), kScratchDoubleReg); ++ TurboAssembler::CompareF64(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI32UConvertF64: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_d(rounded.fp(), src.fp()); ++ TurboAssembler::Ftintrz_uw_d(dst.gp(), rounded.fp(), kScratchDoubleReg); ++ ++ // Checking if trap. ++ TurboAssembler::Ffint_d_uw(converted_back.fp(), dst.gp()); ++ TurboAssembler::CompareF64(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI32ReinterpretF32: ++ TurboAssembler::FmoveLow(dst.gp(), src.fp()); ++ return true; ++ case kExprI64SConvertI32: ++ slli_w(dst.gp(), src.gp(), 0); ++ return true; ++ case kExprI64UConvertI32: ++ TurboAssembler::bstrpick_d(dst.gp(), src.gp(), 31, 0); ++ return true; ++ case kExprI64SConvertF32: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_s(rounded.fp(), src.fp()); ++ ftintrz_l_s(kScratchDoubleReg, rounded.fp()); ++ movfr2gr_d(dst.gp(), kScratchDoubleReg); ++ // Avoid INT64_MAX as an overflow indicator and use INT64_MIN instead, ++ // because INT64_MIN allows easier out-of-bounds detection. ++ TurboAssembler::Add_d(kScratchReg, dst.gp(), 1); ++ TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); ++ TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); ++ ++ // Checking if trap. ++ movgr2fr_d(kScratchDoubleReg, dst.gp()); ++ ffint_s_l(converted_back.fp(), kScratchDoubleReg); ++ TurboAssembler::CompareF32(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI64UConvertF32: { ++ // Real conversion. ++ TurboAssembler::Ftintrz_ul_s(dst.gp(), src.fp(), kScratchDoubleReg, ++ kScratchReg); ++ ++ // Checking if trap. ++ TurboAssembler::Branch(trap, eq, kScratchReg, Operand(zero_reg)); ++ return true; ++ } ++ case kExprI64SConvertF64: { ++ LiftoffRegister rounded = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); ++ LiftoffRegister converted_back = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); ++ ++ // Real conversion. ++ TurboAssembler::Trunc_d(rounded.fp(), src.fp()); ++ ftintrz_l_d(kScratchDoubleReg, rounded.fp()); ++ movfr2gr_d(dst.gp(), kScratchDoubleReg); ++ // Avoid INT64_MAX as an overflow indicator and use INT64_MIN instead, ++ // because INT64_MIN allows easier out-of-bounds detection. ++ TurboAssembler::Add_d(kScratchReg, dst.gp(), 1); ++ TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); ++ TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); ++ ++ // Checking if trap. ++ movgr2fr_d(kScratchDoubleReg, dst.gp()); ++ ffint_d_l(converted_back.fp(), kScratchDoubleReg); ++ TurboAssembler::CompareF64(rounded.fp(), converted_back.fp(), CEQ); ++ TurboAssembler::BranchFalseF(trap); ++ return true; ++ } ++ case kExprI64UConvertF64: { ++ // Real conversion. ++ TurboAssembler::Ftintrz_ul_d(dst.gp(), src.fp(), kScratchDoubleReg, ++ kScratchReg); ++ ++ // Checking if trap. ++ TurboAssembler::Branch(trap, eq, kScratchReg, Operand(zero_reg)); ++ return true; ++ } ++ case kExprI64ReinterpretF64: ++ movfr2gr_d(dst.gp(), src.fp()); ++ return true; ++ case kExprF32SConvertI32: { ++ LiftoffRegister scratch = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(dst)); ++ movgr2fr_w(scratch.fp(), src.gp()); ++ ffint_s_w(dst.fp(), scratch.fp()); ++ return true; ++ } ++ case kExprF32UConvertI32: ++ TurboAssembler::Ffint_s_uw(dst.fp(), src.gp()); ++ return true; ++ case kExprF32ConvertF64: ++ fcvt_s_d(dst.fp(), src.fp()); ++ return true; ++ case kExprF32ReinterpretI32: ++ TurboAssembler::FmoveLow(dst.fp(), src.gp()); ++ return true; ++ case kExprF64SConvertI32: { ++ LiftoffRegister scratch = ++ GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(dst)); ++ movgr2fr_w(scratch.fp(), src.gp()); ++ ffint_d_w(dst.fp(), scratch.fp()); ++ return true; ++ } ++ case kExprF64UConvertI32: ++ TurboAssembler::Ffint_d_uw(dst.fp(), src.gp()); ++ return true; ++ case kExprF64ConvertF32: ++ fcvt_d_s(dst.fp(), src.fp()); ++ return true; ++ case kExprF64ReinterpretI64: ++ movgr2fr_d(dst.fp(), src.gp()); ++ return true; ++ default: ++ return false; ++ } ++} ++ ++void LiftoffAssembler::emit_jump(Label* label) { ++ TurboAssembler::Branch(label); ++} ++ ++void LiftoffAssembler::emit_jump(Register target) { ++ TurboAssembler::Jump(target); ++} ++ ++void LiftoffAssembler::emit_cond_jump(Condition cond, Label* label, ++ ValueType type, Register lhs, ++ Register rhs) { ++ if (rhs != no_reg) { ++ TurboAssembler::Branch(label, cond, lhs, Operand(rhs)); ++ } else { ++ TurboAssembler::Branch(label, cond, lhs, Operand(zero_reg)); ++ } ++} ++ ++void LiftoffAssembler::emit_i32_eqz(Register dst, Register src) { ++ sltui(dst, src, 1); ++} ++ ++void LiftoffAssembler::emit_i32_set_cond(Condition cond, Register dst, ++ Register lhs, Register rhs) { ++ Register tmp = dst; ++ if (dst == lhs || dst == rhs) { ++ tmp = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(lhs, rhs)).gp(); ++ } ++ // Write 1 as result. ++ TurboAssembler::li(tmp, 1); ++ ++ // If negative condition is true, write 0 as result. ++ Condition neg_cond = NegateCondition(cond); ++ TurboAssembler::LoadZeroOnCondition(tmp, lhs, Operand(rhs), neg_cond); ++ ++ // If tmp != dst, result will be moved. ++ TurboAssembler::Move(dst, tmp); ++} ++ ++void LiftoffAssembler::emit_i64_eqz(Register dst, LiftoffRegister src) { ++ sltui(dst, src.gp(), 1); ++} ++ ++void LiftoffAssembler::emit_i64_set_cond(Condition cond, Register dst, ++ LiftoffRegister lhs, ++ LiftoffRegister rhs) { ++ Register tmp = dst; ++ if (dst == lhs.gp() || dst == rhs.gp()) { ++ tmp = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(lhs, rhs)).gp(); ++ } ++ // Write 1 as result. ++ TurboAssembler::li(tmp, 1); ++ ++ // If negative condition is true, write 0 as result. ++ Condition neg_cond = NegateCondition(cond); ++ TurboAssembler::LoadZeroOnCondition(tmp, lhs.gp(), Operand(rhs.gp()), ++ neg_cond); ++ ++ // If tmp != dst, result will be moved. ++ TurboAssembler::Move(dst, tmp); ++} ++ ++namespace liftoff { ++ ++inline FPUCondition ConditionToConditionCmpFPU(bool& predicate, ++ Condition condition) { ++ switch (condition) { ++ case kEqual: ++ predicate = true; ++ return CEQ; ++ case kUnequal: ++ predicate = false; ++ return CEQ; ++ case kUnsignedLessThan: ++ predicate = true; ++ return CLT; ++ case kUnsignedGreaterEqual: ++ predicate = false; ++ return CLT; ++ case kUnsignedLessEqual: ++ predicate = true; ++ return CLE; ++ case kUnsignedGreaterThan: ++ predicate = false; ++ return CLE; ++ default: ++ predicate = true; ++ break; ++ } ++ UNREACHABLE(); ++}; ++ ++inline void EmitAnyTrue(LiftoffAssembler* assm, LiftoffRegister dst, ++ LiftoffRegister src) { ++} ++} // namespace liftoff ++ ++void LiftoffAssembler::emit_f32_set_cond(Condition cond, Register dst, ++ DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label not_nan, cont; ++ TurboAssembler::CompareIsNanF32(lhs, rhs); ++ TurboAssembler::BranchFalseF(¬_nan); ++ // If one of the operands is NaN, return 1 for f32.ne, else 0. ++ if (cond == ne) { ++ TurboAssembler::li(dst, 1); ++ } else { ++ TurboAssembler::Move(dst, zero_reg); ++ } ++ TurboAssembler::Branch(&cont); ++ ++ bind(¬_nan); ++ ++ TurboAssembler::li(dst, 1); ++ bool predicate; ++ FPUCondition fcond = liftoff::ConditionToConditionCmpFPU(predicate, cond); ++ TurboAssembler::CompareF32(lhs, rhs, fcond); ++ if (predicate) { ++ TurboAssembler::LoadZeroIfNotFPUCondition(dst); ++ } else { ++ TurboAssembler::LoadZeroIfFPUCondition(dst); ++ } ++ ++ bind(&cont); ++} ++ ++void LiftoffAssembler::emit_f64_set_cond(Condition cond, Register dst, ++ DoubleRegister lhs, ++ DoubleRegister rhs) { ++ Label not_nan, cont; ++ TurboAssembler::CompareIsNanF64(lhs, rhs); ++ TurboAssembler::BranchFalseF(¬_nan); ++ // If one of the operands is NaN, return 1 for f64.ne, else 0. ++ if (cond == ne) { ++ TurboAssembler::li(dst, 1); ++ } else { ++ TurboAssembler::Move(dst, zero_reg); ++ } ++ TurboAssembler::Branch(&cont); ++ ++ bind(¬_nan); ++ ++ TurboAssembler::li(dst, 1); ++ bool predicate; ++ FPUCondition fcond = liftoff::ConditionToConditionCmpFPU(predicate, cond); ++ TurboAssembler::CompareF64(lhs, rhs, fcond); ++ if (predicate) { ++ TurboAssembler::LoadZeroIfNotFPUCondition(dst); ++ } else { ++ TurboAssembler::LoadZeroIfFPUCondition(dst); ++ } ++ ++ bind(&cont); ++} ++ ++void LiftoffAssembler::StackCheck(Label* ool_code) { ++ LiftoffRegister tmp = GetUnusedRegister(kGpReg); ++ TurboAssembler::li( ++ tmp.gp(), Operand(ExternalReference::address_of_stack_limit(isolate()))); ++ TurboAssembler::Ld_d(tmp.gp(), MemOperand(tmp.gp())); ++ TurboAssembler::Branch(ool_code, ule, sp, Operand(tmp.gp())); ++} ++ ++void LiftoffAssembler::CallTrapCallbackForTesting() { ++ PrepareCallCFunction(0, GetUnusedRegister(kGpReg, {}).gp()); ++ CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0); ++} ++ ++void LiftoffAssembler::AssertUnreachable(AbortReason reason) { ++ if (emit_debug_code()) Abort(reason); ++} ++ ++void LiftoffAssembler::PushRegisters(LiftoffRegList regs) { ++ LiftoffRegList gp_regs = regs & kGpCacheRegList; ++ unsigned num_gp_regs = gp_regs.GetNumRegsSet(); ++ if (num_gp_regs) { ++ unsigned offset = num_gp_regs * kPointerSize; ++ addi_d(sp, sp, -offset); ++ while (!gp_regs.is_empty()) { ++ LiftoffRegister reg = gp_regs.GetFirstRegSet(); ++ offset -= kPointerSize; ++ St_d(reg.gp(), MemOperand(sp, offset)); ++ gp_regs.clear(reg); ++ } ++ DCHECK_EQ(offset, 0); ++ } ++ LiftoffRegList fp_regs = regs & kFpCacheRegList; ++ unsigned num_fp_regs = fp_regs.GetNumRegsSet(); ++ if (num_fp_regs) { ++ unsigned slot_size = /*IsEnabled(MIPS_SIMD) ? 16 :*/ 8; ++ addi_d(sp, sp, -(num_fp_regs * slot_size)); ++ unsigned offset = 0; ++ while (!fp_regs.is_empty()) { ++ LiftoffRegister reg = fp_regs.GetFirstRegSet(); ++ if (0/*IsEnabled(MIPS_SIMD)*/) { ++ //TurboAssembler::st_d(reg.fp().toW(), MemOperand(sp, offset)); ++ } else { ++ TurboAssembler::Fst_d(reg.fp(), MemOperand(sp, offset)); ++ } ++ fp_regs.clear(reg); ++ offset += slot_size; ++ } ++ DCHECK_EQ(offset, num_fp_regs * slot_size); ++ } ++} ++ ++void LiftoffAssembler::PopRegisters(LiftoffRegList regs) { ++ LiftoffRegList fp_regs = regs & kFpCacheRegList; ++ unsigned fp_offset = 0; ++ while (!fp_regs.is_empty()) { ++ LiftoffRegister reg = fp_regs.GetFirstRegSet(); ++ if (0/*IsEnabled(MIPS_SIMD)*/) { ++ //TurboAssembler::ld_d(reg.fp().toW(), MemOperand(sp, fp_offset)); ++ } else { ++ TurboAssembler::Fld_d(reg.fp(), MemOperand(sp, fp_offset)); ++ } ++ fp_regs.clear(reg); ++ fp_offset += (/*IsEnabled(MIPS_SIMD) ? 16 :*/ 8); ++ } ++ if (fp_offset) addi_d(sp, sp, fp_offset); ++ LiftoffRegList gp_regs = regs & kGpCacheRegList; ++ unsigned gp_offset = 0; ++ while (!gp_regs.is_empty()) { ++ LiftoffRegister reg = gp_regs.GetLastRegSet(); ++ Ld_d(reg.gp(), MemOperand(sp, gp_offset)); ++ gp_regs.clear(reg); ++ gp_offset += kPointerSize; ++ } ++ addi_d(sp, sp, gp_offset); ++} ++ ++void LiftoffAssembler::DropStackSlotsAndRet(uint32_t num_stack_slots) { ++ DCHECK_LT(num_stack_slots, ++ (1 << 16) / kPointerSize); // 16 bit immediate ++ TurboAssembler::DropAndRet(static_cast(num_stack_slots)); ++} ++ ++void LiftoffAssembler::CallC(wasm::FunctionSig* sig, ++ const LiftoffRegister* args, ++ const LiftoffRegister* rets, ++ ValueType out_argument_type, int stack_bytes, ++ ExternalReference ext_ref) { ++ addi_d(sp, sp, -stack_bytes); ++ ++ int arg_bytes = 0; ++ for (ValueType param_type : sig->parameters()) { ++ liftoff::Store(this, sp, arg_bytes, *args++, param_type); ++ arg_bytes += ValueTypes::MemSize(param_type); ++ } ++ DCHECK_LE(arg_bytes, stack_bytes); ++ ++ // Pass a pointer to the buffer with the arguments to the C function. ++ // On mips, the first argument is passed in {a0}. ++ constexpr Register kFirstArgReg = a0; ++ mov(kFirstArgReg, sp); ++ ++ // Now call the C function. ++ constexpr int kNumCCallArgs = 1; ++ PrepareCallCFunction(kNumCCallArgs, kScratchReg); ++ CallCFunction(ext_ref, kNumCCallArgs); ++ ++ // Move return value to the right register. ++ const LiftoffRegister* next_result_reg = rets; ++ if (sig->return_count() > 0) { ++ DCHECK_EQ(1, sig->return_count()); ++ constexpr Register kReturnReg = a0; ++ if (kReturnReg != next_result_reg->gp()) { ++ Move(*next_result_reg, LiftoffRegister(kReturnReg), sig->GetReturn(0)); ++ } ++ ++next_result_reg; ++ } ++ ++ // Load potential output value from the buffer on the stack. ++ if (out_argument_type != kWasmStmt) { ++ liftoff::Load(this, *next_result_reg, MemOperand(sp, 0), out_argument_type); ++ } ++ ++ addi_d(sp, sp, stack_bytes); ++} ++ ++void LiftoffAssembler::CallNativeWasmCode(Address addr) { ++ Call(addr, RelocInfo::WASM_CALL); ++} ++ ++void LiftoffAssembler::CallRuntime(Zone* zone, Runtime::FunctionId fid) { ++ // Set instance to zero. ++ TurboAssembler::Move(cp, zero_reg); ++ CallRuntimeDelayed(zone, fid); ++} ++ ++void LiftoffAssembler::CallIndirect(wasm::FunctionSig* sig, ++ compiler::CallDescriptor* call_descriptor, ++ Register target) { ++ if (target == no_reg) { ++ pop(kScratchReg); ++ Call(kScratchReg); ++ } else { ++ Call(target); ++ } ++} ++ ++void LiftoffAssembler::AllocateStackSlot(Register addr, uint32_t size) { ++ addi_d(sp, sp, -size); ++ TurboAssembler::Move(addr, sp); ++} ++ ++void LiftoffAssembler::DeallocateStackSlot(uint32_t size) { ++ addi_d(sp, sp, size); ++} ++ ++void LiftoffStackSlots::Construct() { ++ for (auto& slot : slots_) { ++ const LiftoffAssembler::VarState& src = slot.src_; ++ switch (src.loc()) { ++ case LiftoffAssembler::VarState::kStack: ++ asm_->Ld_d(kScratchReg, liftoff::GetStackSlot(slot.src_index_)); ++ asm_->push(kScratchReg); ++ break; ++ case LiftoffAssembler::VarState::kRegister: ++ liftoff::push(asm_, src.reg(), src.type()); ++ break; ++ case LiftoffAssembler::VarState::KIntConst: { ++ asm_->li(kScratchReg, Operand(src.i32_const())); ++ asm_->push(kScratchReg); ++ break; ++ } ++ } ++ } ++} ++ ++} // namespace wasm ++} // namespace internal ++} // namespace v8 ++ ++#undef BAILOUT ++ ++#endif // V8_WASM_BASELINE_LOONG64_LIFTOFF_ASSEMBLER_LOONG64_H_ +diff --git a/deps/v8/src/wasm/wasm-linkage.h b/deps/v8/src/wasm/wasm-linkage.h +index 65fc0a2..06df08c 100644 +--- a/deps/v8/src/wasm/wasm-linkage.h ++++ b/deps/v8/src/wasm/wasm-linkage.h +@@ -70,6 +70,15 @@ constexpr Register kGpReturnRegisters[] = {v0, v1}; + constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14}; + constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4}; + ++#elif V8_TARGET_ARCH_LOONG64 ++// =========================================================================== ++// == loong64 ================================================================= ++// =========================================================================== ++constexpr Register kGpParamRegisters[] = {a0, a1, a2, a3, a4, a5, a6, a7}; ++constexpr Register kGpReturnRegisters[] = {a0, a1}; ++constexpr DoubleRegister kFpParamRegisters[] = {f0, f1, f2, f3, f4, f5, f6, f7}; ++constexpr DoubleRegister kFpReturnRegisters[] = {f0, f1}; ++ + #elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 + // =========================================================================== + // == ppc & ppc64 ============================================================ +diff --git a/deps/v8/src/wasm/wasm-serialization.cc b/deps/v8/src/wasm/wasm-serialization.cc +index 847ac06..7f3bf63 100644 +--- a/deps/v8/src/wasm/wasm-serialization.cc ++++ b/deps/v8/src/wasm/wasm-serialization.cc +@@ -343,7 +343,8 @@ void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) { + {reinterpret_cast(code->protected_instructions().data()), + sizeof(trap_handler::ProtectedInstructionData) * + code->protected_instructions().size()}); +-#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM ++#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \ ++ V8_TARGET_ARCH_LOONG64 + // On platforms that don't support misaligned word stores, copy to an aligned + // buffer if necessary so we can relocate the serialized code. + std::unique_ptr aligned_buffer; +diff --git a/deps/v8/test/cctest/test-assembler-loong64.cc b/deps/v8/test/cctest/test-assembler-loong64.cc +new file mode 100644 +index 0000000..aa94444 +--- /dev/null ++++ b/deps/v8/test/cctest/test-assembler-loong64.cc +@@ -0,0 +1,5250 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Redistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// * Redistributions of source code must retain the above copyright ++// notice, this list of conditions and the following disclaimer. ++// * Redistributions in binary form must reproduce the above ++// copyright notice, this list of conditions and the following ++// disclaimer in the documentation and/or other materials provided ++// with the distribution. ++// * Neither the name of Google Inc. nor the names of its ++// contributors may be used to endorse or promote products derived ++// from this software without specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ++// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ++// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ++// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ++// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ++// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ++// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ++// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++#include // NOLINT(readability/streams) ++ ++#include "src/assembler-inl.h" ++#include "src/base/utils/random-number-generator.h" ++#include "src/disassembler.h" ++#include "src/heap/factory.h" ++#include "src/macro-assembler.h" ++#include "src/loong64/macro-assembler-loong64.h" ++#include "src/simulator.h" ++ ++#include "test/cctest/cctest.h" ++ ++namespace v8 { ++namespace internal { ++ ++// Define these function prototypes to match JSEntryFunction in execution.cc. ++// TODO(mips64): Refine these signatures per test case. ++typedef Object*(F1)(int x, int p1, int p2, int p3, int p4); ++typedef Object*(F2)(int x, int y, int p2, int p3, int p4); ++typedef Object*(F3)(void* p, int p1, int p2, int p3, int p4); ++typedef Object*(F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4); ++typedef Object*(F5)(void* p0, void* p1, int p2, int p3, int p4); ++ ++ ++#define __ assm. ++// v0->a2, v1->a3 ++TEST(LA0) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ // Addition. ++ __ addi_d(a2, a0, 0xC); ++ ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0xAB0, 0, 0, 0, 0)); ++ CHECK_EQ(0xABCL, res); ++} ++ ++TEST(LA1) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ Label L, C; ++ ++ __ ori(a1, a0, 0); ++ __ ori(a2, zero_reg, 0); ++ __ b(&C); ++ ++ __ bind(&L); ++ __ add_d(a2, a2, a1); ++ __ addi_d(a1, a1, -1); ++ ++ __ bind(&C); ++ __ ori(a3, a1, 0); ++ ++ __ Branch(&L, ne, a3, Operand((int64_t)0)); ++ ++ __ or_(a0, a2, zero_reg); ++ __ or_(a1, a3, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(50, 0, 0, 0, 0)); ++ CHECK_EQ(1275L, res); ++} ++ ++TEST(LA2) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label exit, error; ++ ++ __ ori(a4, zero_reg, 0); // 00000000 ++ __ lu12i_w(a4, 0x12345); // 12345000 ++ __ ori(a4, a4, 0); // 12345000 ++ __ ori(a2, a4, 0xF0F); // 12345F0F ++ __ Branch(&error, ne, a2, Operand(0x12345F0F)); ++ ++ __ ori(a4, zero_reg, 0); ++ __ lu32i_d(a4, 0x12345); // 1 2345 0000 0000 ++ __ ori(a4, a4, 0xFFF); // 1 2345 0000 0FFF ++ __ addi_d(a2, a4, 1); ++ __ Branch(&error, ne, a2, Operand(0x1234500001000)); ++ ++ __ ori(a4, zero_reg, 0); ++ __ lu52i_d(a4, zero_reg, 0x123); // 1230 0000 0000 0000 ++ __ ori(a4, a4, 0xFFF); // 123F 0000 0000 0FFF ++ __ addi_d(a2, a4, 1); // 1230 0000 0000 1000 ++ __ Branch(&error, ne, a2, Operand(0x1230000000001000)); ++ ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(LA3) { ++ // Test 32bit calculate instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label exit, error; ++ ++ __ li(a4, 0x00000004); ++ __ li(a5, 0x00001234); ++ __ li(a6, 0x12345678); ++ __ li(a7, 0x7FFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFC)); ++ __ li(t1, static_cast(0xFFFFEDCC)); ++ __ li(t2, static_cast(0xEDCBA988)); ++ __ li(t3, static_cast(0x80000000)); ++ ++ __ ori(a2, zero_reg, 0); // 0x00000000 ++ __ add_w(a2, a4, a5); // 0x00001238 ++ __ sub_w(a2, a2, a4); // 0x00001234 ++ __ Branch(&error, ne, a2, Operand(0x00001234)); ++ __ ori(a3, zero_reg, 0); // 0x00000000 ++ __ add_w(a3, a7, a4); // 32bit addu result is sign-extended into 64bit reg. ++ __ Branch(&error, ne, a3, Operand(0xFFFFFFFF80000003)); ++ ++ __ sub_w(a3, t3, a4); // 0x7FFFFFFC ++ __ Branch(&error, ne, a3, Operand(0x7FFFFFFC)); ++ ++ __ ori(a2, zero_reg, 0); // 0x00000000 ++ __ ori(a3, zero_reg, 0); // 0x00000000 ++ __ addi_w(a2, zero_reg, 0x421); // 0x00007421 ++ __ addi_w(a2, a2, -0x1); // 0x00007420 ++ __ addi_w(a2, a2, -0x20); // 0x00007400 ++ __ Branch(&error, ne, a2, Operand(0x0000400)); ++ __ addi_w(a3, a7, 0x1); // 0x80000000 - result is sign-extended. ++ __ Branch(&error, ne, a3, Operand(0xFFFFFFFF80000000)); ++ ++ __ ori(a2, zero_reg, 0); // 0x00000000 ++ __ ori(a3, zero_reg, 0); // 0x00000000 ++ __ alsl_w(a2, a6, a4, 3); // 0xFFFFFFFF91A2B3C4 ++ __ alsl_w(a2, a2, a4, 2); // 0x468ACF14 ++ __ Branch(&error, ne, a2, Operand(0x468acf14)); ++ __ ori(a0, zero_reg, 31); ++ __ alsl_wu(a3, a6, a4, 3); // 0x91A2B3C4 ++ __ alsl_wu(a3, a3, a7, 1); // 0xFFFFFFFFA3456787 ++ __ Branch(&error, ne, a3, Operand(0xA3456787)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ ori(a3, zero_reg, 0); ++ __ mul_w(a2, a5, a7); ++ __ div_w(a2, a2, a4); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFFFFFFB73)); ++ __ mul_w(a3, a4, t1); ++ __ Branch(&error, ne, a3, Operand(0xFFFFFFFFFFFFB730)); ++ __ div_w(a3, t3, a4); ++ __ Branch(&error, ne, a3, Operand(0xFFFFFFFFE0000000)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulh_w(a2, a4, t1); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFFFFFFFFF)); ++ __ mulh_w(a2, a4, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulh_wu(a2, a4, t1); ++ __ Branch(&error, ne, a2, Operand(0x3)); ++ __ mulh_wu(a2, a4, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulw_d_w(a2, a4, t1); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFFFFFB730)); ++ __ mulw_d_w(a2, a4, a6); ++ __ Branch(&error, ne, a2, Operand(0x48D159E0)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulw_d_wu(a2, a4, t1); ++ __ Branch(&error, ne, a2, Operand(0x3FFFFB730)); //========0xFFFFB730 ++ __ ori(a2, zero_reg, 81); ++ __ mulw_d_wu(a2, a4, a6); ++ __ Branch(&error, ne, a2, Operand(0x48D159E0)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ div_wu(a2, a7, a5); ++ __ Branch(&error, ne, a2, Operand(0x70821)); ++ __ div_wu(a2, t0, a5); ++ __ Branch(&error, ne, a2, Operand(0xE1042)); ++ __ div_wu(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mod_w(a2, a6, a5); ++ __ Branch(&error, ne, a2, Operand(0xDA8)); ++ __ ori(a2, zero_reg, 0); ++ __ mod_w(a2, t2, a5); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFFFFFF258)); ++ __ ori(a2, zero_reg, 0); ++ __ mod_w(a2, t2, t1); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFFFFFF258)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mod_wu(a2, a6, a5); ++ __ Branch(&error, ne, a2, Operand(0xDA8)); ++ __ mod_wu(a2, t2, a5); ++ __ Branch(&error, ne, a2, Operand(0xF0)); ++ __ mod_wu(a2, t2, t1); ++ __ Branch(&error, ne, a2, Operand(0xFFFFFFFFEDCBA988)); ++ ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(LA4) { ++ // Test 64bit calculate instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label exit, error; ++ ++ __ li(a4, 0x17312); ++ __ li(a5, 0x1012131415161718); ++ __ li(a6, 0x51F4B764A26E7412); ++ __ li(a7, 0x7FFFFFFFFFFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); ++ __ li(t1, static_cast(0xDF6B8F35A10E205C)); ++ __ li(t2, static_cast(0x81F25A87C4236841)); ++ __ li(t3, static_cast(0x8000000000000000)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ add_d(a2, a4, a5); ++ __ sub_d(a2, a2, a4); ++ __ Branch(&error, ne, a2, Operand(0x1012131415161718)); ++ __ ori(a3, zero_reg, 0); ++ __ add_d(a3, a6, a7); //溢出 ++ __ Branch(&error, ne, a3, Operand(0xd1f4b764a26e7411)); ++ __ sub_d(a3, t3, a4); //溢出 ++ __ Branch(&error, ne, a3, Operand(0x7ffffffffffe8cee)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ addi_d(a2, a5, 0x412); //正值 ++ __ Branch(&error, ne, a2, Operand(0x1012131415161b2a)); ++ __ addi_d(a2, a7, 0x547); //负值 ++ __ Branch(&error, ne, a2, Operand(0x8000000000000546)); ++ ++ __ ori(t4, zero_reg, 0); ++ __ addu16i_d(a2, t4, 0x1234); ++ __ Branch(&error, ne, a2, Operand(0x12340000)); ++ __ addu16i_d(a2, a2, 0x9876); ++ __ Branch(&error, ne, a2, Operand(0xffffffffaaaa0000)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ alsl_d(a2, t2, t0, 3); ++ __ Branch(&error, ne, a2, Operand(0xf92d43e211b374f)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mul_d(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0xdbe6a8729a547fb0)); ++ __ mul_d(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x57ad69f40f870584)); ++ __ mul_d(a2, a4, t0); ++ __ Branch(&error, ne, a2, Operand(0xfffffffff07523fe)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulh_d(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x52514c6c6b54467)); ++ __ mulh_d(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x15d)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mulh_du(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x52514c6c6b54467)); ++ __ mulh_du(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xdf6b8f35a10e1700)); ++ __ mulh_du(a2, a4, t0); ++ __ Branch(&error, ne, a2, Operand(0x17311)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ div_d(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ div_d(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ div_d(a2, t1, a4); ++ __ Branch(&error, ne, a2, Operand(0xffffe985f631e6d9)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ div_du(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ div_du(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ div_du(a2, t1, a4); ++ __ Branch(&error, ne, a2, Operand(0x9a22ffd3973d)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mod_d(a2, a6, a4); ++ __ Branch(&error, ne, a2, Operand(0x13558)); ++ __ mod_d(a2, t2, t0); ++ __ Branch(&error, ne, a2, Operand(0xfffffffffffffb0a)); ++ __ mod_d(a2, t1, a4); ++ __ Branch(&error, ne, a2, Operand(0xffffffffffff6a1a)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ mod_du(a2, a6, a4); ++ __ Branch(&error, ne, a2, Operand(0x13558)); ++ __ mod_du(a2, t2, t0); ++ __ Branch(&error, ne, a2, Operand(0x81f25a87c4236841)); ++ __ mod_du(a2, t1, a4); ++ __ Branch(&error, ne, a2, Operand(0x1712)); ++ ++ // Everything was correctly executed. Load the expected result. ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ // Got an error. Return a wrong result. ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(LA5) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label exit, error; ++ ++ __ li(a4, 0x17312); ++ __ li(a5, 0x1012131415161718); ++ __ li(a6, 0x51F4B764A26E7412); ++ __ li(a7, 0x7FFFFFFFFFFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); ++ __ li(t1, static_cast(0xDF6B8F35A10E205C)); ++ __ li(t2, static_cast(0x81F25A87C4236841)); ++ __ li(t3, static_cast(0x8000000000000000)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ slt(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ slt(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ slt(a2, t1, t1); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ sltu(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ sltu(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ sltu(a2, t1, t1); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ slti(a2, a5, 0x123); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ slti(a2, t0, 0x123); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ sltui(a2, a5, 0x123); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ sltui(a2, t0, 0x123); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ and_(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0x1310)); ++ __ and_(a2, a6, a7); ++ __ Branch(&error, ne, a2, Operand(0x51F4B764A26E7412)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ or_(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xfffffffffffff55f)); ++ __ or_(a2, t2, t3); ++ __ Branch(&error, ne, a2, Operand(0x81f25a87c4236841)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ nor(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0xefedecebeae888e5)); ++ __ nor(a2, a6, a7); ++ __ Branch(&error, ne, a2, Operand(0x8000000000000000)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ xor_(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x209470ca5ef1d51b)); ++ __ xor_(a2, t2, t3); ++ __ Branch(&error, ne, a2, Operand(0x1f25a87c4236841)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ andn(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0x16002)); ++ __ andn(a2, a6, a7); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ ori(a2, zero_reg, 0); ++ __ orn(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xffffffffffffffe7)); ++ __ orn(a2, t2, t3); ++ __ Branch(&error, ne, a2, Operand(0xffffffffffffffff)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ andi(a2, a4, 0x123); ++ __ Branch(&error, ne, a2, Operand(0x102)); ++ __ andi(a2, a6, 0xDCB); ++ __ Branch(&error, ne, a2, Operand(0x402)); ++ ++ __ ori(a2, zero_reg, 0); ++ __ xori(a2, t0, 0x123); ++ __ Branch(&error, ne, a2, Operand(0xfffffffffffff464)); ++ __ xori(a2, t2, 0xDCB); ++ __ Branch(&error, ne, a2, Operand(0x81f25a87c423658a)); ++ ++ // Everything was correctly executed. Load the expected result. ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ // Got an error. Return a wrong result. ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(LA6) { ++ // Test loads and stores instruction. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct T { ++ int64_t si1; ++ int64_t si2; ++ int64_t si3; ++ int64_t result_ld_b_si1; ++ int64_t result_ld_b_si2; ++ int64_t result_ld_h_si1; ++ int64_t result_ld_h_si2; ++ int64_t result_ld_w_si1; ++ int64_t result_ld_w_si2; ++ int64_t result_ld_d_si1; ++ int64_t result_ld_d_si3; ++ int64_t result_ld_bu_si2; ++ int64_t result_ld_hu_si2; ++ int64_t result_ld_wu_si2; ++ int64_t result_st_b; ++ int64_t result_st_h; ++ int64_t result_st_w; ++ }; ++ T t; ++ ++ // Ld_b ++ __ Ld_b(a4, MemOperand(a0, offsetof(T, si1))); ++ __ St_d(a4, MemOperand(a0, offsetof(T, result_ld_b_si1))); ++ ++ __ Ld_b(a4, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(a4, MemOperand(a0, offsetof(T, result_ld_b_si2))); ++ ++ // Ld_h ++ __ Ld_h(a5, MemOperand(a0, offsetof(T, si1))); ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_ld_h_si1))); ++ ++ __ Ld_h(a5, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_ld_h_si2))); ++ ++ // Ld_w ++ __ Ld_w(a6, MemOperand(a0, offsetof(T, si1))); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_ld_w_si1))); ++ ++ __ Ld_w(a6, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_ld_w_si2))); ++ ++ // Ld_d ++ __ Ld_d(a7, MemOperand(a0, offsetof(T, si1))); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_ld_d_si1))); ++ ++ __ Ld_d(a7, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_ld_d_si3))); ++ ++ // Ld_bu ++ __ Ld_bu(t0, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_ld_bu_si2))); ++ ++ // Ld_hu ++ __ Ld_hu(t1, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_ld_hu_si2))); ++ ++ // Ld_wu ++ __ Ld_wu(t2, MemOperand(a0, offsetof(T, si2))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_ld_wu_si2))); ++ ++ // St ++ __ li(t4, 0x11111111); ++ ++ // St_b ++ __ Ld_d(t5, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(t5, MemOperand(a0, offsetof(T, result_st_b))); ++ __ St_b(t4, MemOperand(a0, offsetof(T, result_st_b))); ++ ++ // St_h ++ __ Ld_d(t6, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(t6, MemOperand(a0, offsetof(T, result_st_h))); ++ __ St_h(t4, MemOperand(a0, offsetof(T, result_st_h))); ++ ++ // St_w ++ __ Ld_d(t7, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(t7, MemOperand(a0, offsetof(T, result_st_w))); ++ __ St_w(t4, MemOperand(a0, offsetof(T, result_st_w))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.si1 = 0x11223344; ++ t.si2 = 0x99AABBCC; ++ t.si3 = 0x1122334455667788; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x44), t.result_ld_b_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFFFFFFFFCC), t.result_ld_b_si2); ++ ++ CHECK_EQ(static_cast(0x3344), t.result_ld_h_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFFFFFFBBCC), t.result_ld_h_si2); ++ ++ CHECK_EQ(static_cast(0x11223344), t.result_ld_w_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFF99AABBCC), t.result_ld_w_si2); ++ ++ CHECK_EQ(static_cast(0x11223344), t.result_ld_d_si1); ++ CHECK_EQ(static_cast(0x1122334455667788), t.result_ld_d_si3); ++ ++ CHECK_EQ(static_cast(0xCC), t.result_ld_bu_si2); ++ CHECK_EQ(static_cast(0xBBCC), t.result_ld_hu_si2); ++ CHECK_EQ(static_cast(0x99AABBCC), t.result_ld_wu_si2); ++ ++ CHECK_EQ(static_cast(0x1122334455667711), t.result_st_b); ++ CHECK_EQ(static_cast(0x1122334455661111), t.result_st_h); ++ CHECK_EQ(static_cast(0x1122334411111111), t.result_st_w); ++} ++ ++TEST(LA7) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct T { ++ int64_t si1; ++ int64_t si2; ++ int64_t si3; ++ int64_t result_ldx_b_si1; ++ int64_t result_ldx_b_si2; ++ int64_t result_ldx_h_si1; ++ int64_t result_ldx_h_si2; ++ int64_t result_ldx_w_si1; ++ int64_t result_ldx_w_si2; ++ int64_t result_ldx_d_si1; ++ int64_t result_ldx_d_si3; ++ int64_t result_ldx_bu_si2; ++ int64_t result_ldx_hu_si2; ++ int64_t result_ldx_wu_si2; ++ int64_t result_stx_b; ++ int64_t result_stx_h; ++ int64_t result_stx_w; ++ }; ++ T t; ++ ++ // ldx_b ++ __ li(a2, static_cast(offsetof(T, si1))); ++ __ Ld_b(a4, MemOperand(a0, a2)); ++ __ St_d(a4, MemOperand(a0, offsetof(T, result_ldx_b_si1))); ++ ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_b(a4, MemOperand(a0, a2)); ++ __ St_d(a4, MemOperand(a0, offsetof(T, result_ldx_b_si2))); ++ ++ // ldx_h ++ __ li(a2, static_cast(offsetof(T, si1))); ++ __ Ld_h(a5, MemOperand(a0, a2)); ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_ldx_h_si1))); ++ ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_h(a5, MemOperand(a0, a2)); ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_ldx_h_si2))); ++ ++ // ldx_w ++ __ li(a2, static_cast(offsetof(T, si1))); ++ __ Ld_w(a6, MemOperand(a0, a2)); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_ldx_w_si1))); ++ ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_w(a6, MemOperand(a0, a2)); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_ldx_w_si2))); ++ ++ // Ld_d ++ __ li(a2, static_cast(offsetof(T, si1))); ++ __ Ld_d(a7, MemOperand(a0, a2)); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_ldx_d_si1))); ++ ++ __ li(a2, static_cast(offsetof(T, si3))); ++ __ Ld_d(a7, MemOperand(a0, a2)); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_ldx_d_si3))); ++ ++ // Ld_bu ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_bu(t0, MemOperand(a0, a2)); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_ldx_bu_si2))); ++ ++ // Ld_hu ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_hu(t1, MemOperand(a0, a2)); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_ldx_hu_si2))); ++ ++ // Ld_wu ++ __ li(a2, static_cast(offsetof(T, si2))); ++ __ Ld_wu(t2, MemOperand(a0, a2)); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_ldx_wu_si2))); ++ ++ // St ++ __ li(t4, 0x11111111); ++ ++ // St_b ++ __ Ld_d(t5, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(t5, MemOperand(a0, offsetof(T, result_stx_b))); ++ __ li(a2, static_cast(offsetof(T, result_stx_b))); ++ __ St_b(t4, MemOperand(a0, a2)); ++ ++ // St_h ++ __ Ld_d(t6, MemOperand(a0, offsetof(T, si3))); ++ __ St_d(t6, MemOperand(a0, offsetof(T, result_stx_h))); ++ __ li(a2, static_cast(offsetof(T, result_stx_h))); ++ __ St_h(t4, MemOperand(a0, a2)); ++ ++ // St_w ++ __ Ld_d(t7, MemOperand(a0, offsetof(T, si3))); ++ __ li(a2, static_cast(offsetof(T, result_stx_w))); ++ __ St_d(t7, MemOperand(a0, a2)); ++ __ li(a3, static_cast(offsetof(T, result_stx_w))); ++ __ St_w(t4, MemOperand(a0, a3)); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.si1 = 0x11223344; ++ t.si2 = 0x99AABBCC; ++ t.si3 = 0x1122334455667788; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x44), t.result_ldx_b_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFFFFFFFFCC), t.result_ldx_b_si2); ++ ++ CHECK_EQ(static_cast(0x3344), t.result_ldx_h_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFFFFFFBBCC), t.result_ldx_h_si2); ++ ++ CHECK_EQ(static_cast(0x11223344), t.result_ldx_w_si1); ++ CHECK_EQ(static_cast(0xFFFFFFFF99AABBCC), t.result_ldx_w_si2); ++ ++ CHECK_EQ(static_cast(0x11223344), t.result_ldx_d_si1); ++ CHECK_EQ(static_cast(0x1122334455667788), t.result_ldx_d_si3); ++ ++ CHECK_EQ(static_cast(0xCC), t.result_ldx_bu_si2); ++ CHECK_EQ(static_cast(0xBBCC), t.result_ldx_hu_si2); ++ CHECK_EQ(static_cast(0x99AABBCC), t.result_ldx_wu_si2); ++ ++ CHECK_EQ(static_cast(0x1122334455667711), t.result_stx_b); ++ CHECK_EQ(static_cast(0x1122334455661111), t.result_stx_h); ++ CHECK_EQ(static_cast(0x1122334411111111), t.result_stx_w); ++} ++ ++TEST(LDPTR_STPTR) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ int64_t test[10]; ++ ++ __ ldptr_w(a4, a0, 0); ++ __ stptr_d(a4, a0, 24); //test[3] ++ ++ __ ldptr_w(a5, a0, 8); //test[1] ++ __ stptr_d(a5, a0, 32); //test[4] ++ ++ __ ldptr_d(a6, a0, 16); //test[2] ++ __ stptr_d(a6, a0, 40); //test[5] ++ ++ __ li(t0, 0x11111111); ++ ++ __ stptr_d(a6, a0, 48); //test[6] ++ __ stptr_w(t0, a0, 48); //test[6] ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test[0] = 0x11223344; ++ test[1] = 0x99AABBCC; ++ test[2] = 0x1122334455667788; ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x11223344), test[3]); ++ CHECK_EQ(static_cast(0xFFFFFFFF99AABBCC), test[4]); ++ CHECK_EQ(static_cast(0x1122334455667788), test[5]); ++ CHECK_EQ(static_cast(0x1122334411111111), test[6]); ++} ++ ++TEST(LA8) { ++ // Test 32bit shift instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ int32_t input; ++ int32_t result_sll_w_0; ++ int32_t result_sll_w_8; ++ int32_t result_sll_w_10; ++ int32_t result_sll_w_31; ++ int32_t result_srl_w_0; ++ int32_t result_srl_w_8; ++ int32_t result_srl_w_10; ++ int32_t result_srl_w_31; ++ int32_t result_sra_w_0; ++ int32_t result_sra_w_8; ++ int32_t result_sra_w_10; ++ int32_t result_sra_w_31; ++ int32_t result_rotr_w_0; ++ int32_t result_rotr_w_8; ++ int32_t result_slli_w_0; ++ int32_t result_slli_w_8; ++ int32_t result_slli_w_10; ++ int32_t result_slli_w_31; ++ int32_t result_srli_w_0; ++ int32_t result_srli_w_8; ++ int32_t result_srli_w_10; ++ int32_t result_srli_w_31; ++ int32_t result_srai_w_0; ++ int32_t result_srai_w_8; ++ int32_t result_srai_w_10; ++ int32_t result_srai_w_31; ++ int32_t result_rotri_w_0; ++ int32_t result_rotri_w_8; ++ int32_t result_rotri_w_10; ++ int32_t result_rotri_w_31; ++ }; ++ T t; ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ __ Ld_w(a4, MemOperand(a0, offsetof(T, input))); ++ ++ // sll_w ++ __ li(a5, 0); ++ __ sll_w(t0, a4, a5); ++ __ li(a5, 0x8); ++ __ sll_w(t1, a4, a5); ++ __ li(a5, 0xA); ++ __ sll_w(t2, a4, a5); ++ __ li(a5, 0x1F); ++ __ sll_w(t3, a4, a5); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_sll_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_sll_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_sll_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_sll_w_31))); ++ ++ // srl_w ++ __ li(a5, 0x0); ++ __ srl_w(t0, a4, a5); ++ __ li(a5, 0x8); ++ __ srl_w(t1, a4, a5); ++ __ li(a5, 0xA); ++ __ srl_w(t2, a4, a5); ++ __ li(a5, 0x1F); ++ __ srl_w(t3, a4, a5); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_srl_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_srl_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_srl_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_srl_w_31))); ++ ++ // sra_w ++ __ li(a5, 0x0); ++ __ sra_w(t0, a4, a5); ++ __ li(a5, 0x8); ++ __ sra_w(t1, a4, a5); ++ ++ __ li(a6, static_cast(0x80000000)); ++ __ add_w(a6, a6, a4); ++ __ li(a5, 0xA); ++ __ sra_w(t2, a6, a5); ++ __ li(a5, 0x1F); ++ __ sra_w(t3, a6, a5); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_sra_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_sra_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_sra_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_sra_w_31))); ++ ++ // rotr ++ __ li(a5, 0x0); ++ __ rotr_w(t0, a4, a5); ++ __ li(a6, 0x8); ++ __ rotr_w(t1, a4, a6); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_rotr_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_rotr_w_8))); ++ ++ // slli_w ++ __ slli_w(t0, a4, 0); ++ __ slli_w(t1, a4, 0x8); ++ __ slli_w(t2, a4, 0xA); ++ __ slli_w(t3, a4, 0x1F); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_slli_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_slli_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_slli_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_slli_w_31))); ++ ++ // srli_w ++ __ srli_w(t0, a4, 0); ++ __ srli_w(t1, a4, 0x8); ++ __ srli_w(t2, a4, 0xA); ++ __ srli_w(t3, a4, 0x1F); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_srli_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_srli_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_srli_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_srli_w_31))); ++ ++ // srai_w ++ __ srai_w(t0, a4, 0); ++ __ srai_w(t1, a4, 0x8); ++ ++ __ li(a6, static_cast(0x80000000)); ++ __ add_w(a6, a6, a4); ++ __ srai_w(t2, a6, 0xA); ++ __ srai_w(t3, a6, 0x1F); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_srai_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_srai_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_srai_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_srai_w_31))); ++ ++ // rotri_w ++ __ rotri_w(t0, a4, 0); ++ __ rotri_w(t1, a4, 0x8); ++ __ rotri_w(t2, a4, 0xA); ++ __ rotri_w(t3, a4, 0x1F); ++ ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_rotri_w_0))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_rotri_w_8))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_rotri_w_10))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_rotri_w_31))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.input = 0x12345678; ++ f.Call(&t, 0x0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_sll_w_0); ++ CHECK_EQ(static_cast(0x34567800), t.result_sll_w_8); ++ CHECK_EQ(static_cast(0xD159E000), t.result_sll_w_10); ++ CHECK_EQ(static_cast(0x0), t.result_sll_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_srl_w_0); ++ CHECK_EQ(static_cast(0x123456), t.result_srl_w_8); ++ CHECK_EQ(static_cast(0x48D15), t.result_srl_w_10); ++ CHECK_EQ(static_cast(0x0), t.result_srl_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_sra_w_0); ++ CHECK_EQ(static_cast(0x123456), t.result_sra_w_8); ++ CHECK_EQ(static_cast(0xFFE48D15), t.result_sra_w_10); ++ CHECK_EQ(static_cast(0xFFFFFFFF), t.result_sra_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_rotr_w_0); ++ CHECK_EQ(static_cast(0x78123456), t.result_rotr_w_8); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_slli_w_0); ++ CHECK_EQ(static_cast(0x34567800), t.result_slli_w_8); ++ CHECK_EQ(static_cast(0xD159E000), t.result_slli_w_10); ++ CHECK_EQ(static_cast(0x0), t.result_slli_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_srli_w_0); ++ CHECK_EQ(static_cast(0x123456), t.result_srli_w_8); ++ CHECK_EQ(static_cast(0x48D15), t.result_srli_w_10); ++ CHECK_EQ(static_cast(0x0), t.result_srli_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_srai_w_0); ++ CHECK_EQ(static_cast(0x123456), t.result_srai_w_8); ++ CHECK_EQ(static_cast(0xFFE48D15), t.result_srai_w_10); ++ CHECK_EQ(static_cast(0xFFFFFFFF), t.result_srai_w_31); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_rotri_w_0); ++ CHECK_EQ(static_cast(0x78123456), t.result_rotri_w_8); ++ CHECK_EQ(static_cast(0x9E048D15), t.result_rotri_w_10); ++ CHECK_EQ(static_cast(0x2468ACF0), t.result_rotri_w_31); ++} ++ ++TEST(LA9) { ++ // Test 64bit shift instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ int64_t input; ++ int64_t result_sll_d_0; ++ int64_t result_sll_d_13; ++ int64_t result_sll_d_30; ++ int64_t result_sll_d_63; ++ int64_t result_srl_d_0; ++ int64_t result_srl_d_13; ++ int64_t result_srl_d_30; ++ int64_t result_srl_d_63; ++ int64_t result_sra_d_0; ++ int64_t result_sra_d_13; ++ int64_t result_sra_d_30; ++ int64_t result_sra_d_63; ++ int64_t result_rotr_d_0; ++ int64_t result_rotr_d_13; ++ int64_t result_slli_d_0; ++ int64_t result_slli_d_13; ++ int64_t result_slli_d_30; ++ int64_t result_slli_d_63; ++ int64_t result_srli_d_0; ++ int64_t result_srli_d_13; ++ int64_t result_srli_d_30; ++ int64_t result_srli_d_63; ++ int64_t result_srai_d_0; ++ int64_t result_srai_d_13; ++ int64_t result_srai_d_30; ++ int64_t result_srai_d_63; ++ int64_t result_rotri_d_0; ++ int64_t result_rotri_d_13; ++ int64_t result_rotri_d_30; ++ int64_t result_rotri_d_63; ++ }; ++ ++ T t; ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, input))); ++ ++ // sll_d ++ __ li(a5, 0); ++ __ sll_d(t0, a4, a5); ++ __ li(a5, 0xD); ++ __ sll_d(t1, a4, a5); ++ __ li(a5, 0x1E); ++ __ sll_d(t2, a4, a5); ++ __ li(a5, 0x3F); ++ __ sll_d(t3, a4, a5); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_sll_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_sll_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_sll_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_sll_d_63))); ++ ++ // srl_d ++ __ li(a5, 0x0); ++ __ srl_d(t0, a4, a5); ++ __ li(a5, 0xD); ++ __ srl_d(t1, a4, a5); ++ __ li(a5, 0x1E); ++ __ srl_d(t2, a4, a5); ++ __ li(a5, 0x3F); ++ __ srl_d(t3, a4, a5); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_srl_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_srl_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_srl_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_srl_d_63))); ++ ++ // sra_d ++ __ li(a5, 0x0); ++ __ sra_d(t0, a4, a5); ++ __ li(a5, 0xD); ++ __ sra_d(t1, a4, a5); ++ ++ __ li(a6, static_cast(0x8000000000000000)); ++ __ add_d(a6, a6, a4); ++ __ li(a5, 0x1E); ++ __ sra_d(t2, a6, a5); ++ __ li(a5, 0x3F); ++ __ sra_d(t3, a6, a5); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_sra_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_sra_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_sra_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_sra_d_63))); ++ ++ // rotr ++ __ li(a5, 0x0); ++ __ rotr_d(t0, a4, a5); ++ __ li(a6, 0xD); ++ __ rotr_d(t1, a4, a6); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_rotr_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_rotr_d_13))); ++ ++ // slli_d ++ __ slli_d(t0, a4, 0); ++ __ slli_d(t1, a4, 0xD); ++ __ slli_d(t2, a4, 0x1E); ++ __ slli_d(t3, a4, 0x3F); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_slli_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_slli_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_slli_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_slli_d_63))); ++ ++ // srli_d ++ __ srli_d(t0, a4, 0); ++ __ srli_d(t1, a4, 0xD); ++ __ srli_d(t2, a4, 0x1E); ++ __ srli_d(t3, a4, 0x3F); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_srli_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_srli_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_srli_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_srli_d_63))); ++ ++ // srai_d ++ __ srai_d(t0, a4, 0); ++ __ srai_d(t1, a4, 0xD); ++ ++ __ li(a6, static_cast(0x8000000000000000)); ++ __ add_d(a6, a6, a4); ++ __ srai_d(t2, a6, 0x1E); ++ __ srai_d(t3, a6, 0x3F); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_srai_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_srai_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_srai_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_srai_d_63))); ++ ++ // rotri_d ++ __ rotri_d(t0, a4, 0); ++ __ rotri_d(t1, a4, 0xD); ++ __ rotri_d(t2, a4, 0x1E); ++ __ rotri_d(t3, a4, 0x3F); ++ ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_rotri_d_0))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_rotri_d_13))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_rotri_d_30))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_rotri_d_63))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.input = 0x51F4B764A26E7412; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_sll_d_0); ++ CHECK_EQ(static_cast(0x96ec944dce824000), t.result_sll_d_13); ++ CHECK_EQ(static_cast(0x289b9d0480000000), t.result_sll_d_30); ++ CHECK_EQ(static_cast(0x0), t.result_sll_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_srl_d_0); ++ CHECK_EQ(static_cast(0x28fa5bb251373), t.result_srl_d_13); ++ CHECK_EQ(static_cast(0x147d2dd92), t.result_srl_d_30); ++ CHECK_EQ(static_cast(0x0), t.result_srl_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_sra_d_0); ++ CHECK_EQ(static_cast(0x28fa5bb251373), t.result_sra_d_13); ++ CHECK_EQ(static_cast(0xffffffff47d2dd92), t.result_sra_d_30); ++ CHECK_EQ(static_cast(0xffffffffffffffff), t.result_sra_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_rotr_d_0); ++ CHECK_EQ(static_cast(0xa0928fa5bb251373), t.result_rotr_d_13); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_slli_d_0); ++ CHECK_EQ(static_cast(0x96ec944dce824000), t.result_slli_d_13); ++ CHECK_EQ(static_cast(0x289b9d0480000000), t.result_slli_d_30); ++ CHECK_EQ(static_cast(0x0), t.result_slli_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_srli_d_0); ++ CHECK_EQ(static_cast(0x28fa5bb251373), t.result_srli_d_13); ++ CHECK_EQ(static_cast(0x147d2dd92), t.result_srli_d_30); ++ CHECK_EQ(static_cast(0x0), t.result_srli_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_srai_d_0); ++ CHECK_EQ(static_cast(0x28fa5bb251373), t.result_srai_d_13); ++ CHECK_EQ(static_cast(0xffffffff47d2dd92), t.result_srai_d_30); ++ CHECK_EQ(static_cast(0xffffffffffffffff), t.result_srai_d_63); ++ ++ CHECK_EQ(static_cast(0x51f4b764a26e7412), t.result_rotri_d_0); ++ CHECK_EQ(static_cast(0xa0928fa5bb251373), t.result_rotri_d_13); ++ CHECK_EQ(static_cast(0x89b9d04947d2dd92), t.result_rotri_d_30); ++ CHECK_EQ(static_cast(0xa3e96ec944dce824), t.result_rotri_d_63); ++} ++ ++TEST(LA10) { ++ // Test 32bit bit operation instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct T { ++ int64_t si1; ++ int64_t si2; ++ int32_t result_ext_w_b_si1; ++ int32_t result_ext_w_b_si2; ++ int32_t result_ext_w_h_si1; ++ int32_t result_ext_w_h_si2; ++ int32_t result_clo_w_si1; ++ int32_t result_clo_w_si2; ++ int32_t result_clz_w_si1; ++ int32_t result_clz_w_si2; ++ int32_t result_cto_w_si1; ++ int32_t result_cto_w_si2; ++ int32_t result_ctz_w_si1; ++ int32_t result_ctz_w_si2; ++ int32_t result_bytepick_w_si1; ++ int32_t result_bytepick_w_si2; ++ int32_t result_revb_2h_si1; ++ int32_t result_revb_2h_si2; ++ int32_t result_bitrev_4b_si1; ++ int32_t result_bitrev_4b_si2; ++ int32_t result_bitrev_w_si1; ++ int32_t result_bitrev_w_si2; ++ int32_t result_bstrins_w_si1; ++ int32_t result_bstrins_w_si2; ++ int32_t result_bstrpick_w_si1; ++ int32_t result_bstrpick_w_si2; ++ }; ++ T t; ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, si1))); ++ __ Ld_d(a5, MemOperand(a0, offsetof(T, si2))); ++ ++ // ext_w_b ++ __ ext_w_b(t0, a4); ++ __ ext_w_b(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_ext_w_b_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_ext_w_b_si2))); ++ ++ // ext_w_h ++ __ ext_w_h(t0, a4); ++ __ ext_w_h(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_ext_w_h_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_ext_w_h_si2))); ++ ++ /* //clo_w ++ __ clo_w(t0, a4); ++ __ clo_w(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_clo_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_clo_w_si2)));*/ ++ ++ // clz_w ++ __ clz_w(t0, a4); ++ __ clz_w(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_clz_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_clz_w_si2))); ++ ++ /* //cto_w ++ __ cto_w(t0, a4); ++ __ cto_w(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_cto_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_cto_w_si2)));*/ ++ ++ // ctz_w ++ __ ctz_w(t0, a4); ++ __ ctz_w(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_ctz_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_ctz_w_si2))); ++ ++ // bytepick_w ++ __ bytepick_w(t0, a4, a5, 0); ++ __ bytepick_w(t1, a5, a4, 2); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_bytepick_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_bytepick_w_si2))); ++ ++ // revb_2h ++ __ revb_2h(t0, a4); ++ __ revb_2h(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_revb_2h_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_revb_2h_si2))); ++ ++ // bitrev ++ __ bitrev_4b(t0, a4); ++ __ bitrev_4b(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_bitrev_4b_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_bitrev_4b_si2))); ++ ++ // bitrev_w ++ __ bitrev_w(t0, a4); ++ __ bitrev_w(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_bitrev_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_bitrev_w_si2))); ++ ++ // bstrins ++ __ or_(t0, zero_reg, zero_reg); ++ __ or_(t1, zero_reg, zero_reg); ++ __ bstrins_w(t0, a4, 0xD, 0x4); ++ __ bstrins_w(t1, a5, 0x16, 0x5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_bstrins_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_bstrins_w_si2))); ++ ++ // bstrpick ++ __ or_(t0, zero_reg, zero_reg); ++ __ or_(t1, zero_reg, zero_reg); ++ __ bstrpick_w(t0, a4, 0xD, 0x4); ++ __ bstrpick_w(t1, a5, 0x16, 0x5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_bstrpick_w_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_bstrpick_w_si2))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.si1 = 0x51F4B764A26E7412; ++ t.si2 = 0x81F25A87C423B891; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x12), t.result_ext_w_b_si1); ++ CHECK_EQ(static_cast(0xffffff91), t.result_ext_w_b_si2); ++ CHECK_EQ(static_cast(0x7412), t.result_ext_w_h_si1); ++ CHECK_EQ(static_cast(0xffffb891), t.result_ext_w_h_si2); ++ // CHECK_EQ(static_cast(0x1), t.result_clo_w_si1); ++ // CHECK_EQ(static_cast(0x2), t.result_clo_w_si2); ++ CHECK_EQ(static_cast(0x0), t.result_clz_w_si1); ++ CHECK_EQ(static_cast(0x0), t.result_clz_w_si2); ++ // CHECK_EQ(static_cast(0x0), t.result_cto_w_si1); ++ // CHECK_EQ(static_cast(0x1), t.result_cto_w_si2); ++ CHECK_EQ(static_cast(0x1), t.result_ctz_w_si1); ++ CHECK_EQ(static_cast(0x0), t.result_ctz_w_si2); ++ CHECK_EQ(static_cast(0xc423b891), t.result_bytepick_w_si1); ++ CHECK_EQ(static_cast(0x7412c423), ++ t.result_bytepick_w_si2); // 0xffffc423 ++ CHECK_EQ(static_cast(0x6ea21274), t.result_revb_2h_si1); ++ CHECK_EQ(static_cast(0x23c491b8), t.result_revb_2h_si2); ++ CHECK_EQ(static_cast(0x45762e48), t.result_bitrev_4b_si1); ++ CHECK_EQ(static_cast(0x23c41d89), t.result_bitrev_4b_si2); ++ CHECK_EQ(static_cast(0x482e7645), t.result_bitrev_w_si1); ++ CHECK_EQ(static_cast(0x891dc423), t.result_bitrev_w_si2); ++ CHECK_EQ(static_cast(0x120), t.result_bstrins_w_si1); ++ CHECK_EQ(static_cast(0x771220), t.result_bstrins_w_si2); ++ CHECK_EQ(static_cast(0x341), t.result_bstrpick_w_si1); ++ CHECK_EQ(static_cast(0x11dc4), t.result_bstrpick_w_si2); ++} ++ ++TEST(LA11) { ++ // Test 64bit bit operation instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct T { ++ int64_t si1; ++ int64_t si2; ++ int64_t result_clo_d_si1; ++ int64_t result_clo_d_si2; ++ int64_t result_clz_d_si1; ++ int64_t result_clz_d_si2; ++ int64_t result_cto_d_si1; ++ int64_t result_cto_d_si2; ++ int64_t result_ctz_d_si1; ++ int64_t result_ctz_d_si2; ++ int64_t result_bytepick_d_si1; ++ int64_t result_bytepick_d_si2; ++ int64_t result_revb_4h_si1; ++ int64_t result_revb_4h_si2; ++ int64_t result_revb_2w_si1; ++ int64_t result_revb_2w_si2; ++ int64_t result_revb_d_si1; ++ int64_t result_revb_d_si2; ++ int64_t result_revh_2w_si1; ++ int64_t result_revh_2w_si2; ++ int64_t result_revh_d_si1; ++ int64_t result_revh_d_si2; ++ int64_t result_bitrev_8b_si1; ++ int64_t result_bitrev_8b_si2; ++ int64_t result_bitrev_d_si1; ++ int64_t result_bitrev_d_si2; ++ int64_t result_bstrins_d_si1; ++ int64_t result_bstrins_d_si2; ++ int64_t result_bstrpick_d_si1; ++ int64_t result_bstrpick_d_si2; ++ int64_t result_maskeqz_si1; ++ int64_t result_maskeqz_si2; ++ int64_t result_masknez_si1; ++ int64_t result_masknez_si2; ++ }; ++ ++ T t; ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, si1))); ++ __ Ld_d(a5, MemOperand(a0, offsetof(T, si2))); ++ ++ /* //clo_d ++ __ clo_d(t0, a4); ++ __ clo_d(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_clo_d_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_clo_d_si2)));*/ ++ ++ // clz_d ++ __ or_(t0, zero_reg, zero_reg); ++ __ clz_d(t0, a4); ++ __ clz_d(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_clz_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_clz_d_si2))); ++ ++ /* //cto_d ++ __ cto_d(t0, a4); ++ __ cto_d(t1, a5); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_cto_d_si1))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_cto_d_si2)));*/ ++ ++ // ctz_d ++ __ ctz_d(t0, a4); ++ __ ctz_d(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_ctz_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_ctz_d_si2))); ++ ++ // bytepick_d ++ __ bytepick_d(t0, a4, a5, 0); ++ __ bytepick_d(t1, a5, a4, 5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_bytepick_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_bytepick_d_si2))); ++ ++ // revb_4h ++ __ revb_4h(t0, a4); ++ __ revb_4h(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_revb_4h_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_revb_4h_si2))); ++ ++ // revb_2w ++ __ revb_2w(t0, a4); ++ __ revb_2w(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_revb_2w_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_revb_2w_si2))); ++ ++ // revb_d ++ __ revb_d(t0, a4); ++ __ revb_d(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_revb_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_revb_d_si2))); ++ ++ // revh_2w ++ __ revh_2w(t0, a4); ++ __ revh_2w(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_revh_2w_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_revh_2w_si2))); ++ ++ // revh_d ++ __ revh_d(t0, a4); ++ __ revh_d(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_revh_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_revh_d_si2))); ++ ++ // bitrev_8b ++ __ bitrev_8b(t0, a4); ++ __ bitrev_8b(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_bitrev_8b_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_bitrev_8b_si2))); ++ ++ // bitrev_d ++ __ bitrev_d(t0, a4); ++ __ bitrev_d(t1, a5); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_bitrev_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_bitrev_d_si2))); ++ ++ // bstrins_d ++ __ or_(t0, zero_reg, zero_reg); ++ __ or_(t1, zero_reg, zero_reg); ++ __ bstrins_d(t0, a4, 5, 0); ++ __ bstrins_d(t1, a5, 39, 12); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_bstrins_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_bstrins_d_si2))); ++ ++ // bstrpick_d ++ __ or_(t0, zero_reg, zero_reg); ++ __ or_(t1, zero_reg, zero_reg); ++ __ bstrpick_d(t0, a4, 5, 0); ++ __ bstrpick_d(t1, a5, 63, 48); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_bstrpick_d_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_bstrpick_d_si2))); ++ ++ // maskeqz ++ __ maskeqz(t0, a4, a4); ++ __ maskeqz(t1, a5, zero_reg); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_maskeqz_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_maskeqz_si2))); ++ ++ // masknez ++ __ masknez(t0, a4, a4); ++ __ masknez(t1, a5, zero_reg); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_masknez_si1))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_masknez_si2))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.si1 = 0x10C021098B710CDE; ++ t.si2 = 0xFB8017FF781A15C3; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ // CHECK_EQ(static_cast(0x0), t.result_clo_d_si1); ++ // CHECK_EQ(static_cast(0x5), t.result_clo_d_si2); ++ CHECK_EQ(static_cast(0x3), t.result_clz_d_si1); ++ CHECK_EQ(static_cast(0x0), t.result_clz_d_si2); ++ // CHECK_EQ(static_cast(0x0), t.result_cto_d_si1); ++ // CHECK_EQ(static_cast(0x2), t.result_cto_d_si2); ++ CHECK_EQ(static_cast(0x1), t.result_ctz_d_si1); ++ CHECK_EQ(static_cast(0x0), t.result_ctz_d_si2); ++ CHECK_EQ(static_cast(0xfb8017ff781a15c3), t.result_bytepick_d_si1); ++ CHECK_EQ(static_cast(0x710cdefb8017ff78), t.result_bytepick_d_si2); ++ CHECK_EQ(static_cast(0xc0100921718bde0c), t.result_revb_4h_si1); ++ CHECK_EQ(static_cast(0x80fbff171a78c315), t.result_revb_4h_si2); ++ CHECK_EQ(static_cast(0x921c010de0c718b), t.result_revb_2w_si1); ++ CHECK_EQ(static_cast(0xff1780fbc3151a78), t.result_revb_2w_si2); ++ CHECK_EQ(static_cast(0xde0c718b0921c010), t.result_revb_d_si1); ++ CHECK_EQ(static_cast(0xc3151a78ff1780fb), t.result_revb_d_si2); ++ CHECK_EQ(static_cast(0x210910c00cde8b71), t.result_revh_2w_si1); ++ CHECK_EQ(static_cast(0x17fffb8015c3781a), t.result_revh_2w_si2); ++ CHECK_EQ(static_cast(0xcde8b71210910c0), t.result_revh_d_si1); ++ CHECK_EQ(static_cast(0x15c3781a17fffb80), t.result_revh_d_si2); ++ CHECK_EQ(static_cast(0x8038490d18e307b), t.result_bitrev_8b_si1); ++ CHECK_EQ(static_cast(0xdf01e8ff1e58a8c3), t.result_bitrev_8b_si2); ++ CHECK_EQ(static_cast(0x7b308ed190840308), t.result_bitrev_d_si1); ++ CHECK_EQ(static_cast(0xc3a8581effe801df), t.result_bitrev_d_si2); ++ CHECK_EQ(static_cast(0x1e), t.result_bstrins_d_si1); ++ CHECK_EQ(static_cast(0x81a15c3000), t.result_bstrins_d_si2); ++ CHECK_EQ(static_cast(0x1e), t.result_bstrpick_d_si1); ++ CHECK_EQ(static_cast(0xfb80), t.result_bstrpick_d_si2); ++ CHECK_EQ(static_cast(0), t.result_maskeqz_si1); ++ CHECK_EQ(static_cast(0xFB8017FF781A15C3), t.result_maskeqz_si2); ++ CHECK_EQ(static_cast(0x10C021098B710CDE), t.result_masknez_si1); ++ CHECK_EQ(static_cast(0), t.result_masknez_si2); ++} ++ ++uint64_t run_beq(int64_t value1, int64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ beq(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BEQ) { ++ CcTest::InitializeVM(); ++ struct TestCaseBeq { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBeq tc[] = { ++ // value1, value2, offset, expected_res ++ { 0, 0, -6, 0x3 }, ++ { 1, 1, -3, 0x30 }, ++ { -2, -2, 3, 0x300 }, ++ { 3, -3, 6, 0 }, ++ { 4, 4, 6, 0x700 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeq); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_beq(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bne(int64_t value1, int64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bne(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BNE) { ++ CcTest::InitializeVM(); ++ struct TestCaseBne { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBne tc[] = { ++ // value1, value2, offset, expected_res ++ { 1, -1, -6, 0x3 }, ++ { 2, -2, -3, 0x30 }, ++ { 3, -3, 3, 0x300 }, ++ { 4, -4, 6, 0x700 }, ++ { 0, 0, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBne); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bne(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_blt(int64_t value1, int64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ blt(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BLT) { ++ CcTest::InitializeVM(); ++ struct TestCaseBlt { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBlt tc[] = { ++ // value1, value2, offset, expected_res ++ { -1, 1, -6, 0x3 }, ++ { -2, 2, -3, 0x30 }, ++ { -3, 3, 3, 0x300 }, ++ { -4, 4, 6, 0x700 }, ++ { 5, -5, 6, 0 }, ++ { 0, 0, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBlt); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_blt(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bge(uint64_t value1, uint64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bge(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BGE) { ++ CcTest::InitializeVM(); ++ struct TestCaseBge { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBge tc[] = { ++ // value1, value2, offset, expected_res ++ { 0, 0, -6, 0x3 }, ++ { 1, 1, -3, 0x30 }, ++ { 2, -2, 3, 0x300 }, ++ { 3, -3, 6, 0x700 }, ++ { -4, 4, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBge); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bge(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bltu(int64_t value1, int64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bltu(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BLTU) { ++ CcTest::InitializeVM(); ++ struct TestCaseBltu { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBltu tc[] = { ++ // value1, value2, offset, expected_res ++ { 0, 1, -6, 0x3 }, ++ { 1, -1, -3, 0x30 }, ++ { 2, -2, 3, 0x300 }, ++ { 3, -3, 6, 0x700 }, ++ { 4, 4, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBltu); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bltu(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bgeu(int64_t value1, int64_t value2, int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bgeu(a0, a1, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value1, value2, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BGEU) { ++ CcTest::InitializeVM(); ++ struct TestCaseBgeu { ++ int64_t value1; ++ int64_t value2; ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBgeu tc[] = { ++ // value1, value2, offset, expected_res ++ { 0, 0, -6, 0x3 }, ++ { -1, 1, -3, 0x30 }, ++ { -2, 2, 3, 0x300 }, ++ { -3, 3, 6, 0x700 }, ++ { 4, -4, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBgeu); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bgeu(tc[i].value1, tc[i].value2, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_beqz(int64_t value, int32_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(&L); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ beqz(a0, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(&L); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BEQZ) { ++ CcTest::InitializeVM(); ++ struct TestCaseBeqz { ++ int64_t value; ++ int32_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBeqz tc[] = { ++ // value, offset, expected_res ++ { 0, -6, 0x3 }, ++ { 0, -3, 0x30 }, ++ { 0, 3, 0x300 }, ++ { 0, 6, 0x700 }, ++ { 1, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqz); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_beqz(tc[i].value, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bnez_b(int64_t value, int32_t offset) { ++ // bnez, b. ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0l); ++ __ b(&main_block); ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ b(5); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ b(2); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bnez(a0, offset); ++ __ bind(&L); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ b(-4); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ b(-7); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(value, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BNEZ_B) { ++ CcTest::InitializeVM(); ++ struct TestCaseBnez { ++ int64_t value; ++ int32_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBnez tc[] = { ++ // value, offset, expected_res ++ { 1, -6, 0x3 }, ++ { -2, -3, 0x30 }, ++ { 3, 3, 0x300 }, ++ { -4, 6, 0x700 }, ++ { 0, 6, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBnez); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bnez_b(tc[i].value, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bl(int32_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block; ++ __ li(a2, 0l); ++ __ push(ra); // push is implemented by two instructions, addi_d and st_d ++ __ b(&main_block); ++ ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ bl(offset); ++ __ or_(a0, a2, zero_reg); ++ __ pop(ra); // pop is implemented by two instructions, ld_d and addi_d. ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BL) { ++ CcTest::InitializeVM(); ++ struct TestCaseBl { ++ int32_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBl tc[] = { ++ // offset, expected_res ++ { -6, 0x3 }, ++ { -3, 0x30 }, ++ { 5, 0x300 }, ++ { 8, 0x700 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBl); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bl(tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++TEST(PCADD) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label exit, error; ++ __ push(ra); ++ ++ // pcaddi ++ __ li(a4, 0x1FFFFC); ++ __ li(a5, 0); ++ __ li(a6, static_cast(0xFFE00000)); ++ ++ __ bl(1); ++ __ pcaddi(a3, 0x7FFFF); ++ __ add_d(a2, ra, a4); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ bl(1); ++ __ pcaddi(a3, 0); ++ __ add_d(a2, ra, a5); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ bl(1); ++ __ pcaddi(a3, 0x80000); ++ __ add_d(a2, ra, a6); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ // pcaddu12i ++ __ li(a4, 0x7FFFF000); ++ __ li(a5, 0); ++ __ li(a6, static_cast(0x80000000)); ++ ++ __ bl(1); ++ __ pcaddu12i(a2, 0x7FFFF); ++ __ add_d(a3, ra, a4); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ bl(1); ++ __ pcaddu12i(a2, 0); ++ __ add_d(a3, ra, a5); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ bl(1); ++ __ pcaddu12i(a2, 0x80000); ++ __ add_d(a3, ra, a6); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ // pcaddu18i ++ __ li(a4, 0x1FFFFC0000); ++ __ li(a5, 0); ++ __ li(a6, static_cast(0xFFFFFFE000000000)); ++ ++ __ bl(1); ++ __ pcaddu18i(a2, 0x7FFFF); ++ __ add_d(a3, ra, a4); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ bl(1); ++ __ pcaddu18i(a2, 0); ++ __ add_d(a3, ra, a5); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ bl(1); ++ __ pcaddu18i(a2, 0x80000); ++ __ add_d(a3, ra, a6); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ // pcalau12i ++ __ li(a4, 0x7FFFF000); ++ __ li(a5, 0); ++ __ li(a6, static_cast(0x80000000)); ++ __ li(a7, static_cast(0xFFFFFFFFFFFFF000)); ++ ++ __ bl(1); ++ __ pcalau12i(a3, 0x7FFFF); ++ __ add_d(a2, ra, a4); ++ __ and_(t0, a2, a7); ++ __ and_(t1, a3, a7); ++ __ Branch(&error, ne, t0, Operand(t1)); ++ ++ __ bl(1); ++ __ pcalau12i(a3, 0); ++ __ add_d(a2, ra, a5); ++ __ and_(t0, a2, a7); ++ __ and_(t1, a3, a7); ++ __ Branch(&error, ne, t0, Operand(t1)); ++ ++ __ bl(1); ++ __ pcalau12i(a2, 0x80000); ++ __ add_d(a3, ra, a6); ++ __ and_(t0, a2, a7); ++ __ and_(t1, a3, a7); ++ __ Branch(&error, ne, t0, Operand(t1)); ++ ++ __ li(a0, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a0, 0x666); ++ ++ __ bind(&exit); ++ __ pop(ra); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++uint64_t run_jirl(int16_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block; ++ __ li(a2, 0l); ++ __ push(ra); ++ __ b(&main_block); ++ ++ // Block 1 ++ __ addi_d(a2, a2, 0x1); ++ __ addi_d(a2, a2, 0x2); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 2 ++ __ addi_d(a2, a2, 0x10); ++ __ addi_d(a2, a2, 0x20); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ pcaddi(a3, 1); ++ __ jirl(ra, a3, offset); ++ __ or_(a0, a2, zero_reg); ++ __ pop(ra); // pop is implemented by two instructions, ld_d and addi_d. ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ __ addi_d(a2, a2, 0x100); ++ __ addi_d(a2, a2, 0x200); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 5 ++ __ addi_d(a2, a2, 0x300); ++ __ addi_d(a2, a2, 0x400); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(JIRL) { ++ CcTest::InitializeVM(); ++ struct TestCaseJirl { ++ int16_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseJirl tc[] = { ++ // offset, expected_res ++ { -7, 0x3 }, ++ { -4, 0x30 }, ++ { 5, 0x300 }, ++ { 8, 0x700 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJirl); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_jirl(tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++TEST(LA12) { ++ // Test floating point calculate instructions. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ double a; ++ double b; ++ double c; ++ double d; ++ double e; ++ double f; ++ double result_fadd_d; ++ double result_fsub_d; ++ double result_fmul_d; ++ double result_fdiv_d; ++ double result_fmadd_d; ++ double result_fmsub_d; ++ double result_fnmadd_d; ++ double result_fnmsub_d; ++ double result_fsqrt_d; ++ double result_frecip_d; ++ double result_frsqrt_d; ++ double result_fscaleb_d; ++ double result_flogb_d; ++ double result_fcopysign_d; ++ double result_fclass_d; ++ }; ++ T t; ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ // Double precision floating point instructions. ++ __ Fld_d(f8, MemOperand(a0, offsetof(T, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(T, b))); ++ ++ __ fneg_d(f10, f8); ++ __ fadd_d(f11, f9, f10); ++ __ Fst_d(f11, MemOperand(a0, offsetof(T, result_fadd_d))); ++ __ fabs_d(f11, f11); ++ __ fsub_d(f12, f11, f9); ++ __ Fst_d(f12, MemOperand(a0, offsetof(T, result_fsub_d))); ++ ++ __ Fld_d(f13, MemOperand(a0, offsetof(T, c))); ++ __ Fld_d(f14, MemOperand(a0, offsetof(T, d))); ++ __ Fld_d(f15, MemOperand(a0, offsetof(T, e))); ++ ++ __ fmin_d(f16, f13, f14); ++ __ fmul_d(f17, f15, f16); ++ __ Fst_d(f17, MemOperand(a0, offsetof(T, result_fmul_d))); ++ __ fmax_d(f18, f13, f14); ++ __ fdiv_d(f19, f15, f18); ++ __ Fst_d(f19, MemOperand(a0, offsetof(T, result_fdiv_d))); ++ ++ __ fmina_d(f16, f13, f14); ++ __ fmadd_d(f18, f17, f15, f16); ++ __ Fst_d(f18, MemOperand(a0, offsetof(T, result_fmadd_d))); ++ __ fnmadd_d(f19, f17, f15, f16); ++ __ Fst_d(f19, MemOperand(a0, offsetof(T, result_fnmadd_d))); ++ __ fmaxa_d(f16, f13, f14); ++ __ fmsub_d(f20, f17, f15, f16); ++ __ Fst_d(f20, MemOperand(a0, offsetof(T, result_fmsub_d))); ++ __ fnmsub_d(f21, f17, f15, f16); ++ __ Fst_d(f21, MemOperand(a0, offsetof(T, result_fnmsub_d))); ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(T, f))); ++ __ fsqrt_d(f10, f8); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_fsqrt_d))); ++ //__ frecip_d(f11, f10); ++ //__ frsqrt_d(f12, f8); ++ //__ Fst_d(f11, MemOperand(a0, offsetof(T, result_frecip_d))); ++ //__ Fst_d(f12, MemOperand(a0, offsetof(T, result_frsqrt_d))); ++ ++ /*__ fscaleb_d(f16, f13, f15); ++ __ flogb_d(f17, f15); ++ __ fcopysign_d(f18, f8, f9); ++ __ fclass_d(f19, f9); ++ __ Fst_d(f16, MemOperand(a0, offsetof(T, result_fscaleb_d))); ++ __ Fst_d(f17, MemOperand(a0, offsetof(T, result_flogb_d))); ++ __ Fst_d(f18, MemOperand(a0, offsetof(T, result_fcopysign_d))); ++ __ Fst_d(f19, MemOperand(a0, offsetof(T, result_fclass_d)));*/ ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ // Double test values. ++ t.a = 1.5e14; ++ t.b = -2.75e11; ++ t.c = 1.5; ++ t.d = -2.75; ++ t.e = 120.0; ++ t.f = 120.44; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(-1.502750e14), t.result_fadd_d); ++ CHECK_EQ(static_cast(1.505500e14), t.result_fsub_d); ++ CHECK_EQ(static_cast(-3.300000e02), t.result_fmul_d); ++ CHECK_EQ(static_cast(8.000000e01), t.result_fdiv_d); ++ CHECK_EQ(static_cast(-3.959850e04), t.result_fmadd_d); ++ CHECK_EQ(static_cast(-3.959725e04), t.result_fmsub_d); ++ CHECK_EQ(static_cast(3.959850e04), t.result_fnmadd_d); ++ CHECK_EQ(static_cast(3.959725e04), t.result_fnmsub_d); ++ CHECK_EQ(static_cast(10.97451593465515908537), t.result_fsqrt_d); ++ // CHECK_EQ(static_cast( 8.164965e-08), t.result_frecip_d); ++ // CHECK_EQ(static_cast( 8.164966e-08), t.result_frsqrt_d); ++ // CHECK_EQ(static_cast(), t.result_fscaleb_d); ++ // CHECK_EQ(static_cast( 6.906891), t.result_flogb_d); ++ // CHECK_EQ(static_cast( 2.75e11), t.result_fcopysign_d); ++ // CHECK_EQ(static_cast(), t.result_fclass_d); ++} ++ ++TEST(LA13) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ float a; ++ float b; ++ float c; ++ float d; ++ float e; ++ float result_fadd_s; ++ float result_fsub_s; ++ float result_fmul_s; ++ float result_fdiv_s; ++ float result_fmadd_s; ++ float result_fmsub_s; ++ float result_fnmadd_s; ++ float result_fnmsub_s; ++ float result_fsqrt_s; ++ float result_frecip_s; ++ float result_frsqrt_s; ++ float result_fscaleb_s; ++ float result_flogb_s; ++ float result_fcopysign_s; ++ float result_fclass_s; ++ }; ++ T t; ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ // Float precision floating point instructions. ++ __ Fld_s(f8, MemOperand(a0, offsetof(T, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(T, b))); ++ ++ __ fneg_s(f10, f8); ++ __ fadd_s(f11, f9, f10); ++ __ Fst_s(f11, MemOperand(a0, offsetof(T, result_fadd_s))); ++ __ fabs_s(f11, f11); ++ __ fsub_s(f12, f11, f9); ++ __ Fst_s(f12, MemOperand(a0, offsetof(T, result_fsub_s))); ++ ++ __ Fld_s(f13, MemOperand(a0, offsetof(T, c))); ++ __ Fld_s(f14, MemOperand(a0, offsetof(T, d))); ++ __ Fld_s(f15, MemOperand(a0, offsetof(T, e))); ++ ++ __ fmin_s(f16, f13, f14); ++ __ fmul_s(f17, f15, f16); ++ __ Fst_s(f17, MemOperand(a0, offsetof(T, result_fmul_s))); ++ __ fmax_s(f18, f13, f14); ++ __ fdiv_s(f19, f15, f18); ++ __ Fst_s(f19, MemOperand(a0, offsetof(T, result_fdiv_s))); ++ ++ __ fmina_s(f16, f13, f14); ++ __ fmadd_s(f18, f17, f15, f16); ++ __ Fst_s(f18, MemOperand(a0, offsetof(T, result_fmadd_s))); ++ __ fnmadd_s(f19, f17, f15, f16); ++ __ Fst_s(f19, MemOperand(a0, offsetof(T, result_fnmadd_s))); ++ __ fmaxa_s(f16, f13, f14); ++ __ fmsub_s(f20, f17, f15, f16); ++ __ Fst_s(f20, MemOperand(a0, offsetof(T, result_fmsub_s))); ++ __ fnmsub_s(f21, f17, f15, f16); ++ __ Fst_s(f21, MemOperand(a0, offsetof(T, result_fnmsub_s))); ++ ++ __ fsqrt_s(f10, f8); ++ //__ frecip_s(f11, f10); ++ //__ frsqrt_s(f12, f8); ++ __ Fst_s(f10, MemOperand(a0, offsetof(T, result_fsqrt_s))); ++ //__ Fst_s(f11, MemOperand(a0, offsetof(T, result_frecip_s))); ++ //__ Fst_s(f12, MemOperand(a0, offsetof(T, result_frsqrt_s))); ++ ++ /*__ fscaleb_s(f16, f13, f15); ++ __ flogb_s(f17, f15); ++ __ fcopysign_s(f18, f8, f9); ++ __ fclass_s(f19, f9); ++ __ Fst_s(f16, MemOperand(a0, offsetof(T, result_fscaleb_s))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(T, result_flogb_s))); ++ __ Fst_s(f18, MemOperand(a0, offsetof(T, result_fcopysign_s))); ++ __ Fst_s(f19, MemOperand(a0, offsetof(T, result_fclass_s)));*/ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ // Float test values. ++ t.a = 1.5e6; ++ t.b = -2.75e4; ++ t.c = 1.5; ++ t.d = -2.75; ++ t.e = 120.0; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(-1.527500e06), t.result_fadd_s); ++ CHECK_EQ(static_cast(1.555000e06), t.result_fsub_s); ++ CHECK_EQ(static_cast(-3.300000e02), t.result_fmul_s); ++ CHECK_EQ(static_cast(8.000000e01), t.result_fdiv_s); ++ CHECK_EQ(static_cast(-3.959850e04), t.result_fmadd_s); ++ CHECK_EQ(static_cast(-3.959725e04), t.result_fmsub_s); ++ CHECK_EQ(static_cast(3.959850e04), t.result_fnmadd_s); ++ CHECK_EQ(static_cast(3.959725e04), t.result_fnmsub_s); ++ CHECK_EQ(static_cast(1224.744873), t.result_fsqrt_s); ++ // CHECK_EQ(static_cast( 8.164966e-04), t.result_frecip_s); ++ // CHECK_EQ(static_cast( 8.164966e-04), t.result_frsqrt_s); ++ // CHECK_EQ(static_cast(), t.result_fscaleb_s); ++ // CHECK_EQ(static_cast( 6.906890), t.result_flogb_s); ++ // CHECK_EQ(static_cast( 2.75e4), t.result_fcopysign_s); ++ // CHECK_EQ(static_cast(), t.result_fclass_s); ++} ++ ++TEST(FCMP_COND) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ double dTrue; ++ double dFalse; ++ double dOp1; ++ double dOp2; ++ double dCaf; ++ double dCun; ++ double dCeq; ++ double dCueq; ++ double dClt; ++ double dCult; ++ double dCle; ++ double dCule; ++ double dCne; ++ double dCor; ++ double dCune; ++ double dSaf; ++ double dSun; ++ double dSeq; ++ double dSueq; ++ double dSlt; ++ double dSult; ++ double dSle; ++ double dSule; ++ double dSne; ++ double dSor; ++ double dSune; ++ float fTrue; ++ float fFalse; ++ float fOp1; ++ float fOp2; ++ float fCaf; ++ float fCun; ++ float fCeq; ++ float fCueq; ++ float fClt; ++ float fCult; ++ float fCle; ++ float fCule; ++ float fCne; ++ float fCor; ++ float fCune; ++ float fSaf; ++ float fSun; ++ float fSeq; ++ float fSueq; ++ float fSlt; ++ float fSult; ++ float fSle; ++ float fSule; ++ float fSne; ++ float fSor; ++ float fSune; ++ }; ++ ++ TestFloat test; ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, dOp1))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, dOp2))); ++ ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, fOp1))); ++ __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, fOp2))); ++ ++ __ Fld_d(f12, MemOperand(a0, offsetof(TestFloat, dFalse))); ++ __ Fld_d(f13, MemOperand(a0, offsetof(TestFloat, dTrue))); ++ ++ __ Fld_s(f14, MemOperand(a0, offsetof(TestFloat, fFalse))); ++ __ Fld_s(f15, MemOperand(a0, offsetof(TestFloat, fTrue))); ++ ++ __ fcmp_cond_d(CAF, f8, f9, FCC0); ++ __ fcmp_cond_s(CAF, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCaf))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCaf))); ++ ++ __ fcmp_cond_d(CUN, f8, f9, FCC0); ++ __ fcmp_cond_s(CUN, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCun))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCun))); ++ ++ __ fcmp_cond_d(CEQ, f8, f9, FCC0); ++ __ fcmp_cond_s(CEQ, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCeq))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCeq))); ++ ++ __ fcmp_cond_d(CUEQ, f8, f9, FCC0); ++ __ fcmp_cond_s(CUEQ, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCueq))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCueq))); ++ ++ __ fcmp_cond_d(CLT, f8, f9, FCC0); ++ __ fcmp_cond_s(CLT, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dClt))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fClt))); ++ ++ __ fcmp_cond_d(CULT, f8, f9, FCC0); ++ __ fcmp_cond_s(CULT, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCult))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCult))); ++ ++ __ fcmp_cond_d(CLE, f8, f9, FCC0); ++ __ fcmp_cond_s(CLE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCle))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCle))); ++ ++ __ fcmp_cond_d(CULE, f8, f9, FCC0); ++ __ fcmp_cond_s(CULE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCule))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCule))); ++ ++ __ fcmp_cond_d(CNE, f8, f9, FCC0); ++ __ fcmp_cond_s(CNE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCne))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCne))); ++ ++ __ fcmp_cond_d(COR, f8, f9, FCC0); ++ __ fcmp_cond_s(COR, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCor))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCor))); ++ ++ __ fcmp_cond_d(CUNE, f8, f9, FCC0); ++ __ fcmp_cond_s(CUNE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dCune))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fCune))); ++ ++ /* __ fcmp_cond_d(SAF, f8, f9, FCC0); ++ __ fcmp_cond_s(SAF, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSaf))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSaf))); ++ ++ __ fcmp_cond_d(SUN, f8, f9, FCC0); ++ __ fcmp_cond_s(SUN, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSun))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSun))); ++ ++ __ fcmp_cond_d(SEQ, f8, f9, FCC0); ++ __ fcmp_cond_s(SEQ, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSeq))); ++ __ Fst_f(f17, MemOperand(a0, offsetof(TestFloat, fSeq))); ++ ++ __ fcmp_cond_d(SUEQ, f8, f9, FCC0); ++ __ fcmp_cond_s(SUEQ, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSueq))); ++ __ Fst_f(f17, MemOperand(a0, offsetof(TestFloat, fSueq))); ++ ++ __ fcmp_cond_d(SLT, f8, f9, FCC0); ++ __ fcmp_cond_s(SLT, f10, f11, FCC1); ++ __ fsel(f16, f12, f13, FCC0); ++ __ fsel(f17, f14, f15, FCC1); ++ __ Fld_d(f16, MemOperand(a0, offsetof(TestFloat, dSlt))); ++ __ Fst_d(f17, MemOperand(a0, offsetof(TestFloat, fSlt))); ++ ++ __ fcmp_cond_d(SULT, f8, f9, FCC0); ++ __ fcmp_cond_s(SULT, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSult))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSult))); ++ ++ __ fcmp_cond_d(SLE, f8, f9, FCC0); ++ __ fcmp_cond_s(SLE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSle))); ++ __ Fst_f(f17, MemOperand(a0, offsetof(TestFloat, fSle))); ++ ++ __ fcmp_cond_d(SULE, f8, f9, FCC0); ++ __ fcmp_cond_s(SULE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSule))); ++ __ Fst_f(f17, MemOperand(a0, offsetof(TestFloat, fSule))); ++ ++ __ fcmp_cond_d(SNE, f8, f9, FCC0); ++ __ fcmp_cond_s(SNE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSne))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSne))); ++ ++ __ fcmp_cond_d(SOR, f8, f9, FCC0); ++ __ fcmp_cond_s(SOR, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSor))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSor))); ++ ++ __ fcmp_cond_d(SUNE, f8, f9, FCC0); ++ __ fcmp_cond_s(SUNE, f10, f11, FCC1); ++ __ fsel(FCC0, f16, f12, f13); ++ __ fsel(FCC1, f17, f14, f15); ++ __ Fst_d(f16, MemOperand(a0, offsetof(TestFloat, dSune))); ++ __ Fst_s(f17, MemOperand(a0, offsetof(TestFloat, fSune)));*/ ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test.dTrue = 1234.0; ++ test.dFalse = 0.0; ++ test.fTrue = 12.0; ++ test.fFalse = 0.0; ++ ++ test.dOp1 = 2.0; ++ test.dOp2 = 3.0; ++ test.fOp1 = 2.0; ++ test.fOp2 = 3.0; ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(test.dCaf, test.dFalse); ++ CHECK_EQ(test.fCaf, test.fFalse); ++ CHECK_EQ(test.dCun, test.dFalse); ++ CHECK_EQ(test.fCun, test.fFalse); ++ CHECK_EQ(test.dCeq, test.dFalse); ++ CHECK_EQ(test.fCeq, test.fFalse); ++ CHECK_EQ(test.dCueq, test.dFalse); ++ CHECK_EQ(test.fCueq, test.fFalse); ++ CHECK_EQ(test.dClt, test.dTrue); ++ CHECK_EQ(test.fClt, test.fTrue); ++ CHECK_EQ(test.dCult, test.dTrue); ++ CHECK_EQ(test.fCult, test.fTrue); ++ CHECK_EQ(test.dCle, test.dTrue); ++ CHECK_EQ(test.fCle, test.fTrue); ++ CHECK_EQ(test.dCule, test.dTrue); ++ CHECK_EQ(test.fCule, test.fTrue); ++ CHECK_EQ(test.dCne, test.dTrue); ++ CHECK_EQ(test.fCne, test.fTrue); ++ CHECK_EQ(test.dCor, test.dTrue); ++ CHECK_EQ(test.fCor, test.fTrue); ++ CHECK_EQ(test.dCune, test.dTrue); ++ CHECK_EQ(test.fCune, test.fTrue); ++ /* CHECK_EQ(test.dSaf, test.dFalse); ++ CHECK_EQ(test.fSaf, test.fFalse); ++ CHECK_EQ(test.dSun, test.dFalse); ++ CHECK_EQ(test.fSun, test.fFalse); ++ CHECK_EQ(test.dSeq, test.dFalse); ++ CHECK_EQ(test.fSeq, test.fFalse); ++ CHECK_EQ(test.dSueq, test.dFalse); ++ CHECK_EQ(test.fSueq, test.fFalse); ++ CHECK_EQ(test.dClt, test.dTrue); ++ CHECK_EQ(test.fClt, test.fTrue); ++ CHECK_EQ(test.dCult, test.dTrue); ++ CHECK_EQ(test.fCult, test.fTrue); ++ CHECK_EQ(test.dSle, test.dTrue); ++ CHECK_EQ(test.fSle, test.fTrue); ++ CHECK_EQ(test.dSule, test.dTrue); ++ CHECK_EQ(test.fSule, test.fTrue); ++ CHECK_EQ(test.dSne, test.dTrue); ++ CHECK_EQ(test.fSne, test.fTrue); ++ CHECK_EQ(test.dSor, test.dTrue); ++ CHECK_EQ(test.fSor, test.fTrue); ++ CHECK_EQ(test.dSune, test.dTrue); ++ CHECK_EQ(test.fSune, test.fTrue);*/ ++ ++ test.dOp1 = std::numeric_limits::max(); ++ test.dOp2 = std::numeric_limits::min(); ++ test.fOp1 = std::numeric_limits::min(); ++ test.fOp2 = -std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(test.dCaf, test.dFalse); ++ CHECK_EQ(test.fCaf, test.fFalse); ++ CHECK_EQ(test.dCun, test.dFalse); ++ CHECK_EQ(test.fCun, test.fFalse); ++ CHECK_EQ(test.dCeq, test.dFalse); ++ CHECK_EQ(test.fCeq, test.fFalse); ++ CHECK_EQ(test.dCueq, test.dFalse); ++ CHECK_EQ(test.fCueq, test.fFalse); ++ CHECK_EQ(test.dClt, test.dFalse); ++ CHECK_EQ(test.fClt, test.fFalse); ++ CHECK_EQ(test.dCult, test.dFalse); ++ CHECK_EQ(test.fCult, test.fFalse); ++ CHECK_EQ(test.dCle, test.dFalse); ++ CHECK_EQ(test.fCle, test.fFalse); ++ CHECK_EQ(test.dCule, test.dFalse); ++ CHECK_EQ(test.fCule, test.fFalse); ++ CHECK_EQ(test.dCne, test.dTrue); ++ CHECK_EQ(test.fCne, test.fTrue); ++ CHECK_EQ(test.dCor, test.dTrue); ++ CHECK_EQ(test.fCor, test.fTrue); ++ CHECK_EQ(test.dCune, test.dTrue); ++ CHECK_EQ(test.fCune, test.fTrue); ++ /* CHECK_EQ(test.dSaf, test.dFalse); ++ CHECK_EQ(test.fSaf, test.fFalse); ++ CHECK_EQ(test.dSun, test.dFalse); ++ CHECK_EQ(test.fSun, test.fFalse); ++ CHECK_EQ(test.dSeq, test.dFalse); ++ CHECK_EQ(test.fSeq, test.fFalse); ++ CHECK_EQ(test.dSueq, test.dFalse); ++ CHECK_EQ(test.fSueq, test.fFalse); ++ CHECK_EQ(test.dSlt, test.dFalse); ++ CHECK_EQ(test.fSlt, test.fFalse); ++ CHECK_EQ(test.dSult, test.dFalse); ++ CHECK_EQ(test.fSult, test.fFalse); ++ CHECK_EQ(test.dSle, test.dFalse); ++ CHECK_EQ(test.fSle, test.fFalse); ++ CHECK_EQ(test.dSule, test.dFalse); ++ CHECK_EQ(test.fSule, test.fFalse); ++ CHECK_EQ(test.dSne, test.dTrue); ++ CHECK_EQ(test.fSne, test.fTrue); ++ CHECK_EQ(test.dSor, test.dTrue); ++ CHECK_EQ(test.fSor, test.fTrue); ++ CHECK_EQ(test.dSune, test.dTrue); ++ CHECK_EQ(test.fSune, test.fTrue);*/ ++ ++ test.dOp1 = std::numeric_limits::quiet_NaN(); ++ test.dOp2 = 0.0; ++ test.fOp1 = std::numeric_limits::quiet_NaN(); ++ test.fOp2 = 0.0; ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(test.dCaf, test.dFalse); ++ CHECK_EQ(test.fCaf, test.fFalse); ++ CHECK_EQ(test.dCun, test.dTrue); ++ CHECK_EQ(test.fCun, test.fTrue); ++ CHECK_EQ(test.dCeq, test.dFalse); ++ CHECK_EQ(test.fCeq, test.fFalse); ++ CHECK_EQ(test.dCueq, test.dTrue); ++ CHECK_EQ(test.fCueq, test.fTrue); ++ CHECK_EQ(test.dClt, test.dFalse); ++ CHECK_EQ(test.fClt, test.fFalse); ++ CHECK_EQ(test.dCult, test.dTrue); ++ CHECK_EQ(test.fCult, test.fTrue); ++ CHECK_EQ(test.dCle, test.dFalse); ++ CHECK_EQ(test.fCle, test.fFalse); ++ CHECK_EQ(test.dCule, test.dTrue); ++ CHECK_EQ(test.fCule, test.fTrue); ++ CHECK_EQ(test.dCne, test.dFalse); ++ CHECK_EQ(test.fCne, test.fFalse); ++ CHECK_EQ(test.dCor, test.dFalse); ++ CHECK_EQ(test.fCor, test.fFalse); ++ CHECK_EQ(test.dCune, test.dTrue); ++ CHECK_EQ(test.fCune, test.fTrue); ++ /* CHECK_EQ(test.dSaf, test.dTrue); ++ CHECK_EQ(test.fSaf, test.fTrue); ++ CHECK_EQ(test.dSun, test.dTrue); ++ CHECK_EQ(test.fSun, test.fTrue); ++ CHECK_EQ(test.dSeq, test.dFalse); ++ CHECK_EQ(test.fSeq, test.fFalse); ++ CHECK_EQ(test.dSueq, test.dTrue); ++ CHECK_EQ(test.fSueq, test.fTrue); ++ CHECK_EQ(test.dSlt, test.dFalse); ++ CHECK_EQ(test.fSlt, test.fFalse); ++ CHECK_EQ(test.dSult, test.dTrue); ++ CHECK_EQ(test.fSult, test.fTrue); ++ CHECK_EQ(test.dSle, test.dFalse); ++ CHECK_EQ(test.fSle, test.fFalse); ++ CHECK_EQ(test.dSule, test.dTrue); ++ CHECK_EQ(test.fSule, test.fTrue); ++ CHECK_EQ(test.dSne, test.dFalse); ++ CHECK_EQ(test.fSne, test.fFalse); ++ CHECK_EQ(test.dSor, test.dFalse); ++ CHECK_EQ(test.fSor, test.fFalse); ++ CHECK_EQ(test.dSune, test.dTrue); ++ CHECK_EQ(test.fSune, test.fTrue);*/ ++} ++ ++TEST(FCVT) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ float fcvt_d_s_in; ++ double fcvt_s_d_in; ++ double fcvt_d_s_out; ++ float fcvt_s_d_out; ++ int fcsr; ++ }; ++ TestFloat test; ++ __ xor_(a4, a4, a4); ++ __ xor_(a5, a5, a5); ++ __ Ld_w(a4, MemOperand(a0, offsetof(TestFloat, fcsr))); ++ __ movfcsr2gr(a5); ++ __ movgr2fcsr(a4); ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestFloat, fcvt_d_s_in))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, fcvt_s_d_in))); ++ __ fcvt_d_s(f10, f8); ++ __ fcvt_s_d(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(TestFloat, fcvt_d_s_out))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(TestFloat, fcvt_s_d_out))); ++ __ movgr2fcsr(a5); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test.fcsr = kRoundToNearest; ++ ++ test.fcvt_d_s_in = -0.51; ++ test.fcvt_s_d_in = -0.51; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.fcvt_d_s_out, static_cast(test.fcvt_d_s_in)); ++ CHECK_EQ(test.fcvt_s_d_out, static_cast(test.fcvt_s_d_in)); ++ ++ test.fcvt_d_s_in = 0.49; ++ test.fcvt_s_d_in = 0.49; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.fcvt_d_s_out, static_cast(test.fcvt_d_s_in)); ++ CHECK_EQ(test.fcvt_s_d_out, static_cast(test.fcvt_s_d_in)); ++ ++ test.fcvt_d_s_in = std::numeric_limits::max(); ++ test.fcvt_s_d_in = std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.fcvt_d_s_out, static_cast(test.fcvt_d_s_in)); ++ CHECK_EQ(test.fcvt_s_d_out, static_cast(test.fcvt_s_d_in)); ++ ++ test.fcvt_d_s_in = -std::numeric_limits::max(); ++ test.fcvt_s_d_in = -std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.fcvt_d_s_out, static_cast(test.fcvt_d_s_in)); ++ CHECK_EQ(test.fcvt_s_d_out, static_cast(test.fcvt_s_d_in)); ++ ++ test.fcvt_d_s_in = std::numeric_limits::min(); ++ test.fcvt_s_d_in = std::numeric_limits::min(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.fcvt_d_s_out, static_cast(test.fcvt_d_s_in)); ++ CHECK_EQ(test.fcvt_s_d_out, static_cast(test.fcvt_s_d_in)); ++} ++ ++TEST(FFINT) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ int32_t ffint_s_w_in; ++ int64_t ffint_s_l_in; ++ int32_t ffint_d_w_in; ++ int64_t ffint_d_l_in; ++ float ffint_s_w_out; ++ float ffint_s_l_out; ++ double ffint_d_w_out; ++ double ffint_d_l_out; ++ int fcsr; ++ }; ++ TestFloat test; ++ __ xor_(a4, a4, a4); ++ __ xor_(a5, a5, a5); ++ __ Ld_w(a4, MemOperand(a0, offsetof(TestFloat, fcsr))); ++ __ movfcsr2gr(a5); ++ __ movgr2fcsr(a4); ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestFloat, ffint_s_w_in))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, ffint_s_l_in))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, ffint_d_w_in))); ++ __ Fld_d(f11, MemOperand(a0, offsetof(TestFloat, ffint_d_l_in))); ++ __ ffint_s_w(f12, f8); ++ __ ffint_s_l(f13, f9); ++ __ ffint_d_w(f14, f10); ++ __ ffint_d_l(f15, f11); ++ __ Fst_s(f12, MemOperand(a0, offsetof(TestFloat, ffint_s_w_out))); ++ __ Fst_s(f13, MemOperand(a0, offsetof(TestFloat, ffint_s_l_out))); ++ __ Fst_d(f14, MemOperand(a0, offsetof(TestFloat, ffint_d_w_out))); ++ __ Fst_d(f15, MemOperand(a0, offsetof(TestFloat, ffint_d_l_out))); ++ __ movgr2fcsr(a5); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test.fcsr = kRoundToNearest; ++ ++ test.ffint_s_w_in = -1; ++ test.ffint_s_l_in = -1; ++ test.ffint_d_w_in = -1; ++ test.ffint_d_l_in = -1; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.ffint_s_w_out, static_cast(test.ffint_s_w_in)); ++ CHECK_EQ(test.ffint_s_l_out, static_cast(test.ffint_s_l_in)); ++ CHECK_EQ(test.ffint_d_w_out, static_cast(test.ffint_d_w_in)); ++ CHECK_EQ(test.ffint_d_l_out, static_cast(test.ffint_d_l_in)); ++ ++ test.ffint_s_w_in = 1; ++ test.ffint_s_l_in = 1; ++ test.ffint_d_w_in = 1; ++ test.ffint_d_l_in = 1; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.ffint_s_w_out, static_cast(test.ffint_s_w_in)); ++ CHECK_EQ(test.ffint_s_l_out, static_cast(test.ffint_s_l_in)); ++ CHECK_EQ(test.ffint_d_w_out, static_cast(test.ffint_d_w_in)); ++ CHECK_EQ(test.ffint_d_l_out, static_cast(test.ffint_d_l_in)); ++ ++ test.ffint_s_w_in = std::numeric_limits::max(); ++ test.ffint_s_l_in = std::numeric_limits::max(); ++ test.ffint_d_w_in = std::numeric_limits::max(); ++ test.ffint_d_l_in = std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.ffint_s_w_out, static_cast(test.ffint_s_w_in)); ++ CHECK_EQ(test.ffint_s_l_out, static_cast(test.ffint_s_l_in)); ++ CHECK_EQ(test.ffint_d_w_out, static_cast(test.ffint_d_w_in)); ++ CHECK_EQ(test.ffint_d_l_out, static_cast(test.ffint_d_l_in)); ++ ++ test.ffint_s_w_in = std::numeric_limits::min(); ++ test.ffint_s_l_in = std::numeric_limits::min(); ++ test.ffint_d_w_in = std::numeric_limits::min(); ++ test.ffint_d_l_in = std::numeric_limits::min(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.ffint_s_w_out, static_cast(test.ffint_s_w_in)); ++ CHECK_EQ(test.ffint_s_l_out, static_cast(test.ffint_s_l_in)); ++ CHECK_EQ(test.ffint_d_w_out, static_cast(test.ffint_d_w_in)); ++ CHECK_EQ(test.ffint_d_l_out, static_cast(test.ffint_d_l_in)); ++} ++ ++TEST(FTINT) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ int32_t c; ++ int32_t d; ++ int64_t e; ++ int64_t f; ++ int fcsr; ++ }; ++ Test test; ++ ++ const int kTableLength = 9; ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ double outputs_RN_W[kTableLength] = { ++ 3.0, 4.0, 4.0, -3.0, -4.0, -4.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_RN_L[kTableLength] = { ++ 3.0, 4.0, 4.0, -3.0, -4.0, -4.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ double outputs_RZ_W[kTableLength] = { ++ 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_RZ_L[kTableLength] = { ++ 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ double outputs_RP_W[kTableLength] = { ++ 4.0, 4.0, 4.0, -3.0, -3.0, -3.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_RP_L[kTableLength] = { ++ 4.0, 4.0, 4.0, -3.0, -3.0, -3.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ double outputs_RM_W[kTableLength] = { ++ 3.0, 3.0, 3.0, -4.0, -4.0, -4.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_RM_L[kTableLength] = { ++ 3.0, 3.0, 3.0, -4.0, -4.0, -4.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ // clang-format on ++ ++ int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, ++ kRoundToMinusInf}; ++ double* outputs[8] = { ++ outputs_RN_W, outputs_RN_L, outputs_RZ_W, outputs_RZ_L, ++ outputs_RP_W, outputs_RP_L, outputs_RM_W, outputs_RM_L, ++ }; ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ xor_(a5, a5, a5); ++ __ Ld_w(a5, MemOperand(a0, offsetof(Test, fcsr))); ++ __ movfcsr2gr(a4); ++ __ movgr2fcsr(a5); ++ __ ftint_w_d(f10, f8); ++ __ ftint_w_s(f11, f9); ++ __ ftint_l_d(f12, f8); ++ __ ftint_l_s(f13, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(Test, f))); ++ __ movgr2fcsr(a4); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int j = 0; j < 4; j++) { ++ test.fcsr = fcsr_inputs[j]; ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs[2 * j][i]); ++ CHECK_EQ(test.d, outputs[2 * j][i]); ++ CHECK_EQ(test.e, outputs[2 * j + 1][i]); ++ CHECK_EQ(test.f, outputs[2 * j + 1][i]); ++ } ++ } ++} ++ ++TEST(FTINTRM) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ int32_t c; ++ int32_t d; ++ int64_t e; ++ int64_t f; ++ }; ++ Test test; ++ ++ const int kTableLength = 9; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ double outputs_w[kTableLength] = { ++ 3.0, 3.0, 3.0, -4.0, -4.0, -4.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_l[kTableLength] = { ++ 3.0, 3.0, 3.0, -4.0, -4.0, -4.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ ftintrm_w_d(f10, f8); ++ __ ftintrm_w_s(f11, f9); ++ __ ftintrm_l_d(f12, f8); ++ __ ftintrm_l_s(f13, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(Test, f))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_w[i]); ++ CHECK_EQ(test.d, outputs_w[i]); ++ CHECK_EQ(test.e, outputs_l[i]); ++ CHECK_EQ(test.f, outputs_l[i]); ++ } ++} ++ ++TEST(FTINTRP) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ int32_t c; ++ int32_t d; ++ int64_t e; ++ int64_t f; ++ }; ++ Test test; ++ ++ const int kTableLength = 9; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ double outputs_w[kTableLength] = { ++ 4.0, 4.0, 4.0, -3.0, -3.0, -3.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_l[kTableLength] = { ++ 4.0, 4.0, 4.0, -3.0, -3.0, -3.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ ftintrp_w_d(f10, f8); ++ __ ftintrp_w_s(f11, f9); ++ __ ftintrp_l_d(f12, f8); ++ __ ftintrp_l_s(f13, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(Test, f))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_w[i]); ++ CHECK_EQ(test.d, outputs_w[i]); ++ CHECK_EQ(test.e, outputs_l[i]); ++ CHECK_EQ(test.f, outputs_l[i]); ++ } ++} ++ ++TEST(FTINTRZ) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ int32_t c; ++ int32_t d; ++ int64_t e; ++ int64_t f; ++ }; ++ Test test; ++ ++ const int kTableLength = 9; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ double outputs_w[kTableLength] = { ++ 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_l[kTableLength] = { ++ 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ ftintrz_w_d(f10, f8); ++ __ ftintrz_w_s(f11, f9); ++ __ ftintrz_l_d(f12, f8); ++ __ ftintrz_l_s(f13, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(Test, f))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_w[i]); ++ CHECK_EQ(test.d, outputs_w[i]); ++ CHECK_EQ(test.e, outputs_l[i]); ++ CHECK_EQ(test.f, outputs_l[i]); ++ } ++} ++ ++TEST(FTINTRNE) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ int32_t c; ++ int32_t d; ++ int64_t e; ++ int64_t f; ++ }; ++ Test test; ++ ++ const int kTableLength = 9; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 3.1, 3.6, 3.5, -3.1, -3.6, -3.5, ++ 2147483648.0, ++ std::numeric_limits::quiet_NaN(), ++ std::numeric_limits::infinity() ++ }; ++ double outputs_w[kTableLength] = { ++ 3.0, 4.0, 4.0, -3.0, -4.0, -4.0, ++ kFPUInvalidResult, 0, ++ kFPUInvalidResult}; ++ double outputs_l[kTableLength] = { ++ 3.0, 4.0, 4.0, -3.0, -4.0, -4.0, ++ 2147483648.0, 0, ++ kFPU64InvalidResult}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ ftintrne_w_d(f10, f8); ++ __ ftintrne_w_s(f11, f9); ++ __ ftintrne_l_d(f12, f8); ++ __ ftintrne_l_s(f13, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(Test, f))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_w[i]); ++ CHECK_EQ(test.d, outputs_w[i]); ++ CHECK_EQ(test.e, outputs_l[i]); ++ CHECK_EQ(test.f, outputs_l[i]); ++ } ++} ++ ++TEST(FRINT) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double a; ++ float b; ++ double c; ++ float d; ++ int fcsr; ++ }; ++ Test test; ++ ++ const int kTableLength = 32; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, ++ 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, ++ 309485009821345068724781056.89, ++ 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, ++ -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::max() - 0.1, ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, ++ 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, ++ 309485009821345068724781056.89, ++ 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, ++ -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::lowest() + 0.6, ++ std::numeric_limits::infinity() ++ }; ++ float outputs_RN_S[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, ++ 1.7976931348623157E38, 0, ++ 309485009821345068724781057.0, ++ 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, ++ -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_RN_D[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, ++ 1.7976931348623157E308, 0, ++ 309485009821345068724781057.0, ++ 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, ++ -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ float outputs_RZ_S[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, ++ 1.7976931348623157E38, 0, ++ 309485009821345068724781057.0, ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_RZ_D[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, ++ 1.7976931348623157E308, 0, ++ 309485009821345068724781057.0, ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::max() - 1, ++ std::numeric_limits::infinity() ++ }; ++ float outputs_RP_S[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, ++ 1.7976931348623157E38, 1, ++ 309485009821345068724781057.0, ++ 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_RP_D[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, ++ 1.7976931348623157E308, 1, ++ 309485009821345068724781057.0, ++ 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ float outputs_RM_S[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, ++ 1.7976931348623157E38, 0, ++ 309485009821345068724781057.0, ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_RM_D[kTableLength] = { ++ 18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, ++ 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, ++ 1.7976931348623157E308, 0, ++ 309485009821345068724781057.0, ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, ++ 37778931862957161709568.0, 37778931862957161709569.0, ++ 37778931862957161709580.0, 37778931862957161709581.0, ++ 37778931862957161709582.0, 37778931862957161709583.0, ++ 37778931862957161709584.0, 37778931862957161709585.0, ++ 37778931862957161709586.0, 37778931862957161709587.0, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ // clang-format on ++ ++ int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, ++ kRoundToMinusInf}; ++ double* outputs_d[4] = {outputs_RN_D, outputs_RZ_D, outputs_RP_D, ++ outputs_RM_D}; ++ float* outputs_s[4] = {outputs_RN_S, outputs_RZ_S, outputs_RP_S, ++ outputs_RM_S}; ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(Test, b))); ++ __ xor_(a5, a5, a5); ++ __ Ld_w(a5, MemOperand(a0, offsetof(Test, fcsr))); ++ __ movfcsr2gr(a4); ++ __ movgr2fcsr(a5); ++ __ frint_d(f10, f8); ++ __ frint_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(Test, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(Test, d))); ++ __ movgr2fcsr(a4); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int j = 0; j < 4; j++) { ++ test.fcsr = fcsr_inputs[j]; ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_d[i]; ++ test.b = inputs_s[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_d[j][i]); ++ CHECK_EQ(test.d, outputs_s[j][i]); ++ } ++ } ++} ++ ++TEST(FMOV) { ++ const int kTableLength = 7; ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ double a; ++ float b; ++ double c; ++ float d; ++ }; ++ ++ TestFloat test; ++ ++ // clang-format off ++ double inputs_D[kTableLength] = { ++ 5.3, -5.3, 0.29, -0.29, 0, ++ std::numeric_limits::max(), ++ -std::numeric_limits::max() ++ }; ++ float inputs_S[kTableLength] = { ++ 4.8, -4.8, 0.29, -0.29, 0, ++ std::numeric_limits::max(), ++ -std::numeric_limits::max() ++ }; ++ ++ double outputs_D[kTableLength] = { ++ 5.3, -5.3, 0.29, -0.29, 0, ++ std::numeric_limits::max(), ++ -std::numeric_limits::max() ++ }; ++ ++ float outputs_S[kTableLength] = { ++ 4.8, -4.8, 0.29, -0.29, 0, ++ std::numeric_limits::max(), ++ -std::numeric_limits::max() ++ }; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ fmov_d(f10, f8); ++ __ fmov_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_D[i]; ++ test.b = inputs_S[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, outputs_D[i]); ++ CHECK_EQ(test.d, outputs_S[i]); ++ } ++} ++ ++TEST(LA14) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ double a; ++ double b; ++ double c; ++ double d; ++ int64_t high; ++ int64_t low; ++ }; ++ T t; ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(T, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(T, b))); ++ ++ __ movfr2gr_s(a4, f8); ++ __ movfrh2gr_s(a5, f8); ++ __ movfr2gr_d(a6, f9); ++ ++ __ movgr2fr_w(f9, a4); ++ __ movgr2frh_w(f9, a5); ++ __ movgr2fr_d(f8, a6); ++ ++ __ Fst_d(f8, MemOperand(a0, offsetof(T, a))); ++ __ Fst_d(f9, MemOperand(a0, offsetof(T, c))); ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(T, d))); ++ __ movfrh2gr_s(a4, f8); ++ __ movfr2gr_s(a5, f8); ++ ++ __ St_d(a4, MemOperand(a0, offsetof(T, high))); ++ __ St_d(a5, MemOperand(a0, offsetof(T, low))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ t.a = 1.5e22; ++ t.b = 2.75e11; ++ t.c = 17.17; ++ t.d = -2.75e11; ++ f.Call(&t, 0, 0, 0, 0); ++ CHECK_EQ(2.75e11, t.a); ++ CHECK_EQ(2.75e11, t.b); ++ CHECK_EQ(1.5e22, t.c); ++ CHECK_EQ(static_cast(0xFFFFFFFFC25001D1L), t.high); ++ CHECK_EQ(static_cast(0xFFFFFFFFBF800000L), t.low); ++ ++ t.a = -1.5e22; ++ t.b = -2.75e11; ++ t.c = 17.17; ++ t.d = 274999868928.0; ++ f.Call(&t, 0, 0, 0, 0); ++ CHECK_EQ(-2.75e11, t.a); ++ CHECK_EQ(-2.75e11, t.b); ++ CHECK_EQ(-1.5e22, t.c); ++ CHECK_EQ(static_cast(0x425001D1L), t.high); ++ CHECK_EQ(static_cast(0x3F800000L), t.low); ++} ++ ++uint64_t run_bceqz(int fcc_value, int32_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0); ++ __ li(t0, fcc_value); ++ __ b(&main_block); ++ // Block 1 ++ for (int32_t i = -104; i <= -55; ++i) { ++ __ addi_d(a2, a2, 0x1); ++ } ++ __ b(&L); ++ ++ // Block 2 ++ for (int32_t i = -53; i <= -4; ++i) { ++ __ addi_d(a2, a2, 0x10); ++ } ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ movcf2gr(t1, FCC0); ++ __ movgr2cf(FCC0, t0); ++ __ bceqz(FCC0, offset); ++ __ bind(&L); ++ __ movgr2cf(FCC0, t1); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ for (int32_t i = 4; i <= 53; ++i) { ++ __ addi_d(a2, a2, 0x100); ++ } ++ __ b(&L); ++ ++ // Block 5 ++ for (int32_t i = 55; i <= 104; ++i) { ++ __ addi_d(a2, a2, 0x300); ++ } ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BCEQZ) { ++ CcTest::InitializeVM(); ++ struct TestCaseBceqz { ++ int fcc; ++ int32_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBceqz tc[] = { ++ // fcc, offset, expected_res ++ { 0, -90, 0x24 }, ++ { 0, -27, 0x180 }, ++ { 0, 47, 0x700 }, ++ { 0, 70, 0x6900 }, ++ { 1, -27, 0 }, ++ { 1, 47, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBceqz); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bceqz(tc[i].fcc, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++uint64_t run_bcnez(int fcc_value, int32_t offset) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label main_block, L; ++ __ li(a2, 0); ++ __ li(t0, fcc_value); ++ __ b(&main_block); ++ // Block 1 ++ for (int32_t i = -104; i <= -55; ++i) { ++ __ addi_d(a2, a2, 0x1); ++ } ++ __ b(&L); ++ ++ // Block 2 ++ for (int32_t i = -53; i <= -4; ++i) { ++ __ addi_d(a2, a2, 0x10); ++ } ++ __ b(&L); ++ ++ // Block 3 (Main) ++ __ bind(&main_block); ++ __ movcf2gr(t1, FCC0); ++ __ movgr2cf(FCC0, t0); ++ __ bcnez(FCC0, offset); ++ __ bind(&L); ++ __ movgr2cf(FCC0, t1); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ // Block 4 ++ for (int32_t i = 4; i <= 53; ++i) { ++ __ addi_d(a2, a2, 0x100); ++ } ++ __ b(&L); ++ ++ // Block 5 ++ for (int32_t i = 55; i <= 104; ++i) { ++ __ addi_d(a2, a2, 0x300); ++ } ++ __ b(&L); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(BCNEZ) { ++ CcTest::InitializeVM(); ++ struct TestCaseBcnez { ++ int fcc; ++ int32_t offset; ++ uint64_t expected_res; ++ }; ++ ++ // clang-format off ++ struct TestCaseBcnez tc[] = { ++ // fcc, offset, expected_res ++ { 1, -90, 0x24 }, ++ { 1, -27, 0x180 }, ++ { 1, 47, 0x700 }, ++ { 1, 70, 0x6900 }, ++ { 0, -27, 0 }, ++ { 0, 47, 0 }, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBcnez); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_bcnez(tc[i].fcc, tc[i].offset); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++TEST(jump_tables1) { ++ // Test jump tables with forward jumps. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ const int kNumCases = 512; ++ int values[kNumCases]; ++ isolate->random_number_generator()->NextBytes(values, sizeof(values)); ++ Label labels[kNumCases]; ++ ++ __ addi_d(sp, sp, -8); ++ __ St_d(ra, MemOperand(sp, 0)); ++ __ Align(8); ++ ++ Label done; ++ { ++ __ BlockTrampolinePoolFor(kNumCases * 2 + 6); ++ __ pcaddi(ra, 2); ++ __ slli_d(t7, a0, 3); ++ __ add_d(t7, t7, ra); ++ __ Ld_d(t7, MemOperand(t7, 4 * kInstrSize)); ++ __ jirl(zero_reg, t7, 0); ++ __ nop(); ++ for (int i = 0; i < kNumCases; ++i) { ++ __ dd(&labels[i]); ++ } ++ } ++ ++ for (int i = 0; i < kNumCases; ++i) { ++ __ bind(&labels[i]); ++ __ lu12i_w(a2, (values[i] >> 12) & 0xFFFFF); ++ __ ori(a2, a2, values[i] & 0xFFF); ++ __ b(&done); ++ __ nop(); ++ } ++ ++ __ bind(&done); ++ __ Ld_d(ra, MemOperand(sp, 0)); ++ __ addi_d(sp, sp, 8); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CHECK_EQ(0, assm.UnboundLabelsCount()); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kNumCases; ++i) { ++ int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ++ ::printf("f(%d) = %" PRId64 "\n", i, res); ++ CHECK_EQ((values[i]), static_cast(res)); ++ } ++} ++ ++TEST(jump_tables2) { ++ // Test jump tables with backward jumps. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ const int kNumCases = 512; ++ int values[kNumCases]; ++ isolate->random_number_generator()->NextBytes(values, sizeof(values)); ++ Label labels[kNumCases]; ++ ++ __ addi_d(sp, sp, -8); ++ __ St_d(ra, MemOperand(sp, 0)); ++ ++ Label done, dispatch; ++ __ b(&dispatch); ++ __ nop(); ++ ++ for (int i = 0; i < kNumCases; ++i) { ++ __ bind(&labels[i]); ++ __ lu12i_w(a2, (values[i] >> 12) & 0xFFFFF); ++ __ ori(a2, a2, values[i] & 0xFFF); ++ __ b(&done); ++ __ nop(); ++ } ++ ++ __ Align(8); ++ __ bind(&dispatch); ++ { ++ __ BlockTrampolinePoolFor(kNumCases * 2 + 6); ++ __ pcaddi(ra, 2); ++ __ slli_d(t7, a0, 3); ++ __ add_d(t7, t7, ra); ++ __ Ld_d(t7, MemOperand(t7, 4 * kInstrSize)); ++ __ jirl(zero_reg, t7, 0); ++ __ nop(); ++ for (int i = 0; i < kNumCases; ++i) { ++ __ dd(&labels[i]); ++ } ++ } ++ ++ __ bind(&done); ++ __ Ld_d(ra, MemOperand(sp, 0)); ++ __ addi_d(sp, sp, 8); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kNumCases; ++i) { ++ int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ++ ::printf("f(%d) = %" PRId64 "\n", i, res); ++ CHECK_EQ(values[i], res); ++ } ++} ++ ++TEST(jump_tables3) { ++ // Test jump tables with backward jumps and embedded heap objects. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ const int kNumCases = 512; ++ Handle values[kNumCases]; ++ for (int i = 0; i < kNumCases; ++i) { ++ double value = isolate->random_number_generator()->NextDouble(); ++ values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED); ++ } ++ Label labels[kNumCases]; ++ Object* obj; ++ int64_t imm64; ++ ++ __ addi_d(sp, sp, -8); ++ __ St_d(ra, MemOperand(sp, 0)); ++ ++ Label done, dispatch; ++ __ b(&dispatch); ++ __ nop(); ++ ++ for (int i = 0; i < kNumCases; ++i) { ++ __ bind(&labels[i]); ++ obj = *values[i]; ++ imm64 = reinterpret_cast(obj); ++ __ lu12i_w(a2, (imm64 >> 12) & 0xFFFFF); ++ __ ori(a2, a2, imm64 & 0xFFF); ++ __ lu32i_d(a2, (imm64 >> 32) & 0xFFFFF); ++ __ lu52i_d(a2, a2, (imm64 >> 52) & 0xFFF); ++ __ b(&done); ++ } ++ ++ __ Align(8); ++ __ bind(&dispatch); ++ { ++ __ BlockTrampolinePoolFor(kNumCases * 2 + 6); ++ __ pcaddi(ra, 2); ++ __ slli_d(t7, a0, 3); // In delay slot. ++ __ add_d(t7, t7, ra); ++ __ Ld_d(t7, MemOperand(t7, 4 * kInstrSize)); ++ __ jirl(zero_reg, t7, 0); ++ __ nop(); ++ for (int i = 0; i < kNumCases; ++i) { ++ __ dd(&labels[i]); ++ } ++ } ++ __ bind(&done); ++ __ Ld_d(ra, MemOperand(sp, 0)); ++ __ addi_d(sp, sp, 8); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kNumCases; ++i) { ++ Handle result(f.Call(i, 0, 0, 0, 0), isolate); ++#ifdef OBJECT_PRINT ++ ::printf("f(%d) = ", i); ++ result->Print(std::cout); ++ ::printf("\n"); ++#endif ++ CHECK(values[i].is_identical_to(result)); ++ } ++} ++ ++uint64_t run_li_macro(int64_t imm, LiFlags mode, int32_t num_instr = 0) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Label code_start; ++ __ bind(&code_start); ++ __ li(a2, imm, mode); ++ if (num_instr > 0) { ++ CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); ++ CHECK_EQ(__ InstrCountForLi64Bit(imm), num_instr); ++ } ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(li_macro) { ++ CcTest::InitializeVM(); ++ ++ // Test li macro-instruction for border cases. ++ ++ struct TestCase_li { ++ uint64_t imm; ++ int32_t num_instr; ++ }; ++ // clang-format off ++ struct TestCase_li tc[] = { ++ // imm, num_instr ++ {0xFFFFFFFFFFFFF800, 1}, // min_int12 ++ // The test case above generates addi_d instruction. ++ // This is int12 value and we can load it using just addi_d. ++ { 0x800, 1}, // max_int12 + 1 ++ // Generates ori ++ // max_int12 + 1 is not int12 but is uint12, just use ori. ++ {0xFFFFFFFFFFFFF7FF, 2}, // min_int12 - 1 ++ // Generates lu12i + ori ++ // We load int32 value using lu12i_w + ori. ++ { 0x801, 1}, // max_int12 + 2 ++ // Generates ori ++ // Also an uint1 value, use ori. ++ { 0x00001000, 1}, // max_uint12 + 1 ++ // Generates lu12i_w ++ // Low 12 bits are 0, load value using lu12i_w. ++ { 0x00001001, 2}, // max_uint12 + 2 ++ // Generates lu12i_w + ori ++ // We have to generate two instructions in this case. ++ {0x00000000FFFFFFFF, 2}, // max_uint32 ++ // addi_w + lu32i_d ++ {0x00000000FFFFFFFE, 2}, // max_uint32 - 1 ++ // addi_w + lu32i_d ++ {0xFFFFFFFF80000000, 1}, // min_int32 ++ // lu12i_w ++ {0x0000000080000000, 2}, // max_int32 + 1 ++ // lu12i_w + lu32i_d ++ {0xFFFF0000FFFF8765, 3}, ++ // lu12i_w + ori + lu32i_d ++ {0x1234ABCD87654321, 4}, ++ // lu12i_w + ori + lu32i_d + lu52i_d ++ {0xFFFF789100000000, 2}, ++ // xor + lu32i_d ++ {0xF12F789100000000, 3}, ++ // xor + lu32i_d + lu52i_d ++ {0xF120000000000800, 2}, ++ // ori + lu52i_d ++ {0xFFF0000000000000, 1}, ++ // lu52i_d ++ {0xF100000000000000, 1}, ++ {0x0122000000000000, 2}, ++ {0x1234FFFF77654321, 4}, ++ {0x1230000077654321, 3}, ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCase_li); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ CHECK_EQ(tc[i].imm, ++ run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].num_instr)); ++ CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, CONSTANT_SIZE)); ++ if (is_int48(tc[i].imm)) { ++ CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, ADDRESS_LOAD)); ++ } ++ } ++} ++ ++TEST(FMIN_FMAX) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ double a; ++ double b; ++ float c; ++ float d; ++ double e; ++ double f; ++ float g; ++ float h; ++ }; ++ ++ TestFloat test; ++ const double dnan = std::numeric_limits::quiet_NaN(); ++ const double dinf = std::numeric_limits::infinity(); ++ const double dminf = -std::numeric_limits::infinity(); ++ const float fnan = std::numeric_limits::quiet_NaN(); ++ const float finf = std::numeric_limits::infinity(); ++ const float fminf = -std::numeric_limits::infinity(); ++ const int kTableLength = 13; ++ ++ // clang-format off ++ double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf, ++ dnan, 42.0, dinf, dminf, dinf, dnan}; ++ double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan, ++ dinf, dinf, 42.0, dinf, dminf, dnan}; ++ double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, ++ -0.0, dinf, dinf, 42.0, 42.0, ++ dminf, dminf, dnan}; ++ double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf, ++ dinf, dinf, dinf, dinf, dinf, dnan}; ++ ++ float inputsc[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf, ++ fnan, 42.0, finf, fminf, finf, fnan}; ++ float inputsd[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan, ++ finf, finf, 42.0, finf, fminf, fnan}; ++ float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, ++ -0.0, finf, finf, 42.0, 42.0, ++ fminf, fminf, fnan}; ++ float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf, ++ finf, finf, finf, finf, finf, fnan}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ fmin_d(f12, f8, f9); ++ __ fmax_d(f13, f8, f9); ++ __ fmin_s(f14, f10, f11); ++ __ fmax_s(f15, f10, f11); ++ __ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, e))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, f))); ++ __ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, g))); ++ __ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, h))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 4; i < kTableLength; i++) { ++ test.a = inputsa[i]; ++ test.b = inputsb[i]; ++ test.c = inputsc[i]; ++ test.d = inputsd[i]; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(0, memcmp(&test.e, &outputsdmin[i], sizeof(test.e))); ++ CHECK_EQ(0, memcmp(&test.f, &outputsdmax[i], sizeof(test.f))); ++ CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); ++ CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); ++ } ++} ++ ++TEST(FMINA_FMAXA) { ++ const int kTableLength = 23; ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ const double dnan = std::numeric_limits::quiet_NaN(); ++ const double dinf = std::numeric_limits::infinity(); ++ const double dminf = -std::numeric_limits::infinity(); ++ const float fnan = std::numeric_limits::quiet_NaN(); ++ const float finf = std::numeric_limits::infinity(); ++ const float fminf = std::numeric_limits::infinity(); ++ ++ struct TestFloat { ++ double a; ++ double b; ++ double resd1; ++ double resd2; ++ float c; ++ float d; ++ float resf1; ++ float resf2; ++ }; ++ ++ TestFloat test; ++ // clang-format off ++ double inputsa[kTableLength] = { ++ 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, ++ dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan}; ++ double inputsb[kTableLength] = { ++ 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, ++ 3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan}; ++ double resd1[kTableLength] = { ++ 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, ++ 3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan}; ++ double resd2[kTableLength] = { ++ 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, ++ 3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan}; ++ float inputsc[kTableLength] = { ++ 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, ++ fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan}; ++ float inputsd[kTableLength] = { ++ 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, ++ 3.0, fnan, -0.0, 0.0, fnan, finf, finf, 42.0, finf, fminf, fnan}; ++ float resf1[kTableLength] = { ++ 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, ++ 3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan}; ++ float resf2[kTableLength] = { ++ 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, ++ 3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan}; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ fmina_d(f12, f8, f9); ++ __ fmaxa_d(f13, f8, f9); ++ __ fmina_s(f14, f10, f11); ++ __ fmaxa_s(f15, f10, f11); ++ __ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, resd1))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, resd2))); ++ __ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, resf1))); ++ __ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, resf2))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputsa[i]; ++ test.b = inputsb[i]; ++ test.c = inputsc[i]; ++ test.d = inputsd[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ if (i < kTableLength - 1) { ++ CHECK_EQ(test.resd1, resd1[i]); ++ CHECK_EQ(test.resd2, resd2[i]); ++ CHECK_EQ(test.resf1, resf1[i]); ++ CHECK_EQ(test.resf2, resf2[i]); ++ } else { ++ CHECK(std::isnan(test.resd1)); ++ CHECK(std::isnan(test.resd2)); ++ CHECK(std::isnan(test.resf1)); ++ CHECK(std::isnan(test.resf2)); ++ } ++ } ++} ++ ++TEST(FADD) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ double a; ++ double b; ++ double c; ++ float d; ++ float e; ++ float f; ++ }; ++ ++ TestFloat test; ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ fadd_d(f10, f8, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ ++ __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ Fld_s(f12, MemOperand(a0, offsetof(TestFloat, e))); ++ __ fadd_s(f13, f11, f12); ++ __ Fst_s(f13, MemOperand(a0, offsetof(TestFloat, f))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test.a = 2.0; ++ test.b = 3.0; ++ test.d = 2.0; ++ test.e = 3.0; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, 5.0); ++ CHECK_EQ(test.f, 5.0); ++ ++ test.a = std::numeric_limits::max(); ++ test.b = -std::numeric_limits::max(); // lowest() ++ test.d = std::numeric_limits::max(); ++ test.e = -std::numeric_limits::max(); // lowest() ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.c, 0.0); ++ CHECK_EQ(test.f, 0.0); ++ ++ test.a = std::numeric_limits::max(); ++ test.b = std::numeric_limits::max(); ++ test.d = std::numeric_limits::max(); ++ test.e = std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(!std::isfinite(test.c)); ++ CHECK(!std::isfinite(test.f)); ++ ++ test.a = 5.0; ++ test.b = std::numeric_limits::signaling_NaN(); ++ test.d = 5.0; ++ test.e = std::numeric_limits::signaling_NaN(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(std::isnan(test.c)); ++ CHECK(std::isnan(test.f)); ++} ++ ++TEST(FSUB) { ++ const int kTableLength = 12; ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ float a; ++ float b; ++ float resultS; ++ double c; ++ double d; ++ double resultD; ++ }; ++ ++ TestFloat test; ++ ++ // clang-format off ++ double inputfs_D[kTableLength] = { ++ 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, ++ 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 ++ }; ++ double inputft_D[kTableLength] = { ++ 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, ++ -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 ++ }; ++ double outputs_D[kTableLength] = { ++ 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, ++ 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 ++ }; ++ float inputfs_S[kTableLength] = { ++ 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, ++ 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 ++ }; ++ float inputft_S[kTableLength] = { ++ 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, ++ -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 ++ }; ++ float outputs_S[kTableLength] = { ++ 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, ++ 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 ++ }; ++ // clang-format on ++ ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ Fld_d(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fld_d(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ fsub_s(f12, f8, f9); ++ __ fsub_d(f13, f10, f11); ++ __ Fst_s(f12, MemOperand(a0, offsetof(TestFloat, resultS))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, resultD))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputfs_S[i]; ++ test.b = inputft_S[i]; ++ test.c = inputfs_D[i]; ++ test.d = inputft_D[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.resultS, outputs_S[i]); ++ CHECK_EQ(test.resultD, outputs_D[i]); ++ } ++} ++ ++TEST(FMUL) { ++ const int kTableLength = 4; ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ float a; ++ float b; ++ float resultS; ++ double c; ++ double d; ++ double resultD; ++ }; ++ ++ TestFloat test; ++ // clang-format off ++ double inputfs_D[kTableLength] = { ++ 5.3, -5.3, 5.3, -2.9 ++ }; ++ double inputft_D[kTableLength] = { ++ 4.8, 4.8, -4.8, -0.29 ++ }; ++ ++ float inputfs_S[kTableLength] = { ++ 5.3, -5.3, 5.3, -2.9 ++ }; ++ float inputft_S[kTableLength] = { ++ 4.8, 4.8, -4.8, -0.29 ++ }; ++ // clang-format on ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ Fld_d(f10, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fld_d(f11, MemOperand(a0, offsetof(TestFloat, d))); ++ __ fmul_s(f12, f8, f9); ++ __ fmul_d(f13, f10, f11); ++ __ Fst_s(f12, MemOperand(a0, offsetof(TestFloat, resultS))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, resultD))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputfs_S[i]; ++ test.b = inputft_S[i]; ++ test.c = inputfs_D[i]; ++ test.d = inputft_D[i]; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.resultS, inputfs_S[i] * inputft_S[i]); ++ CHECK_EQ(test.resultD, inputfs_D[i] * inputft_D[i]); ++ } ++} ++ ++TEST(FDIV) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct Test { ++ double dOp1; ++ double dOp2; ++ double dRes; ++ float fOp1; ++ float fOp2; ++ float fRes; ++ }; ++ ++ Test test; ++ ++ __ movfcsr2gr(a4); ++ __ movgr2fcsr(zero_reg); ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(Test, dOp1))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(Test, dOp2))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(Test, fOp1))); ++ __ Fld_s(f11, MemOperand(a0, offsetof(Test, fOp2))); ++ __ fdiv_d(f12, f8, f9); ++ __ fdiv_s(f13, f10, f11); ++ __ Fst_d(f12, MemOperand(a0, offsetof(Test, dRes))); ++ __ Fst_s(f13, MemOperand(a0, offsetof(Test, fRes))); ++ ++ __ movgr2fcsr(a4); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ f.Call(&test, 0, 0, 0, 0); ++ const int test_size = 3; ++ // clang-format off ++ double dOp1[test_size] = { ++ 5.0, DBL_MAX, DBL_MAX}; ++ ++ double dOp2[test_size] = { ++ 2.0, 2.0, -DBL_MAX}; ++ ++ double dRes[test_size] = { ++ 2.5, DBL_MAX / 2.0, -1.0}; ++ ++ float fOp1[test_size] = { ++ 5.0, FLT_MAX, FLT_MAX}; ++ ++ float fOp2[test_size] = { ++ 2.0, 2.0, -FLT_MAX}; ++ ++ float fRes[test_size] = { ++ 2.5, FLT_MAX / 2.0, -1.0}; ++ // clang-format on ++ ++ for (int i = 0; i < test_size; i++) { ++ test.dOp1 = dOp1[i]; ++ test.dOp2 = dOp2[i]; ++ test.fOp1 = fOp1[i]; ++ test.fOp2 = fOp2[i]; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.dRes, dRes[i]); ++ CHECK_EQ(test.fRes, fRes[i]); ++ } ++ ++ test.dOp1 = DBL_MAX; ++ test.dOp2 = -0.0; ++ test.fOp1 = FLT_MAX; ++ test.fOp2 = -0.0; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(!std::isfinite(test.dRes)); ++ CHECK(!std::isfinite(test.fRes)); ++ ++ test.dOp1 = 0.0; ++ test.dOp2 = -0.0; ++ test.fOp1 = 0.0; ++ test.fOp2 = -0.0; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(std::isnan(test.dRes)); ++ CHECK(std::isnan(test.fRes)); ++ ++ test.dOp1 = std::numeric_limits::quiet_NaN(); ++ test.dOp2 = -5.0; ++ test.fOp1 = std::numeric_limits::quiet_NaN(); ++ test.fOp2 = -5.0; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(std::isnan(test.dRes)); ++ CHECK(std::isnan(test.fRes)); ++} ++ ++TEST(FABS) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ double a; ++ float b; ++ }; ++ ++ TestFloat test; ++ ++ __ movfcsr2gr(a4); ++ __ movgr2fcsr(zero_reg); ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ fabs_d(f10, f8); ++ __ fabs_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(TestFloat, b))); ++ ++ __ movgr2fcsr(a4); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ test.a = -2.0; ++ test.b = -2.0; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, 2.0); ++ CHECK_EQ(test.b, 2.0); ++ ++ test.a = 2.0; ++ test.b = 2.0; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, 2.0); ++ CHECK_EQ(test.b, 2.0); ++ ++ // Testing biggest positive number ++ test.a = std::numeric_limits::max(); ++ test.b = std::numeric_limits::max(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, std::numeric_limits::max()); ++ CHECK_EQ(test.b, std::numeric_limits::max()); ++ ++ // Testing smallest negative number ++ test.a = -std::numeric_limits::max(); // lowest() ++ test.b = -std::numeric_limits::max(); // lowest() ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, std::numeric_limits::max()); ++ CHECK_EQ(test.b, std::numeric_limits::max()); ++ ++ // Testing smallest positive number ++ test.a = -std::numeric_limits::min(); ++ test.b = -std::numeric_limits::min(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, std::numeric_limits::min()); ++ CHECK_EQ(test.b, std::numeric_limits::min()); ++ ++ // Testing infinity ++ test.a = ++ -std::numeric_limits::max() / std::numeric_limits::min(); ++ test.b = ++ -std::numeric_limits::max() / std::numeric_limits::min(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.a, std::numeric_limits::max() / ++ std::numeric_limits::min()); ++ CHECK_EQ(test.b, std::numeric_limits::max() / ++ std::numeric_limits::min()); ++ ++ test.a = std::numeric_limits::quiet_NaN(); ++ test.b = std::numeric_limits::quiet_NaN(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(std::isnan(test.a)); ++ CHECK(std::isnan(test.b)); ++ ++ test.a = std::numeric_limits::signaling_NaN(); ++ test.b = std::numeric_limits::signaling_NaN(); ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK(std::isnan(test.a)); ++ CHECK(std::isnan(test.b)); ++} ++ ++template ++struct TestCaseMaddMsub { ++ T fj, fk, fa, fd_fmadd, fd_fmsub, fd_fnmadd, fd_fnmsub; ++}; ++ ++template ++void helper_fmadd_fmsub_fnmadd_fnmsub(F func) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ T x = std::sqrt(static_cast(2.0)); ++ T y = std::sqrt(static_cast(3.0)); ++ T z = std::sqrt(static_cast(5.0)); ++ T x2 = 11.11, y2 = 22.22, z2 = 33.33; ++ // clang-format off ++ TestCaseMaddMsub test_cases[] = { ++ {x, y, z, 0.0, 0.0, 0.0, 0.0}, ++ {x, y, -z, 0.0, 0.0, 0.0, 0.0}, ++ {x, -y, z, 0.0, 0.0, 0.0, 0.0}, ++ {x, -y, -z, 0.0, 0.0, 0.0, 0.0}, ++ {-x, y, z, 0.0, 0.0, 0.0, 0.0}, ++ {-x, y, -z, 0.0, 0.0, 0.0, 0.0}, ++ {-x, -y, z, 0.0, 0.0, 0.0, 0.0}, ++ {-x, -y, -z, 0.0, 0.0, 0.0, 0.0}, ++ {-3.14, 0.2345, -123.000056, 0.0, 0.0, 0.0, 0.0}, ++ {7.3, -23.257, -357.1357, 0.0, 0.0, 0.0, 0.0}, ++ {x2, y2, z2, 0.0, 0.0, 0.0, 0.0}, ++ {x2, y2, -z2, 0.0, 0.0, 0.0, 0.0}, ++ {x2, -y2, z2, 0.0, 0.0, 0.0, 0.0}, ++ {x2, -y2, -z2, 0.0, 0.0, 0.0, 0.0}, ++ {-x2, y2, z2, 0.0, 0.0, 0.0, 0.0}, ++ {-x2, y2, -z2, 0.0, 0.0, 0.0, 0.0}, ++ {-x2, -y2, z2, 0.0, 0.0, 0.0, 0.0}, ++ {-x2, -y2, -z2, 0.0, 0.0, 0.0, 0.0}, ++ }; ++ // clang-format on ++ if (std::is_same::value) { ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, fj))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(TestCaseMaddMsub, fk))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fa))); ++ } else if (std::is_same::value) { ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, fj))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestCaseMaddMsub, fk))); ++ __ Fld_d(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fa))); ++ } else { ++ UNREACHABLE(); ++ } ++ ++ func(assm); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ const size_t kTableLength = sizeof(test_cases) / sizeof(TestCaseMaddMsub); ++ TestCaseMaddMsub tc; ++ for (size_t i = 0; i < kTableLength; i++) { ++ tc.fj = test_cases[i].fj; ++ tc.fk = test_cases[i].fk; ++ tc.fa = test_cases[i].fa; ++ ++ f.Call(&tc, 0, 0, 0, 0); ++ ++ T res_fmadd; ++ T res_fmsub; ++ T res_fnmadd; ++ T res_fnmsub; ++ res_fmadd = std::fma(tc.fj, tc.fk, tc.fa); ++ res_fmsub = std::fma(tc.fj, tc.fk, -tc.fa); ++ res_fnmadd = -std::fma(tc.fj, tc.fk, tc.fa); ++ res_fnmsub = -std::fma(tc.fj, tc.fk, -tc.fa); ++ ++ CHECK_EQ(tc.fd_fmadd, res_fmadd); ++ CHECK_EQ(tc.fd_fmsub, res_fmsub); ++ CHECK_EQ(tc.fd_fnmadd, res_fnmadd); ++ CHECK_EQ(tc.fd_fnmsub, res_fnmsub); ++ } ++} ++ ++TEST(FMADD_FMSUB_FNMADD_FNMSUB_S) { ++ helper_fmadd_fmsub_fnmadd_fnmsub([](MacroAssembler& assm) { ++ __ fmadd_s(f11, f8, f9, f10); ++ __ Fst_s(f11, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fmadd))); ++ __ fmsub_s(f12, f8, f9, f10); ++ __ Fst_s(f12, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fmsub))); ++ __ fnmadd_s(f13, f8, f9, f10); ++ __ Fst_s(f13, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fnmadd))); ++ __ fnmsub_s(f14, f8, f9, f10); ++ __ Fst_s(f14, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fnmsub))); ++ }); ++} ++ ++TEST(FMADD_FMSUB_FNMADD_FNMSUB_D) { ++ helper_fmadd_fmsub_fnmadd_fnmsub([](MacroAssembler& assm) { ++ __ fmadd_d(f11, f8, f9, f10); ++ __ Fst_d(f11, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fmadd))); ++ __ fmsub_d(f12, f8, f9, f10); ++ __ Fst_d(f12, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fmsub))); ++ __ fnmadd_d(f13, f8, f9, f10); ++ __ Fst_d(f13, ++ MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fnmadd))); ++ __ fnmsub_d(f14, f8, f9, f10); ++ __ Fst_d(f14, ++ MemOperand(a0, offsetof(TestCaseMaddMsub, fd_fnmsub))); ++ }); ++} ++ ++/* ++TEST(FSQRT_FRSQRT_FRECIP) { ++ const int kTableLength = 4; ++ const double deltaDouble = 2E-15; ++ const float deltaFloat = 2E-7; ++ const float sqrt2_s = sqrt(2); ++ const double sqrt2_d = sqrt(2); ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ struct TestFloat { ++ float a; ++ float resultS1; ++ float resultS2; ++ float resultS3; ++ double b; ++ double resultD1; ++ double resultD2; ++ double resultD3; ++ }; ++ TestFloat test; ++ // clang-format off ++ double inputs_D[kTableLength] = { ++ 0.0L, 4.0L, 2.0L, 4e-28L ++ }; ++ ++ double outputs_D[kTableLength] = { ++ 0.0L, 2.0L, sqrt2_d, 2e-14L ++ }; ++ float inputs_S[kTableLength] = { ++ 0.0, 4.0, 2.0, 4e-28 ++ }; ++ ++ float outputs_S[kTableLength] = { ++ 0.0, 2.0, sqrt2_s, 2e-14 ++ }; ++ // clang-format on ++ __ Fld_s(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ fsqrt_s(f10, f8); ++ __ fsqrt_d(f11, f9); ++ __ frsqrt_s(f12, f8); ++ __ frsqrt_d(f13, f9); ++ __ frecip_s(f14, f8); ++ __ frecip_d(f15, f9); ++ __ Fst_s(f10, MemOperand(a0, offsetof(TestFloat, resultS1))); ++ __ Fst_d(f11, MemOperand(a0, offsetof(TestFloat, resultD1))); ++ __ Fst_s(f12, MemOperand(a0, offsetof(TestFloat, resultS2))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, resultD2))); ++ __ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, resultS3))); ++ __ Fst_d(f15, MemOperand(a0, offsetof(TestFloat, resultD3))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ for (int i = 0; i < kTableLength; i++) { ++ float f1; ++ double d1; ++ test.a = inputs_S[i]; ++ test.b = inputs_D[i]; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ ++ CHECK_EQ(test.resultS1, outputs_S[i]); ++ CHECK_EQ(test.resultD1, outputs_D[i]); ++ ++ if (i != 0) { ++ f1 = test.resultS2 - 1.0F/outputs_S[i]; ++ f1 = (f1 < 0) ? f1 : -f1; ++ CHECK(f1 <= deltaFloat); ++ d1 = test.resultD2 - 1.0L/outputs_D[i]; ++ d1 = (d1 < 0) ? d1 : -d1; ++ CHECK(d1 <= deltaDouble); ++ f1 = test.resultS3 - 1.0F/inputs_S[i]; ++ f1 = (f1 < 0) ? f1 : -f1; ++ CHECK(f1 <= deltaFloat); ++ d1 = test.resultD3 - 1.0L/inputs_D[i]; ++ d1 = (d1 < 0) ? d1 : -d1; ++ CHECK(d1 <= deltaDouble); ++ } else { ++ CHECK_EQ(test.resultS2, 1.0F/outputs_S[i]); ++ CHECK_EQ(test.resultD2, 1.0L/outputs_D[i]); ++ CHECK_EQ(test.resultS3, 1.0F/inputs_S[i]); ++ CHECK_EQ(test.resultD3, 1.0L/inputs_D[i]); ++ } ++ } ++}*/ ++ ++TEST(LA15) { ++ // Test chaining of label usages within instructions (issue 1644). ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ Assembler assm(isolate, nullptr, 0); ++ ++ Label target; ++ __ beq(a0, a1, &target); ++ __ nop(); ++ __ bne(a0, a1, &target); ++ __ nop(); ++ __ bind(&target); ++ __ nop(); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ f.Call(1, 1, 0, 0, 0); ++} ++ ++TEST(Trampoline) { ++ static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; ++ ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ Label done; ++ size_t nr_calls = kMaxBranchOffset / Assembler::kInstrSize + 5; ++ ++ __ xor_(a2, a2, a2); ++ __ BranchShort(&done, eq, a0, Operand(a1)); ++ for (size_t i = 0; i < nr_calls; ++i) { ++ __ addi_d(a2, a2, 1); ++ } ++ __ bind(&done); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ int64_t res = reinterpret_cast(f.Call(42, 42, 0, 0, 0)); ++ CHECK_EQ(0, res); ++} ++ ++#undef __ ++ ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/test/cctest/test-code-stubs-loong64.cc b/deps/v8/test/cctest/test-code-stubs-loong64.cc +new file mode 100644 +index 0000000..33ea383 +--- /dev/null ++++ b/deps/v8/test/cctest/test-code-stubs-loong64.cc +@@ -0,0 +1,179 @@ ++// Copyright 2013 the V8 project authors. All rights reserved. ++// Rrdistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// * Rrdistributions of source code must retain the above copyright ++// notice, this list of conditions and the following disclaimer. ++// * Rrdistributions in binary form must reproduce the above ++// copyright notice, this list of conditions and the following ++// disclaimer in the documentation and/or other materials provided ++// with the distribution. ++// * Neither the name of Google Inc. nor the names of its ++// contributors may be used to endorse or promote products derived ++// from this software without specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ++// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ++// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ++// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ++// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ++// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ++// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ++// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++#include ++ ++#include "src/v8.h" ++ ++#include "src/base/platform/platform.h" ++#include "src/code-stubs.h" ++#include "src/heap/factory.h" ++#include "src/macro-assembler.h" ++#include "src/loong64/constants-loong64.h" ++#include "src/objects-inl.h" ++#include "src/register-configuration.h" ++#include "src/simulator.h" ++#include "test/cctest/cctest.h" ++#include "test/cctest/test-code-stubs.h" ++ ++namespace v8 { ++namespace internal { ++ ++#define __ masm. ++ ++ConvertDToIFunc MakeConvertDToIFuncTrampoline(Isolate* isolate, ++ Register destination_reg) { ++ HandleScope handles(isolate); ++ ++ size_t allocated; ++ byte* buffer = AllocateAssemblerBuffer(&allocated); ++ MacroAssembler masm(isolate, buffer, static_cast(allocated), ++ v8::internal::CodeObjectRequired::kYes); ++ ++ Handle code = BUILTIN_CODE(isolate, DoubleToI); ++ Address start = code->InstructionStart(); ++ ++ // Save callee save registers. ++ __ MultiPush(kCalleeSaved | ra.bit()); ++ ++ // Save callee-saved FPU registers. ++ __ MultiPushFPU(kCalleeSavedFPU); ++ // Set up the reserved register for 0.0. ++ __ Move(kDoubleRegZero, 0.0); ++/* ++ // For softfp, move the input value into f12. ++ if (IsLOONG64SoftFloatABI) { ++ __ Move(f12, a0, a1); ++ }*/ ++ // Push the double argument. ++ __ Sub_d(sp, sp, Operand(kDoubleSize)); ++ __ Fst_d(f0, MemOperand(sp)); ++ ++ // Save registers make sure they don't get clobbered. ++ int source_reg_offset = kDoubleSize; ++ int reg_num = 5; ++ const RegisterConfiguration* config = RegisterConfiguration::Default(); ++ for (; reg_num < config->num_allocatable_general_registers(); ++reg_num) { ++ Register reg = Register::from_code(reg_num); ++ if (reg != destination_reg) { ++ __ push(reg); ++ source_reg_offset += kPointerSize; ++ } ++ } ++ ++ // Re-push the double argument. ++ __ Sub_d(sp, sp, Operand(kDoubleSize)); ++ __ Fst_d(f0, MemOperand(sp)); ++ ++ // Call through to the actual stub ++ __ Call(start, RelocInfo::EXTERNAL_REFERENCE); ++ __ Ld_d(destination_reg, MemOperand(sp, 0)); ++ ++ __ Add_d(sp, sp, Operand(kDoubleSize)); ++ ++ // Make sure no registers have been unexpectedly clobbered ++ for (--reg_num; reg_num >= 5; --reg_num) { ++ Register reg = Register::from_code(reg_num); ++ if (reg != destination_reg) { ++ __ Ld_d(t7, MemOperand(sp, 0)); ++ __ Assert(eq, AbortReason::kRegisterWasClobbered, reg, Operand(t7)); ++ __ Add_d(sp, sp, Operand(kPointerSize)); ++ } ++ } ++ ++ __ Add_d(sp, sp, Operand(kDoubleSize)); ++ ++ __ Move(a0, destination_reg); ++ Label ok; ++ __ Branch(&ok, eq, a0, Operand(zero_reg)); ++ __ bind(&ok); ++ ++ // Restore callee-saved FPU registers. ++ __ MultiPopFPU(kCalleeSavedFPU); ++ ++ // Restore callee save registers. ++ __ MultiPop(kCalleeSaved | ra.bit()); ++ ++ Label ok1; ++ __ Branch(&ok1, eq, a0, Operand(zero_reg)); ++ __ bind(&ok1); ++ __ Ret(); ++ ++ CodeDesc desc; ++ masm.GetCode(isolate, &desc); ++ MakeAssemblerBufferExecutable(buffer, allocated); ++ Assembler::FlushICache(buffer, allocated); ++ return (reinterpret_cast( ++ reinterpret_cast(buffer))); ++ } ++ ++ #undef __ ++ ++ ++ static Isolate* GetIsolateFrom(LocalContext* context) { ++ return reinterpret_cast((*context)->GetIsolate()); ++ } ++ ++ ++ int32_t RunGeneratedCodeCallWrapper(ConvertDToIFunc func, ++ double from) { ++ #ifdef USE_SIMULATOR ++ Simulator::current(CcTest::i_isolate()) ++ ->CallFP(FUNCTION_ADDR(func), from, 0.); ++ return static_cast( ++ Simulator::current(CcTest::i_isolate())->get_register(a0.code())); ++ #else ++ return (*func)(from); ++ #endif ++ } ++ ++ TEST(ConvertDToI) { ++ CcTest::InitializeVM(); ++ LocalContext context; ++ Isolate* isolate = GetIsolateFrom(&context); ++ HandleScope scope(isolate); ++ ++ #if DEBUG ++ // Verify that the tests actually work with the C version. In the release ++ // code, the compiler optimizes it away because it's all constant, but does it ++ // wrong, triggering an assert on gcc. ++ RunAllTruncationTests(&ConvertDToICVersion); ++ #endif ++ ++ Register dest_registers[] = { ++ a0, a1, a2, a3, a4, a5, a6, a7, t0, t1}; ++ ++ for (size_t d = 0; d < sizeof(dest_registers) / sizeof(Register); d++) { ++ RunAllTruncationTests( ++ RunGeneratedCodeCallWrapper, ++ MakeConvertDToIFuncTrampoline(isolate, dest_registers[d])); ++ } ++ } ++ ++ } // namespace internal ++ } // namespace v8 ++ +diff --git a/deps/v8/test/cctest/test-disasm-loong64.cc b/deps/v8/test/cctest/test-disasm-loong64.cc +new file mode 100644 +index 0000000..d75fc96 +--- /dev/null ++++ b/deps/v8/test/cctest/test-disasm-loong64.cc +@@ -0,0 +1,1313 @@ ++// Copyright 2012 the V8 project authors. All rights reserved. ++// Redistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// * Redistributions of source code must retain the above copyright ++// notice, this list of conditions and the following disclaimer. ++// * Redistributions in binary form must reproduce the above ++// copyright notice, this list of conditions and the following ++// disclaimer in the documentation and/or other materials provided ++// with the distribution. ++// * Neither the name of Google Inc. nor the names of its ++// contributors may be used to endorse or promote products derived ++// from this software without specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ++// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ++// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ++// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ++// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ++// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ++// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ++// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++// ++ ++#include ++#include ++ ++#include "src/v8.h" ++ ++#include "src/debug/debug.h" ++#include "src/disasm.h" ++#include "src/disassembler.h" ++#include "src/frames-inl.h" ++#include "src/macro-assembler.h" ++#include "test/cctest/cctest.h" ++ ++namespace v8 { ++namespace internal { ++ ++ ++bool DisassembleAndCompare(byte* pc, const char* compare_string) { ++ disasm::NameConverter converter; ++ disasm::Disassembler disasm(converter); ++ EmbeddedVector disasm_buffer; ++ ++/* if (prev_instr_compact_branch) { ++ disasm.InstructionDecode(disasm_buffer, pc); ++ pc += 4; ++ }*/ ++ ++ disasm.InstructionDecode(disasm_buffer, pc); ++ ++ if (strcmp(compare_string, disasm_buffer.start()) != 0) { ++ fprintf(stderr, ++ "expected: \n" ++ "%s\n" ++ "disassembled: \n" ++ "%s\n\n", ++ compare_string, disasm_buffer.start()); ++ return false; ++ } ++ return true; ++} ++ ++ ++ ++// Set up V8 to a state where we can at least run the assembler and ++// disassembler. Declare the variables and allocate the data structures used ++// in the rest of the macros. ++#define SET_UP() \ ++ CcTest::InitializeVM(); \ ++ Isolate* isolate = CcTest::i_isolate(); \ ++ HandleScope scope(isolate); \ ++ byte* buffer = reinterpret_cast(malloc(4 * 1024)); \ ++ Assembler assm(isolate, buffer, 4*1024); \ ++ bool failure = false; ++ ++// This macro assembles one instruction using the preallocated assembler and ++// disassembles the generated instruction, comparing the output to the expected ++// value. If the comparison fails an error message is printed, but the test ++// continues to run until the end. ++#define COMPARE(asm_, compare_string) \ ++ { \ ++ int pc_offset = assm.pc_offset(); \ ++ byte *progcounter = &buffer[pc_offset]; \ ++ assm.asm_; \ ++ if (!DisassembleAndCompare(progcounter, compare_string)) failure = true; \ ++ } ++ ++ ++// Verify that all invocations of the COMPARE macro passed successfully. ++// Exit with a failure if at least one of the tests failed. ++#define VERIFY_RUN() \ ++ if (failure) { \ ++ V8_Fatal(__FILE__, __LINE__, "LOONG64 Disassembler tests failed.\n"); \ ++ } ++ ++ ++#define COMPARE_PC_REL(asm_, compare_string, offset) \ ++ { \ ++ int pc_offset = assm.pc_offset(); \ ++ byte *progcounter = &buffer[pc_offset]; \ ++ char str_with_address[100]; \ ++ printf("%p\n", static_cast(progcounter)); \ ++ snprintf(str_with_address, sizeof(str_with_address), "%s -> %p", \ ++ compare_string, static_cast(progcounter + (offset * 4))); \ ++ assm.asm_; \ ++ if (!DisassembleAndCompare(progcounter, str_with_address)) failure = true; \ ++ } ++ ++ ++TEST(TypeOp6) { ++ SET_UP(); ++ ++ COMPARE(jirl(ra, t7, 0), ++ "4c000261 jirl ra, t7, 0"); ++ COMPARE(jirl(ra, t7, 32767), ++ "4dfffe61 jirl ra, t7, 32767"); ++ COMPARE(jirl(ra, t7, -32768), ++ "4e000261 jirl ra, t7, -32768"); ++ ++ VERIFY_RUN(); ++} ++ ++TEST(TypeOp6PC) { ++ SET_UP(); ++ ++ COMPARE_PC_REL(beqz(t7, 1048575), ++ "43fffe6f beqz t7, 1048575", 1048575); ++ COMPARE_PC_REL(beqz(t0, -1048576), ++ "40000190 beqz t0, -1048576", -1048576); ++ COMPARE_PC_REL(beqz(t1, 0), ++ "400001a0 beqz t1, 0", 0); ++ ++ COMPARE_PC_REL(bnez(a2, 1048575), ++ "47fffccf bnez a2, 1048575", 1048575); ++ COMPARE_PC_REL(bnez(s3, -1048576), ++ "44000350 bnez s3, -1048576", -1048576); ++ COMPARE_PC_REL(bnez(t8, 0), ++ "44000280 bnez t8, 0", 0); ++ ++ COMPARE_PC_REL(bceqz(FCC0, 1048575), ++ "4bfffc0f bceqz fcc0, 1048575", 1048575); ++ COMPARE_PC_REL(bceqz(FCC0, -1048576), ++ "48000010 bceqz fcc0, -1048576", -1048576); ++ COMPARE_PC_REL(bceqz(FCC0, 0), ++ "48000000 bceqz fcc0, 0", 0); ++ ++ COMPARE_PC_REL(bcnez(FCC0, 1048575), ++ "4bfffd0f bcnez fcc0, 1048575", 1048575); ++ COMPARE_PC_REL(bcnez(FCC0, -1048576), ++ "48000110 bcnez fcc0, -1048576", -1048576); ++ COMPARE_PC_REL(bcnez(FCC0, 0), ++ "48000100 bcnez fcc0, 0", 0); ++ ++ COMPARE_PC_REL(b(33554431), ++ "53fffdff b 33554431", 33554431); ++ COMPARE_PC_REL(b(-33554432), ++ "50000200 b -33554432", -33554432); ++ COMPARE_PC_REL(b(0), ++ "50000000 b 0", 0); ++ ++ ++ COMPARE_PC_REL(beq(t0, a6, 32767), ++ "59fffd8a beq t0, a6, 32767", 32767); ++ COMPARE_PC_REL(beq(t1, a0, -32768), ++ "5a0001a4 beq t1, a0, -32768", -32768); ++ COMPARE_PC_REL(beq(a4, t1, 0), ++ "5800010d beq a4, t1, 0", 0); ++ ++ COMPARE_PC_REL(bne(a3, a4, 32767), ++ "5dfffce8 bne a3, a4, 32767", 32767); ++ COMPARE_PC_REL(bne(a6, a5, -32768), ++ "5e000149 bne a6, a5, -32768", -32768); ++ COMPARE_PC_REL(bne(a4, a5, 0), ++ "5c000109 bne a4, a5, 0", 0); ++ ++ COMPARE_PC_REL(blt(a4, a6, 32767), ++ "61fffd0a blt a4, a6, 32767", 32767); ++ COMPARE_PC_REL(blt(a4, a5, -32768), ++ "62000109 blt a4, a5, -32768", -32768); ++ COMPARE_PC_REL(blt(a4, a6, 0), ++ "6000010a blt a4, a6, 0", 0); ++ ++ COMPARE_PC_REL(bge(s7, a5, 32767), ++ "65ffffc9 bge s7, a5, 32767", 32767); ++ COMPARE_PC_REL(bge(a1, a3, -32768), ++ "660000a7 bge a1, a3, -32768", -32768); ++ COMPARE_PC_REL(bge(a5, s3, 0), ++ "6400013a bge a5, s3, 0", 0); ++ ++ COMPARE_PC_REL(bltu(a5, s7, 32767), ++ "69fffd3e bltu a5, s7, 32767", 32767); ++ COMPARE_PC_REL(bltu(a4, a5, -32768), ++ "6a000109 bltu a4, a5, -32768", -32768); ++ COMPARE_PC_REL(bltu(a4, t6, 0), ++ "68000112 bltu a4, t6, 0", 0); ++ ++ COMPARE_PC_REL(bgeu(a7, a6, 32767), ++ "6dfffd6a bgeu a7, a6, 32767", 32767); ++ COMPARE_PC_REL(bgeu(a5, a3, -32768), ++ "6e000127 bgeu a5, a3, -32768", -32768); ++ COMPARE_PC_REL(bgeu(t2, t1, 0), ++ "6c0001cd bgeu t2, t1, 0", 0); ++ ++ VERIFY_RUN(); ++} ++ ++ ++TEST(TypeOp7) { ++ SET_UP(); ++ ++ COMPARE(lu12i_w(a4, 524287), ++ "14ffffe8 lu12i.w a4, 524287"); ++ COMPARE(lu12i_w(a5, -524288), ++ "15000009 lu12i.w a5, -524288"); ++ COMPARE(lu12i_w(a6, 0), ++ "1400000a lu12i.w a6, 0"); ++ ++ COMPARE(lu32i_d(a7, 524287), ++ "16ffffeb lu32i.d a7, 524287"); ++ COMPARE(lu32i_d(t0, 524288), ++ "1700000c lu32i.d t0, -524288"); ++ COMPARE(lu32i_d(t1, 0), ++ "1600000d lu32i.d t1, 0"); ++ ++ COMPARE(pcaddi(t1, 1), ++ "1800002d pcaddi t1, 1"); ++ COMPARE(pcaddi(t2, 524287), ++ "18ffffee pcaddi t2, 524287"); ++ COMPARE(pcaddi(t3, -524288), ++ "1900000f pcaddi t3, -524288"); ++ COMPARE(pcaddi(t4, 0), ++ "18000010 pcaddi t4, 0"); ++ ++ COMPARE(pcalau12i(t5, 524287), ++ "1afffff1 pcalau12i t5, 524287"); ++ COMPARE(pcalau12i(t6, -524288), ++ "1b000012 pcalau12i t6, -524288"); ++ COMPARE(pcalau12i(a4, 0), ++ "1a000008 pcalau12i a4, 0"); ++ ++ COMPARE(pcaddu12i(a5, 524287), ++ "1cffffe9 pcaddu12i a5, 524287"); ++ COMPARE(pcaddu12i(a6, -524288), ++ "1d00000a pcaddu12i a6, -524288"); ++ COMPARE(pcaddu12i(a7, 0), ++ "1c00000b pcaddu12i a7, 0"); ++ ++ COMPARE(pcaddu18i(t0, 524287), ++ "1effffec pcaddu18i t0, 524287"); ++ COMPARE(pcaddu18i(t1, -524288), ++ "1f00000d pcaddu18i t1, -524288"); ++ COMPARE(pcaddu18i(t2, 0), ++ "1e00000e pcaddu18i t2, 0"); ++ ++ VERIFY_RUN(); ++ ++} ++ ++ ++TEST(TypeOp8) { ++ SET_UP(); ++ ++ COMPARE(ll_w(t2, t3, 32764), ++ "207ffdee ll.w t2, t3, 32764"); ++ COMPARE(ll_w(t3, t4, -32768), ++ "2080020f ll.w t3, t4, -32768"); ++ COMPARE(ll_w(t5, t6, 0), ++ "20000251 ll.w t5, t6, 0"); ++ ++ COMPARE(sc_w(a6, a7, 32764), ++ "217ffd6a sc.w a6, a7, 32764"); ++ COMPARE(sc_w(t0, t1, -32768), ++ "218001ac sc.w t0, t1, -32768"); ++ COMPARE(sc_w(t2, t3, 0), ++ "210001ee sc.w t2, t3, 0"); ++ ++ COMPARE(ll_d(a0, a1, 32764), ++ "227ffca4 ll.d a0, a1, 32764"); ++ COMPARE(ll_d(a2, a3, -32768), ++ "228000e6 ll.d a2, a3, -32768"); ++ COMPARE(ll_d(a4, a5, 0), ++ "22000128 ll.d a4, a5, 0"); ++ ++ COMPARE(sc_d(t4, t5, 32764), ++ "237ffe30 sc.d t4, t5, 32764"); ++ COMPARE(sc_d(t6, a0, -32768), ++ "23800092 sc.d t6, a0, -32768"); ++ COMPARE(sc_d(a1, a2, 0), ++ "230000c5 sc.d a1, a2, 0"); ++ ++ COMPARE(ldptr_w(a4, a5, 32764), ++ "247ffd28 ldptr.w a4, a5, 32764"); ++ COMPARE(ldptr_w(a6, a7, -32768), ++ "2480016a ldptr.w a6, a7, -32768"); ++ COMPARE(ldptr_w(t0, t1, 0), ++ "240001ac ldptr.w t0, t1, 0"); ++ ++ COMPARE(stptr_w(a4, a5, 32764), ++ "257ffd28 stptr.w a4, a5, 32764"); ++ COMPARE(stptr_w(a6, a7, -32768), ++ "2580016a stptr.w a6, a7, -32768"); ++ COMPARE(stptr_w(t0, t1, 0), ++ "250001ac stptr.w t0, t1, 0"); ++ ++ COMPARE(ldptr_d(t2, t3, 32764), ++ "267ffdee ldptr.d t2, t3, 32764"); ++ COMPARE(ldptr_d(t4, t5, -32768), ++ "26800230 ldptr.d t4, t5, -32768"); ++ COMPARE(ldptr_d(t6, a4, 0), ++ "26000112 ldptr.d t6, a4, 0"); ++ ++ COMPARE(stptr_d(a5, a6, 32764), ++ "277ffd49 stptr.d a5, a6, 32764"); ++ COMPARE(stptr_d(a7, t0, -32768), ++ "2780018b stptr.d a7, t0, -32768"); ++ COMPARE(stptr_d(t1, t2, 0), ++ "270001cd stptr.d t1, t2, 0"); ++ ++ VERIFY_RUN(); ++ ++} ++ ++ ++TEST(TypeOp10) { ++ SET_UP(); ++ ++ COMPARE(bstrins_w(a4, a5, 31, 16), ++ "007f4128 bstrins.w a4, a5, 31, 16"); ++ COMPARE(bstrins_w(a6, a7, 5, 0), ++ "0065016a bstrins.w a6, a7, 5, 0"); ++ ++ COMPARE(bstrins_d(a3, zero_reg, 17, 0), ++ "00910007 bstrins.d a3, zero_reg, 17, 0"); ++ COMPARE(bstrins_d(t1, zero_reg, 17, 0), ++ "0091000d bstrins.d t1, zero_reg, 17, 0"); ++ ++ COMPARE(bstrpick_w(t0, t1, 31, 29), ++ "007ff5ac bstrpick.w t0, t1, 31, 29"); ++ COMPARE(bstrpick_w(a4, a5, 16, 0), ++ "00708128 bstrpick.w a4, a5, 16, 0"); ++ ++ COMPARE(bstrpick_d(a5, a5, 31, 0), ++ "00df0129 bstrpick.d a5, a5, 31, 0"); ++ COMPARE(bstrpick_d(a4, a4, 25, 2), ++ "00d90908 bstrpick.d a4, a4, 25, 2"); ++ ++ COMPARE(slti(t2, a5, 2047), ++ "021ffd2e slti t2, a5, 2047"); ++ COMPARE(slti(a7, a1, -2048), ++ "022000ab slti a7, a1, -2048"); ++ ++ COMPARE(sltui(a7, a7, 2047), ++ "025ffd6b sltui a7, a7, 2047"); ++ COMPARE(sltui(t1, t1, -2048), ++ "026001ad sltui t1, t1, -2048"); ++ ++ COMPARE(addi_w(t0, t2, 2047), ++ "029ffdcc addi.w t0, t2, 2047"); ++ COMPARE(addi_w(a0, a0, -2048), ++ "02a00084 addi.w a0, a0, -2048"); ++ ++ COMPARE(addi_d(a0, zero_reg, 2047), ++ "02dffc04 addi.d a0, zero_reg, 2047"); ++ COMPARE(addi_d(t7, t7, -2048), ++ "02e00273 addi.d t7, t7, -2048"); ++ ++ COMPARE(lu52i_d(a0, a0, 2047), ++ "031ffc84 lu52i.d a0, a0, 2047"); ++ COMPARE(lu52i_d(a1, a1, -2048), ++ "032000a5 lu52i.d a1, a1, -2048"); ++ ++ COMPARE(andi(s3, a3, 0xfff), ++ "037ffcfa andi s3, a3, 0xfff"); ++ COMPARE(andi(a4, a4, 0), ++ "03400108 andi a4, a4, 0x0"); ++ ++ COMPARE(ori(t6, t6, 0xfff), ++ "03bffe52 ori t6, t6, 0xfff"); ++ COMPARE(ori(t6, t6, 0), ++ "03800252 ori t6, t6, 0x0"); ++ ++ COMPARE(xori(t1, t1, 0xfff), ++ "03fffdad xori t1, t1, 0xfff"); ++ COMPARE(xori(a3, a3, 0x0), ++ "03c000e7 xori a3, a3, 0x0"); ++ ++ COMPARE(ld_b(a1, a1, 2047), ++ "281ffca5 ld.b a1, a1, 2047"); ++ COMPARE(ld_b(a4, a4, -2048), ++ "28200108 ld.b a4, a4, -2048"); ++ ++ COMPARE(ld_h(a4, a0, 2047), ++ "285ffc88 ld.h a4, a0, 2047"); ++ COMPARE(ld_h(a4, a3, -2048), ++ "286000e8 ld.h a4, a3, -2048"); ++ ++ COMPARE(ld_w(a6, a6, 2047), ++ "289ffd4a ld.w a6, a6, 2047"); ++ COMPARE(ld_w(a5, a4, -2048), ++ "28a00109 ld.w a5, a4, -2048"); ++ ++ COMPARE(ld_d(a0, a3, 2047), ++ "28dffce4 ld.d a0, a3, 2047"); ++ COMPARE(ld_d(a6, fp, -2048), ++ "28e002ca ld.d a6, fp, -2048"); ++ COMPARE(ld_d(a0, a6, 0), ++ "28c00144 ld.d a0, a6, 0"); ++ ++ COMPARE(st_b(a4, a0, 2047), ++ "291ffc88 st.b a4, a0, 2047"); ++ COMPARE(st_b(a6, a5, -2048), ++ "2920012a st.b a6, a5, -2048"); ++ ++ COMPARE(st_h(a4, a0, 2047), ++ "295ffc88 st.h a4, a0, 2047"); ++ COMPARE(st_h(t1, t2, -2048), ++ "296001cd st.h t1, t2, -2048"); ++ ++ COMPARE(st_w(t3, a4, 2047), ++ "299ffd0f st.w t3, a4, 2047"); ++ COMPARE(st_w(a3, t2, -2048), ++ "29a001c7 st.w a3, t2, -2048"); ++ ++ COMPARE(st_d(s3, sp, 2047), ++ "29dffc7a st.d s3, sp, 2047"); ++ COMPARE(st_d(fp, s6, -2048), ++ "29e003b6 st.d fp, s6, -2048"); ++ ++ COMPARE(ld_bu(a6, a0, 2047), ++ "2a1ffc8a ld.bu a6, a0, 2047"); ++ COMPARE(ld_bu(a7, a7, -2048), ++ "2a20016b ld.bu a7, a7, -2048"); ++ ++ COMPARE(ld_hu(a7, a7, 2047), ++ "2a5ffd6b ld.hu a7, a7, 2047"); ++ COMPARE(ld_hu(a3, a3, -2048), ++ "2a6000e7 ld.hu a3, a3, -2048"); ++ ++ COMPARE(ld_wu(a3, a0, 2047), ++ "2a9ffc87 ld.wu a3, a0, 2047"); ++ COMPARE(ld_wu(a3, a5, -2048), ++ "2aa00127 ld.wu a3, a5, -2048"); ++ ++ COMPARE(preld(31, a7, 2047), ++ "2adffd7f preld 0x1f(31), a7, 2047"); ++ COMPARE(preld(0, t0, -2048), ++ "2ae00180 preld 0x0(0), t0, -2048"); ++ ++ COMPARE(fld_s(f0, a3, 2047), ++ "2b1ffce0 fld.s f0, a3, 2047"); ++ COMPARE(fld_s(f0, a1, -2048), ++ "2b2000a0 fld.s f0, a1, -2048"); ++ ++ COMPARE(fld_d(f0, a0, 2047), ++ "2b9ffc80 fld.d f0, a0, 2047"); ++ COMPARE(fld_d(f0, fp, -2048), ++ "2ba002c0 fld.d f0, fp, -2048"); ++ ++ COMPARE(fst_d(f0, fp, 2047), ++ "2bdffec0 fst.d f0, fp, 2047"); ++ COMPARE(fst_d(f0, a0, -2048), ++ "2be00080 fst.d f0, a0, -2048"); ++ ++ COMPARE(fst_s(f0, a5, 2047), ++ "2b5ffd20 fst.s f0, a5, 2047"); ++ COMPARE(fst_s(f0, a3, -2048), ++ "2b6000e0 fst.s f0, a3, -2048"); ++ ++ VERIFY_RUN(); ++ ++} ++ ++TEST(TypeOp12) { ++ SET_UP(); ++ ++ COMPARE(fmadd_s(f0, f1, f2, f3), ++ "08118820 fmadd.s f0, f1, f2, f3"); ++ COMPARE(fmadd_s(f4, f5, f6, f7), ++ "081398a4 fmadd.s f4, f5, f6, f7"); ++ ++ COMPARE(fmadd_d(f8, f9, f10, f11), ++ "0825a928 fmadd.d f8, f9, f10, f11"); ++ COMPARE(fmadd_d(f12, f13, f14, f15), ++ "0827b9ac fmadd.d f12, f13, f14, f15"); ++ ++ COMPARE(fmsub_s(f0, f1, f2, f3), ++ "08518820 fmsub.s f0, f1, f2, f3"); ++ COMPARE(fmsub_s(f4, f5, f6, f7), ++ "085398a4 fmsub.s f4, f5, f6, f7"); ++ ++ COMPARE(fmsub_d(f8, f9, f10, f11), ++ "0865a928 fmsub.d f8, f9, f10, f11"); ++ COMPARE(fmsub_d(f12, f13, f14, f15), ++ "0867b9ac fmsub.d f12, f13, f14, f15"); ++ ++ COMPARE(fnmadd_s(f0, f1, f2, f3), ++ "08918820 fnmadd.s f0, f1, f2, f3"); ++ COMPARE(fnmadd_s(f4, f5, f6, f7), ++ "089398a4 fnmadd.s f4, f5, f6, f7"); ++ ++ COMPARE(fnmadd_d(f8, f9, f10, f11), ++ "08a5a928 fnmadd.d f8, f9, f10, f11"); ++ COMPARE(fnmadd_d(f12, f13, f14, f15), ++ "08a7b9ac fnmadd.d f12, f13, f14, f15"); ++ ++ COMPARE(fnmsub_s(f0, f1, f2, f3), ++ "08d18820 fnmsub.s f0, f1, f2, f3"); ++ COMPARE(fnmsub_s(f4, f5, f6, f7), ++ "08d398a4 fnmsub.s f4, f5, f6, f7"); ++ ++ COMPARE(fnmsub_d(f8, f9, f10, f11), ++ "08e5a928 fnmsub.d f8, f9, f10, f11"); ++ COMPARE(fnmsub_d(f12, f13, f14, f15), ++ "08e7b9ac fnmsub.d f12, f13, f14, f15"); ++ ++ COMPARE(fcmp_cond_s(CAF, f1, f2, FCC0), ++ "0c100820 fcmp.caf.s fcc0, f1, f2"); ++ COMPARE(fcmp_cond_s(CUN, f5, f6, FCC0), ++ "0c1418a0 fcmp.cun.s fcc0, f5, f6"); ++ COMPARE(fcmp_cond_s(CEQ, f9, f10, FCC0), ++ "0c122920 fcmp.ceq.s fcc0, f9, f10"); ++ COMPARE(fcmp_cond_s(CUEQ, f13, f14, FCC0), ++ "0c1639a0 fcmp.cueq.s fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_s(CLT, f1, f2, FCC0), ++ "0c110820 fcmp.clt.s fcc0, f1, f2"); ++ COMPARE(fcmp_cond_s(CULT, f5, f6, FCC0), ++ "0c1518a0 fcmp.cult.s fcc0, f5, f6"); ++ COMPARE(fcmp_cond_s(CLE, f9, f10, FCC0), ++ "0c132920 fcmp.cle.s fcc0, f9, f10"); ++ COMPARE(fcmp_cond_s(CULE, f13, f14, FCC0), ++ "0c1739a0 fcmp.cule.s fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_s(CNE, f1, f2, FCC0), ++ "0c180820 fcmp.cne.s fcc0, f1, f2"); ++ COMPARE(fcmp_cond_s(COR, f5, f6, FCC0), ++ "0c1a18a0 fcmp.cor.s fcc0, f5, f6"); ++ COMPARE(fcmp_cond_s(CUNE, f9, f10, FCC0), ++ "0c1c2920 fcmp.cune.s fcc0, f9, f10"); ++ COMPARE(fcmp_cond_s(SAF, f13, f14, FCC0), ++ "0c10b9a0 fcmp.saf.s fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_s(SUN, f1, f2, FCC0), ++ "0c148820 fcmp.sun.s fcc0, f1, f2"); ++ COMPARE(fcmp_cond_s(SEQ, f5, f6, FCC0), ++ "0c1298a0 fcmp.seq.s fcc0, f5, f6"); ++ COMPARE(fcmp_cond_s(SUEQ, f9, f10, FCC0), ++ "0c16a920 fcmp.sueq.s fcc0, f9, f10"); ++// COMPARE(fcmp_cond_s(SLT, f13, f14, FCC0), ++// "0c11b9a0 fcmp.slt.s fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_s(SULT, f1, f2, FCC0), ++ "0c158820 fcmp.sult.s fcc0, f1, f2"); ++ COMPARE(fcmp_cond_s(SLE, f5, f6, FCC0), ++ "0c1398a0 fcmp.sle.s fcc0, f5, f6"); ++ COMPARE(fcmp_cond_s(SULE, f9, f10, FCC0), ++ "0c17a920 fcmp.sule.s fcc0, f9, f10"); ++ COMPARE(fcmp_cond_s(SNE, f13, f14, FCC0), ++ "0c18b9a0 fcmp.sne.s fcc0, f13, f14"); ++ COMPARE(fcmp_cond_s(SOR, f13, f14, FCC0), ++ "0c1ab9a0 fcmp.sor.s fcc0, f13, f14"); ++ COMPARE(fcmp_cond_s(SUNE, f1, f2, FCC0), ++ "0c1c8820 fcmp.sune.s fcc0, f1, f2"); ++ ++ COMPARE(fcmp_cond_d(CAF, f1, f2, FCC0), ++ "0c200820 fcmp.caf.d fcc0, f1, f2"); ++ COMPARE(fcmp_cond_d(CUN, f5, f6, FCC0), ++ "0c2418a0 fcmp.cun.d fcc0, f5, f6"); ++ COMPARE(fcmp_cond_d(CEQ, f9, f10, FCC0), ++ "0c222920 fcmp.ceq.d fcc0, f9, f10"); ++ COMPARE(fcmp_cond_d(CUEQ, f13, f14, FCC0), ++ "0c2639a0 fcmp.cueq.d fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_d(CLT, f1, f2, FCC0), ++ "0c210820 fcmp.clt.d fcc0, f1, f2"); ++ COMPARE(fcmp_cond_d(CULT, f5, f6, FCC0), ++ "0c2518a0 fcmp.cult.d fcc0, f5, f6"); ++ COMPARE(fcmp_cond_d(CLE, f9, f10, FCC0), ++ "0c232920 fcmp.cle.d fcc0, f9, f10"); ++ COMPARE(fcmp_cond_d(CULE, f13, f14, FCC0), ++ "0c2739a0 fcmp.cule.d fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_d(CNE, f1, f2, FCC0), ++ "0c280820 fcmp.cne.d fcc0, f1, f2"); ++ COMPARE(fcmp_cond_d(COR, f5, f6, FCC0), ++ "0c2a18a0 fcmp.cor.d fcc0, f5, f6"); ++ COMPARE(fcmp_cond_d(CUNE, f9, f10, FCC0), ++ "0c2c2920 fcmp.cune.d fcc0, f9, f10"); ++ COMPARE(fcmp_cond_d(SAF, f13, f14, FCC0), ++ "0c20b9a0 fcmp.saf.d fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_d(SUN, f1, f2, FCC0), ++ "0c248820 fcmp.sun.d fcc0, f1, f2"); ++ COMPARE(fcmp_cond_d(SEQ, f5, f6, FCC0), ++ "0c2298a0 fcmp.seq.d fcc0, f5, f6"); ++ COMPARE(fcmp_cond_d(SUEQ, f9, f10, FCC0), ++ "0c26a920 fcmp.sueq.d fcc0, f9, f10"); ++// COMPARE(fcmp_cond_d(SLT, f13, f14, FCC0), ++// "0c21b9a0 fcmp.slt.d fcc0, f13, f14"); ++ ++ COMPARE(fcmp_cond_d(SULT, f1, f2, FCC0), ++ "0c258820 fcmp.sult.d fcc0, f1, f2"); ++ COMPARE(fcmp_cond_d(SLE, f5, f6, FCC0), ++ "0c2398a0 fcmp.sle.d fcc0, f5, f6"); ++ COMPARE(fcmp_cond_d(SULE, f9, f10, FCC0), ++ "0c27a920 fcmp.sule.d fcc0, f9, f10"); ++ COMPARE(fcmp_cond_d(SNE, f13, f14, FCC0), ++ "0c28b9a0 fcmp.sne.d fcc0, f13, f14"); ++ COMPARE(fcmp_cond_d(SOR, f13, f14, FCC0), ++ "0c2ab9a0 fcmp.sor.d fcc0, f13, f14"); ++ COMPARE(fcmp_cond_d(SUNE, f1, f2, FCC0), ++ "0c2c8820 fcmp.sune.d fcc0, f1, f2"); ++ ++ VERIFY_RUN(); ++} ++ ++TEST(TypeOp14) { ++ SET_UP(); ++ ++ COMPARE(alsl_w(a0, a1, a2, 1), ++ "000418a4 alsl.w a0, a1, a2, 1"); ++ COMPARE(alsl_w(a3, a4, a5, 3), ++ "00052507 alsl.w a3, a4, a5, 3"); ++ COMPARE(alsl_w(a6, a7, t0, 4), ++ "0005b16a alsl.w a6, a7, t0, 4"); ++ ++ COMPARE(alsl_wu(t1, t2, t3, 1), ++ "00063dcd alsl.wu t1, t2, t3, 1"); ++ COMPARE(alsl_wu(t4, t5, t6, 3), ++ "00074a30 alsl.wu t4, t5, t6, 3"); ++ COMPARE(alsl_wu(a0, a1, a2, 4), ++ "000798a4 alsl.wu a0, a1, a2, 4"); ++ ++ ++ COMPARE(alsl_d(a3, a4, a5, 1), ++ "002c2507 alsl.d a3, a4, a5, 1"); ++ COMPARE(alsl_d(a6, a7, t0, 3), ++ "002d316a alsl.d a6, a7, t0, 3"); ++ COMPARE(alsl_d(t1, t2, t3, 4), ++ "002dbdcd alsl.d t1, t2, t3, 4"); ++ ++ COMPARE(bytepick_w(t4, t5, t6, 0), ++ "00084a30 bytepick.w t4, t5, t6, 0"); ++ COMPARE(bytepick_w(a0, a1, a2, 3), ++ "000998a4 bytepick.w a0, a1, a2, 3"); ++ ++ COMPARE(bytepick_d(a6, a7, t0, 0), ++ "000c316a bytepick.d a6, a7, t0, 0"); ++ COMPARE(bytepick_d(t4, t5, t6, 7), ++ "000fca30 bytepick.d t4, t5, t6, 7"); ++ ++ ++ ++ COMPARE(slli_w(a3, a3, 31), ++ "0040fce7 slli.w a3, a3, 31"); ++ COMPARE(slli_w(a6, a6, 1), ++ "0040854a slli.w a6, a6, 1"); ++ ++ COMPARE(slli_d(t3, t2, 63), ++ "0041fdcf slli.d t3, t2, 63"); ++ COMPARE(slli_d(t4, a6, 1), ++ "00410550 slli.d t4, a6, 1"); ++ ++ COMPARE(srli_w(a7, a7, 31), ++ "0044fd6b srli.w a7, a7, 31"); ++ COMPARE(srli_w(a4, a4, 1), ++ "00448508 srli.w a4, a4, 1"); ++ ++ COMPARE(srli_d(a4, a3, 63), ++ "0045fce8 srli.d a4, a3, 63"); ++ COMPARE(srli_d(a4, a4, 1), ++ "00450508 srli.d a4, a4, 1"); ++ ++ COMPARE(srai_d(a0, a0, 63), ++ "0049fc84 srai.d a0, a0, 63"); ++ COMPARE(srai_d(a4, a1, 1), ++ "004904a8 srai.d a4, a1, 1"); ++ ++ COMPARE(srai_w(s4, a3, 31), ++ "0048fcfb srai.w s4, a3, 31"); ++ COMPARE(srai_w(s4, a5, 1), ++ "0048853b srai.w s4, a5, 1"); ++ ++ COMPARE(rotri_d(t7, t6, 1), ++ "004d0653 rotri.d t7, t6, 1"); ++ ++ VERIFY_RUN(); ++ ++} ++ ++TEST(TypeOp17) { ++ SET_UP(); ++ ++ COMPARE(sltu(t5, t4, a4), ++ "0012a211 sltu t5, t4, a4"); ++ COMPARE(sltu(t4, zero_reg, t4), ++ "0012c010 sltu t4, zero_reg, t4"); ++ ++ COMPARE(add_w(a4, a4, a6), ++ "00102908 add.w a4, a4, a6"); ++ COMPARE(add_w(a5, a6, t3), ++ "00103d49 add.w a5, a6, t3"); ++ ++ COMPARE(add_d(a4, t0, t1), ++ "0010b588 add.d a4, t0, t1"); ++ COMPARE(add_d(a6, a3, t1), ++ "0010b4ea add.d a6, a3, t1"); ++ ++ COMPARE(sub_w(a7, a7, a2), ++ "0011196b sub.w a7, a7, a2"); ++ COMPARE(sub_w(a2, a2, s3), ++ "001168c6 sub.w a2, a2, s3"); ++ ++ COMPARE(sub_d(s3, ra, s3), ++ "0011e83a sub.d s3, ra, s3"); ++ COMPARE(sub_d(a0, a1, a2), ++ "001198a4 sub.d a0, a1, a2"); ++ ++ COMPARE(slt(a5, a5, a6), ++ "00122929 slt a5, a5, a6"); ++ COMPARE(slt(a6, t3, t4), ++ "001241ea slt a6, t3, t4"); ++ ++ COMPARE(masknez(a5, a5, a3), ++ "00131d29 masknez a5, a5, a3"); ++ COMPARE(masknez(a3, a4, a5), ++ "00132507 masknez a3, a4, a5"); ++ ++ COMPARE(maskeqz(a6, a7, t0), ++ "0013b16a maskeqz a6, a7, t0"); ++ COMPARE(maskeqz(t1, t2, t3), ++ "0013bdcd maskeqz t1, t2, t3"); ++ ++ COMPARE(or_(s3, sp, zero_reg), ++ "0015007a or s3, sp, zero_reg"); ++ COMPARE(or_(a4, a0, zero_reg), ++ "00150088 or a4, a0, zero_reg"); ++ ++ COMPARE(and_(sp, sp, t6), ++ "0014c863 and sp, sp, t6"); ++ COMPARE(and_(a3, a3, a7), ++ "0014ace7 and a3, a3, a7"); ++ ++ COMPARE(nor(a7, a7, a7), ++ "00142d6b nor a7, a7, a7"); ++ COMPARE(nor(t4, t5, t6), ++ "00144a30 nor t4, t5, t6"); ++ ++ COMPARE(xor_(a0, a1, a2), ++ "001598a4 xor a0, a1, a2"); ++ COMPARE(xor_(a3, a4, a5), ++ "0015a507 xor a3, a4, a5"); ++ ++ COMPARE(orn(a6, a7, t0), ++ "0016316a orn a6, a7, t0"); ++ COMPARE(orn(t1, t2, t3), ++ "00163dcd orn t1, t2, t3"); ++ ++ COMPARE(andn(t4, t5, t6), ++ "0016ca30 andn t4, t5, t6"); ++ COMPARE(andn(a0, a1, a2), ++ "001698a4 andn a0, a1, a2"); ++ ++ COMPARE(sll_w(a3, t0, a7), ++ "00172d87 sll.w a3, t0, a7"); ++ COMPARE(sll_w(a3, a4, a3), ++ "00171d07 sll.w a3, a4, a3"); ++ ++ COMPARE(srl_w(a3, a4, a3), ++ "00179d07 srl.w a3, a4, a3"); ++ COMPARE(srl_w(a3, t1, t4), ++ "0017c1a7 srl.w a3, t1, t4"); ++ ++ COMPARE(sra_w(a4, t4, a4), ++ "00182208 sra.w a4, t4, a4"); ++ COMPARE(sra_w(a3, t1, a6), ++ "001829a7 sra.w a3, t1, a6"); ++ ++ COMPARE(sll_d(a3, a1, a3), ++ "00189ca7 sll.d a3, a1, a3"); ++ COMPARE(sll_d(a7, a4, t0), ++ "0018b10b sll.d a7, a4, t0"); ++ ++ COMPARE(srl_d(a7, a7, t0), ++ "0019316b srl.d a7, a7, t0"); ++ COMPARE(srl_d(t0, a6, t0), ++ "0019314c srl.d t0, a6, t0"); ++ ++ COMPARE(sra_d(a3, a4, a5), ++ "0019a507 sra.d a3, a4, a5"); ++ COMPARE(sra_d(a6, a7, t0), ++ "0019b16a sra.d a6, a7, t0"); ++ ++ COMPARE(rotr_d(t1, t2, t3), ++ "001bbdcd rotr.d t1, t2, t3"); ++ COMPARE(rotr_d(t4, t5, t6), ++ "001bca30 rotr.d t4, t5, t6"); ++ ++ COMPARE(rotr_w(a0, a1, a2), ++ "001b18a4 rotr.w a0, a1, a2"); ++ COMPARE(rotr_w(a3, a4, a5), ++ "001b2507 rotr.w a3, a4, a5"); ++ ++ COMPARE(mul_w(t8, a5, t7), ++ "001c4d34 mul.w t8, a5, t7"); ++ COMPARE(mul_w(t4, t5, t6), ++ "001c4a30 mul.w t4, t5, t6"); ++ ++ COMPARE(mulh_w(s3, a3, t7), ++ "001cccfa mulh.w s3, a3, t7"); ++ COMPARE(mulh_w(a0, a1, a2), ++ "001c98a4 mulh.w a0, a1, a2"); ++ ++ COMPARE(mulh_wu(a6, a7, t0), ++ "001d316a mulh.wu a6, a7, t0"); ++ COMPARE(mulh_wu(t1, t2, t3), ++ "001d3dcd mulh.wu t1, t2, t3"); ++ ++ COMPARE(mul_d(t2, a5, t1), ++ "001db52e mul.d t2, a5, t1"); ++ COMPARE(mul_d(a4, a4, a5), ++ "001da508 mul.d a4, a4, a5"); ++ ++ COMPARE(mulh_d(a3, a4, a5), ++ "001e2507 mulh.d a3, a4, a5"); ++ COMPARE(mulh_d(a6, a7, t0), ++ "001e316a mulh.d a6, a7, t0"); ++ ++ COMPARE(mulh_du(t1, t2, t3), ++ "001ebdcd mulh.du t1, t2, t3"); ++ COMPARE(mulh_du(t4, t5, t6), ++ "001eca30 mulh.du t4, t5, t6"); ++ ++ COMPARE(mulw_d_w(a0, a1, a2), ++ "001f18a4 mulw.d.w a0, a1, a2"); ++ COMPARE(mulw_d_w(a3, a4, a5), ++ "001f2507 mulw.d.w a3, a4, a5"); ++ ++ COMPARE(mulw_d_wu(a6, a7, t0), ++ "001fb16a mulw.d.wu a6, a7, t0"); ++ COMPARE(mulw_d_wu(t1, t2, t3), ++ "001fbdcd mulw.d.wu t1, t2, t3"); ++ ++ COMPARE(div_w(a5, a5, a3), ++ "00201d29 div.w a5, a5, a3"); ++ COMPARE(div_w(t4, t5, t6), ++ "00204a30 div.w t4, t5, t6"); ++ ++ COMPARE(mod_w(a6, t3, a6), ++ "0020a9ea mod.w a6, t3, a6"); ++ COMPARE(mod_w(a3, a4, a3), ++ "00209d07 mod.w a3, a4, a3"); ++ ++ COMPARE(div_wu(t1, t2, t3), ++ "00213dcd div.wu t1, t2, t3"); ++ COMPARE(div_wu(t4, t5, t6), ++ "00214a30 div.wu t4, t5, t6"); ++ ++ COMPARE(mod_wu(a0, a1, a2), ++ "002198a4 mod.wu a0, a1, a2"); ++ COMPARE(mod_wu(a3, a4, a5), ++ "0021a507 mod.wu a3, a4, a5"); ++ ++ COMPARE(div_d(t0, t0, a6), ++ "0022298c div.d t0, t0, a6"); ++ COMPARE(div_d(a7, a7, a5), ++ "0022256b div.d a7, a7, a5"); ++ ++ COMPARE(mod_d(a6, a7, t0), ++ "0022b16a mod.d a6, a7, t0"); ++ COMPARE(mod_d(t1, t2, t3), ++ "0022bdcd mod.d t1, t2, t3"); ++ ++ COMPARE(div_du(t4, t5, t6), ++ "00234a30 div.du t4, t5, t6"); ++ COMPARE(div_du(a0, a1, a2), ++ "002318a4 div.du a0, a1, a2"); ++ ++ COMPARE(mod_du(a3, a4, a5), ++ "0023a507 mod.du a3, a4, a5"); ++ COMPARE(mod_du(a6, a7, t0), ++ "0023b16a mod.du a6, a7, t0"); ++ ++ COMPARE(fadd_s(f3, f4, f5), ++ "01009483 fadd.s f3, f4, f5"); ++ COMPARE(fadd_s(f6, f7, f8), ++ "0100a0e6 fadd.s f6, f7, f8"); ++ ++ COMPARE(fadd_d(f0, f1, f0), ++ "01010020 fadd.d f0, f1, f0"); ++ COMPARE(fadd_d(f0, f1, f2), ++ "01010820 fadd.d f0, f1, f2"); ++ ++ COMPARE(fsub_s(f9, f10, f11), ++ "0102ad49 fsub.s f9, f10, f11"); ++ COMPARE(fsub_s(f12, f13, f14), ++ "0102b9ac fsub.s f12, f13, f14"); ++ ++ COMPARE(fsub_d(f30, f0, f30), ++ "0103781e fsub.d f30, f0, f30"); ++ COMPARE(fsub_d(f0, f0, f1), ++ "01030400 fsub.d f0, f0, f1"); ++ ++ COMPARE(fmul_s(f15, f16, f17), ++ "0104c60f fmul.s f15, f16, f17"); ++ COMPARE(fmul_s(f18, f19, f20), ++ "0104d272 fmul.s f18, f19, f20"); ++ ++ COMPARE(fmul_d(f0, f0, f1), ++ "01050400 fmul.d f0, f0, f1"); ++ COMPARE(fmul_d(f0, f0, f0), ++ "01050000 fmul.d f0, f0, f0"); ++ ++ COMPARE(fdiv_s(f0, f1, f2), ++ "01068820 fdiv.s f0, f1, f2"); ++ COMPARE(fdiv_s(f3, f4, f5), ++ "01069483 fdiv.s f3, f4, f5"); ++ ++ COMPARE(fdiv_d(f0, f0, f1), ++ "01070400 fdiv.d f0, f0, f1"); ++ COMPARE(fdiv_d(f0, f1, f0), ++ "01070020 fdiv.d f0, f1, f0"); ++ ++ COMPARE(fmax_s(f9, f10, f11), ++ "0108ad49 fmax.s f9, f10, f11"); ++ COMPARE(fmin_s(f6, f7, f8), ++ "010aa0e6 fmin.s f6, f7, f8"); ++ ++ COMPARE(fmax_d(f0, f1, f0), ++ "01090020 fmax.d f0, f1, f0"); ++ COMPARE(fmin_d(f0, f1, f0), ++ "010b0020 fmin.d f0, f1, f0"); ++ ++ COMPARE(fmaxa_s(f12, f13, f14), ++ "010cb9ac fmaxa.s f12, f13, f14"); ++ COMPARE(fmina_s(f15, f16, f17), ++ "010ec60f fmina.s f15, f16, f17"); ++ ++ COMPARE(fmaxa_d(f18, f19, f20), ++ "010d5272 fmaxa.d f18, f19, f20"); ++ COMPARE(fmina_d(f0, f1, f2), ++ "010f0820 fmina.d f0, f1, f2"); ++ ++ COMPARE(ldx_b(a0, a1, a2), ++ "380018a4 ldx.b a0, a1, a2"); ++ COMPARE(ldx_h(a3, a4, a5), ++ "38042507 ldx.h a3, a4, a5"); ++ COMPARE(ldx_w(a6, a7, t0), ++ "3808316a ldx.w a6, a7, t0"); ++ ++ COMPARE(stx_b(t1, t2, t3), ++ "38103dcd stx.b t1, t2, t3"); ++ COMPARE(stx_h(t4, t5, t6), ++ "38144a30 stx.h t4, t5, t6"); ++ COMPARE(stx_w(a0, a1, a2), ++ "381818a4 stx.w a0, a1, a2"); ++ ++ COMPARE(ldx_bu(a3, a4, a5), ++ "38202507 ldx.bu a3, a4, a5"); ++ COMPARE(ldx_hu(a6, a7, t0), ++ "3824316a ldx.hu a6, a7, t0"); ++ COMPARE(ldx_wu(t1, t2, t3), ++ "38283dcd ldx.wu t1, t2, t3"); ++ ++ COMPARE(ldx_d(a2, s6, t6), ++ "380c4ba6 ldx.d a2, s6, t6"); ++ COMPARE(ldx_d(t7, s6, t6), ++ "380c4bb3 ldx.d t7, s6, t6"); ++ ++ COMPARE(stx_d(a4, a3, t6), ++ "381c48e8 stx.d a4, a3, t6"); ++ COMPARE(stx_d(a0, a3, t6), ++ "381c48e4 stx.d a0, a3, t6"); ++ ++ COMPARE(amswap_db_w(a0, a3, t6), ++ "38691e44 amswap_db.w a0, a3, t6"); ++ COMPARE(amswap_db_d(a0, a3, t6), ++ "38699e44 amswap_db.d a0, a3, t6"); ++ COMPARE(amadd_db_w(a0, a3, t6), ++ "386a1e44 amadd_db.w a0, a3, t6"); ++ COMPARE(amadd_db_d(a0, a3, t6), ++ "386a9e44 amadd_db.d a0, a3, t6"); ++ COMPARE(amand_db_w(a0, a3, t6), ++ "386b1e44 amand_db.w a0, a3, t6"); ++ COMPARE(amand_db_d(a0, a3, t6), ++ "386b9e44 amand_db.d a0, a3, t6"); ++ COMPARE(amor_db_w(a0, a3, t6), ++ "386c1e44 amor_db.w a0, a3, t6"); ++ COMPARE(amor_db_d(a0, a3, t6), ++ "386c9e44 amor_db.d a0, a3, t6"); ++ COMPARE(amxor_db_w(a0, a3, t6), ++ "386d1e44 amxor_db.w a0, a3, t6"); ++ COMPARE(amxor_db_d(a0, a3, t6), ++ "386d9e44 amxor_db.d a0, a3, t6"); ++ ++ COMPARE(dbar(0), ++ "38720000 dbar 0x0(0)"); ++ COMPARE(ibar(5555), ++ "387295b3 ibar 0x15b3(5555)"); ++ ++ COMPARE(fldx_s(f3, a4, a5), ++ "38302503 fldx.s f3, a4, a5"); ++ COMPARE(fldx_d(f6, a7, t0), ++ "38343166 fldx.d f6, a7, t0"); ++ ++ COMPARE(fstx_s(f1, t2, t3), ++ "38383dc1 fstx.s f1, t2, t3"); ++ COMPARE(fstx_d(f4, t5, t6), ++ "383c4a24 fstx.d f4, t5, t6"); ++ ++ COMPARE(syscall(2), ++ "002b0002 syscall code 0x2(2)"); ++ ++ COMPARE(amswap_w(a4, a5, a6), ++ "38602548 amswap.w a4, a5, a6"); ++ COMPARE(amswap_d(a7, t0, t1), ++ "3860b1ab amswap.d a7, t0, t1"); ++ ++ COMPARE(amadd_w(t2, t3, t4), ++ "38613e0e amadd.w t2, t3, t4"); ++ COMPARE(amadd_d(t5, t6, a0), ++ "3861c891 amadd.d t5, t6, a0"); ++ ++ COMPARE(amand_w(a1, a2, a3), ++ "386218e5 amand.w a1, a2, a3"); ++ COMPARE(amand_d(a4, a5, a6), ++ "3862a548 amand.d a4, a5, a6"); ++ ++ COMPARE(amor_w(a7, t0, t1), ++ "386331ab amor.w a7, t0, t1"); ++ COMPARE(amor_d(t2, t3, t4), ++ "3863be0e amor.d t2, t3, t4"); ++ ++ COMPARE(amxor_w(t5, t6, a0), ++ "38644891 amxor.w t5, t6, a0"); ++ COMPARE(amxor_d(a1, a2, a3), ++ "386498e5 amxor.d a1, a2, a3"); ++ ++ COMPARE(ammax_w(a4, a5, a6), ++ "38652548 ammax.w a4, a5, a6"); ++ COMPARE(ammax_d(a7, t0, t1), ++ "3865b1ab ammax.d a7, t0, t1"); ++ ++ COMPARE(ammin_w(t2, t3, t4), ++ "38663e0e ammin.w t2, t3, t4"); ++ COMPARE(ammin_d(t5, t6, a0), ++ "3866c891 ammin.d t5, t6, a0"); ++ ++ COMPARE(ammax_wu(a1, a2, a3), ++ "386718e5 ammax.wu a1, a2, a3"); ++ COMPARE(ammax_du(a4, a5, a6), ++ "3867a548 ammax.du a4, a5, a6"); ++ ++ COMPARE(ammin_wu(a7, t0, t1), ++ "386831ab ammin.wu a7, t0, t1"); ++ COMPARE(ammin_du(t2, t3, t4), ++ "3868be0e ammin.du t2, t3, t4"); ++ ++ COMPARE(ammax_db_d(a0, a1, a2), ++ "386e94c4 ammax_db.d a0, a1, a2"); ++ COMPARE(ammax_db_du(a3, a4, a5), ++ "3870a127 ammax_db.du a3, a4, a5"); ++ ++ COMPARE(ammax_db_w(a6, a7, t0), ++ "386e2d8a ammax_db.w a6, a7, t0"); ++ COMPARE(ammax_db_wu(t1, t2, t3), ++ "387039ed ammax_db.wu t1, t2, t3"); ++ ++ COMPARE(ammin_db_d(t4, t5, t6), ++ "386fc650 ammin_db.d t4, t5, t6"); ++ COMPARE(ammin_db_du(a0, a1, a2), ++ "387194c4 ammin_db.du a0, a1, a2"); ++ ++ COMPARE(ammin_db_wu(a3, a4, a5), ++ "38712127 ammin_db.wu a3, a4, a5"); ++ COMPARE(ammin_db_w(a6, a7, t0), ++ "386f2d8a ammin_db.w a6, a7, t0"); ++ ++ COMPARE(fscaleb_s(f0, f1, f2), ++ "01108820 fscaleb.s f0, f1, f2"); ++ COMPARE(fscaleb_d(f3, f4, f5), ++ "01111483 fscaleb.d f3, f4, f5"); ++ ++ COMPARE(fcopysign_s(f6, f7, f8), ++ "0112a0e6 fcopysign.s f6, f7, f8"); ++ COMPARE(fcopysign_d(f9, f10, f12), ++ "01133149 fcopysign.d f9, f10, f12"); ++ ++ VERIFY_RUN(); ++ ++} ++ ++ ++TEST(TypeOp22) { ++ SET_UP(); ++ ++ COMPARE(clz_w(a3, a0), ++ "00001487 clz.w a3, a0"); ++ COMPARE(ctz_w(a0, a1), ++ "00001ca4 ctz.w a0, a1"); ++ COMPARE(clz_d(a2, a3), ++ "000024e6 clz.d a2, a3"); ++ COMPARE(ctz_d(a4, a5), ++ "00002d28 ctz.d a4, a5"); ++ ++ COMPARE(clo_w(a0, a1), ++ "000010a4 clo.w a0, a1"); ++ COMPARE(cto_w(a2, a3), ++ "000018e6 cto.w a2, a3"); ++ COMPARE(clo_d(a4, a5), ++ "00002128 clo.d a4, a5"); ++ COMPARE(cto_d(a6, a7), ++ "0000296a cto.d a6, a7"); ++ ++ COMPARE(revb_2h(a6, a7), ++ "0000316a revb.2h a6, a7"); ++ COMPARE(revb_4h(t0, t1), ++ "000035ac revb.4h t0, t1"); ++ COMPARE(revb_2w(t2, t3), ++ "000039ee revb.2w t2, t3"); ++ COMPARE(revb_d(t4, t5), ++ "00003e30 revb.d t4, t5"); ++ ++ COMPARE(revh_2w(a0, a1), ++ "000040a4 revh.2w a0, a1"); ++ COMPARE(revh_d(a2, a3), ++ "000044e6 revh.d a2, a3"); ++ ++ COMPARE(bitrev_4b(a4, a5), ++ "00004928 bitrev.4b a4, a5"); ++ COMPARE(bitrev_8b(a6, a7), ++ "00004d6a bitrev.8b a6, a7"); ++ COMPARE(bitrev_w(t0, t1), ++ "000051ac bitrev.w t0, t1"); ++ COMPARE(bitrev_d(t2, t3), ++ "000055ee bitrev.d t2, t3"); ++ ++ COMPARE(ext_w_b(t4, t5), ++ "00005e30 ext.w.b t4, t5"); ++ COMPARE(ext_w_h(a0, a1), ++ "000058a4 ext.w.h a0, a1"); ++ ++ COMPARE(fabs_s(f2, f3), ++ "01140462 fabs.s f2, f3"); ++ COMPARE(fabs_d(f0, f0), ++ "01140800 fabs.d f0, f0"); ++ ++ COMPARE(fneg_s(f0, f1), ++ "01141420 fneg.s f0, f1"); ++ COMPARE(fneg_d(f0, f0), ++ "01141800 fneg.d f0, f0"); ++ ++ COMPARE(fsqrt_s(f4, f5), ++ "011444a4 fsqrt.s f4, f5"); ++ COMPARE(fsqrt_d(f0, f0), ++ "01144800 fsqrt.d f0, f0"); ++ ++ COMPARE(fmov_s(f6, f7), ++ "011494e6 fmov.s f6, f7"); ++ COMPARE(fmov_d(f0, f1), ++ "01149820 fmov.d f0, f1"); ++ COMPARE(fmov_d(f1, f0), ++ "01149801 fmov.d f1, f0"); ++ ++ COMPARE(movgr2fr_d(f0, t6), ++ "0114aa40 movgr2fr.d f0, t6"); ++ COMPARE(movgr2fr_d(f1, t6), ++ "0114aa41 movgr2fr.d f1, t6"); ++ ++ COMPARE(movgr2fr_w(f30, a3), ++ "0114a4fe movgr2fr.w f30, a3"); ++ COMPARE(movgr2fr_w(f30, a0), ++ "0114a49e movgr2fr.w f30, a0"); ++ ++ COMPARE(movgr2frh_w(f30, t6), ++ "0114ae5e movgr2frh.w f30, t6"); ++ COMPARE(movgr2frh_w(f0, a3), ++ "0114ace0 movgr2frh.w f0, a3"); ++ ++ COMPARE(movfr2gr_s(a3, f30), ++ "0114b7c7 movfr2gr.s a3, f30"); ++ ++ COMPARE(movfr2gr_d(a6, f30), ++ "0114bbca movfr2gr.d a6, f30"); ++ COMPARE(movfr2gr_d(t7, f30), ++ "0114bbd3 movfr2gr.d t7, f30"); ++ ++ COMPARE(movfrh2gr_s(a5, f0), ++ "0114bc09 movfrh2gr.s a5, f0"); ++ COMPARE(movfrh2gr_s(a4, f0), ++ "0114bc08 movfrh2gr.s a4, f0"); ++ ++ COMPARE(movgr2fcsr(a2), ++ "0114c0c0 movgr2fcsr fcsr, a2"); ++ COMPARE(movfcsr2gr(a4), ++ "0114c808 movfcsr2gr a4, fcsr"); ++ ++ COMPARE(movfr2cf(FCC0, f0), ++ "0114d000 movfr2cf fcc0, f0"); ++ COMPARE(movcf2fr(f1, FCC1), ++ "0114d421 movcf2fr f1, fcc1"); ++ ++ COMPARE(movgr2cf(FCC2, a0), ++ "0114d882 movgr2cf fcc2, a0"); ++ COMPARE(movcf2gr(a1, FCC3), ++ "0114dc65 movcf2gr a1, fcc3"); ++ ++ COMPARE(fcvt_s_d(f0, f0), ++ "01191800 fcvt.s.d f0, f0"); ++ COMPARE(fcvt_d_s(f0, f0), ++ "01192400 fcvt.d.s f0, f0"); ++ ++ COMPARE(ftintrm_w_s(f8, f9), ++ "011a0528 ftintrm.w.s f8, f9"); ++ COMPARE(ftintrm_w_d(f10, f11), ++ "011a096a ftintrm.w.d f10, f11"); ++ COMPARE(ftintrm_l_s(f12, f13), ++ "011a25ac ftintrm.l.s f12, f13"); ++ COMPARE(ftintrm_l_d(f14, f15), ++ "011a29ee ftintrm.l.d f14, f15"); ++ ++ COMPARE(ftintrp_w_s(f16, f17), ++ "011a4630 ftintrp.w.s f16, f17"); ++ COMPARE(ftintrp_w_d(f18, f19), ++ "011a4a72 ftintrp.w.d f18, f19"); ++ COMPARE(ftintrp_l_s(f20, f21), ++ "011a66b4 ftintrp.l.s f20, f21"); ++ COMPARE(ftintrp_l_d(f0, f1), ++ "011a6820 ftintrp.l.d f0, f1"); ++ ++ COMPARE(ftintrz_w_s(f30, f4), ++ "011a849e ftintrz.w.s f30, f4"); ++ COMPARE(ftintrz_w_d(f30, f4), ++ "011a889e ftintrz.w.d f30, f4"); ++ COMPARE(ftintrz_l_s(f30, f0), ++ "011aa41e ftintrz.l.s f30, f0"); ++ COMPARE(ftintrz_l_d(f30, f30), ++ "011aabde ftintrz.l.d f30, f30"); ++ ++ COMPARE(ftintrne_w_s(f2, f3), ++ "011ac462 ftintrne.w.s f2, f3"); ++ COMPARE(ftintrne_w_d(f4, f5), ++ "011ac8a4 ftintrne.w.d f4, f5"); ++ COMPARE(ftintrne_l_s(f6, f7), ++ "011ae4e6 ftintrne.l.s f6, f7"); ++ COMPARE(ftintrne_l_d(f8, f9), ++ "011ae928 ftintrne.l.d f8, f9"); ++ ++ COMPARE(ftint_w_s(f10, f11), ++ "011b056a ftint.w.s f10, f11"); ++ COMPARE(ftint_w_d(f12, f13), ++ "011b09ac ftint.w.d f12, f13"); ++ COMPARE(ftint_l_s(f14, f15), ++ "011b25ee ftint.l.s f14, f15"); ++ COMPARE(ftint_l_d(f16, f17), ++ "011b2a30 ftint.l.d f16, f17"); ++ ++ COMPARE(ffint_s_w(f18, f19), ++ "011d1272 ffint.s.w f18, f19"); ++ COMPARE(ffint_s_l(f20, f21), ++ "011d1ab4 ffint.s.l f20, f21"); ++ COMPARE(ffint_d_w(f0, f1), ++ "011d2020 ffint.d.w f0, f1"); ++ COMPARE(ffint_d_l(f2, f3), ++ "011d2862 ffint.d.l f2, f3"); ++ ++ COMPARE(frint_s(f4, f5), ++ "011e44a4 frint.s f4, f5"); ++ COMPARE(frint_d(f6, f7), ++ "011e48e6 frint.d f6, f7"); ++ ++ COMPARE(frecip_s(f8, f9), ++ "01145528 frecip.s f8, f9"); ++ COMPARE(frecip_d(f10, f11), ++ "0114596a frecip.d f10, f11"); ++ ++ COMPARE(frsqrt_s(f12, f13), ++ "011465ac frsqrt.s f12, f13"); ++ COMPARE(frsqrt_d(f14, f15), ++ "011469ee frsqrt.d f14, f15"); ++ ++ COMPARE(fclass_s(f16, f17), ++ "01143630 fclass.s f16, f17"); ++ COMPARE(fclass_d(f18, f19), ++ "01143a72 fclass.d f18, f19"); ++ ++ COMPARE(flogb_s(f20, f21), ++ "011426b4 flogb.s f20, f21"); ++ COMPARE(flogb_d(f0, f1), ++ "01142820 flogb.d f0, f1"); ++ ++ VERIFY_RUN(); ++} ++ ++} // namespace internal ++} // namespace v8 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +diff --git a/deps/v8/test/cctest/test-macro-assembler-loong64.cc b/deps/v8/test/cctest/test-macro-assembler-loong64.cc +new file mode 100644 +index 0000000..338fdd6 +--- /dev/null ++++ b/deps/v8/test/cctest/test-macro-assembler-loong64.cc +@@ -0,0 +1,2944 @@ ++// Copyright 2013 the V8 project authors. All rights reserved. ++// Redistribution and use in source and binary forms, with or without ++// modification, are permitted provided that the following conditions are ++// met: ++// ++// * Redistributions of source code must retain the above copyright ++// notice, this list of conditions and the following disclaimer. ++// * Redistributions in binary form must reproduce the above ++// copyright notice, this list of conditions and the following ++// disclaimer in the documentation and/or other materials provided ++// with the distribution. ++// * Neither the name of Google Inc. nor the names of its ++// contributors may be used to endorse or promote products derived ++// from this software without specific prior written permission. ++// ++// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ++// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ++// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ++// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ++// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ++// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ++// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ++// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ++// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ++// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ++// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ ++#include ++#include // NOLINT(readability/streams) ++ ++#include "src/v8.h" ++#include "test/cctest/cctest.h" ++ ++#include "src/base/utils/random-number-generator.h" ++#include "src/macro-assembler.h" ++#include "src/loong64/macro-assembler-loong64.h" ++#include "src/objects-inl.h" ++#include "src/simulator.h" ++ ++namespace v8 { ++namespace internal { ++ ++// TODO(mips64): Refine these signatures per test case. ++using FV = Object*(int64_t x, int64_t y, int p2, int p3, int p4); ++using F1 = Object*(int x, int p1, int p2, int p3, int p4); ++using F2 = Object*(int x, int y, int p2, int p3, int p4); ++using F3 = Object*(void* p, int p1, int p2, int p3, int p4); ++using F4 = Object*(void* p0, void* p1, int p2, int p3, int p4); ++ ++#define __ masm-> ++ ++TEST(BYTESWAP) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ struct T { ++ uint64_t s8; ++ uint64_t s4; ++ uint64_t s2; ++ uint64_t u4; ++ uint64_t u2; ++ }; ++ ++ T t; ++ // clang-format off ++ uint64_t test_values[] = {0x5612FFCD9D327ACC, ++ 0x781A15C3, ++ 0xFCDE, ++ 0x9F, ++ 0xC81A15C3, ++ 0x8000000000000000, ++ 0xFFFFFFFFFFFFFFFF, ++ 0x0000000080000000, ++ 0x0000000000008000}; ++ // clang-format on ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ ++ MacroAssembler* masm = &assembler; ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, s8))); ++ __ ByteSwapSigned(a4, a4, 8); ++ __ St_d(a4, MemOperand(a0, offsetof(T, s8))); ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, s4))); ++ __ ByteSwapSigned(a4, a4, 4); ++ __ St_d(a4, MemOperand(a0, offsetof(T, s4))); ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, s2))); ++ __ ByteSwapSigned(a4, a4, 2); ++ __ St_d(a4, MemOperand(a0, offsetof(T, s2))); ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, u4))); ++ __ ByteSwapSigned(a4, a4, 4); ++ __ St_d(a4, MemOperand(a0, offsetof(T, u4))); ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, u2))); ++ __ ByteSwapSigned(a4, a4, 2); ++ __ St_d(a4, MemOperand(a0, offsetof(T, u2))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ for (size_t i = 0; i < arraysize(test_values); i++) { ++ int32_t in_s4 = static_cast(test_values[i]); ++ int16_t in_s2 = static_cast(test_values[i]); ++ uint32_t in_u4 = static_cast(test_values[i]); ++ uint16_t in_u2 = static_cast(test_values[i]); ++ ++ t.s8 = test_values[i]; ++ t.s4 = static_cast(in_s4); ++ t.s2 = static_cast(in_s2); ++ t.u4 = static_cast(in_u4); ++ t.u2 = static_cast(in_u2); ++ ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(ByteReverse(test_values[i]), t.s8); ++ CHECK_EQ(ByteReverse(in_s4), static_cast(t.s4)); ++ CHECK_EQ(ByteReverse(in_s2), static_cast(t.s2)); ++ CHECK_EQ(ByteReverse(in_u4), static_cast(t.u4)); ++ CHECK_EQ(ByteReverse(in_u2), static_cast(t.u2)); ++ } ++} ++ ++TEST(LoadConstants) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope handles(isolate); ++ ++ int64_t refConstants[64]; ++ int64_t result[64]; ++ ++ int64_t mask = 1; ++ for (int i = 0; i < 64; i++) { ++ refConstants[i] = ~(mask << i); ++ } ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ __ or_(a4, a0, zero_reg); ++ for (int i = 0; i < 64; i++) { ++ // Load constant. ++ __ li(a5, Operand(refConstants[i])); ++ __ St_d(a5, MemOperand(a4, zero_reg)); ++ __ Add_d(a4, a4, Operand(kPointerSize)); ++ } ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ (void)f.Call(reinterpret_cast(result), 0, 0, 0, 0); ++ // Check results. ++ for (int i = 0; i < 64; i++) { ++ CHECK(refConstants[i] == result[i]); ++ } ++} ++ ++TEST(LoadAddress) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope handles(isolate); ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ Label to_jump, skip; ++ __ mov(a4, a0); ++ ++ __ Branch(&skip); ++ __ bind(&to_jump); ++ __ nop(); ++ __ nop(); ++ __ jirl(zero_reg, ra, 0); ++ __ bind(&skip); ++ __ li(a4, Operand(masm->jump_address(&to_jump)), ADDRESS_LOAD); ++ int check_size = masm->InstructionsGeneratedSince(&skip); ++ CHECK_EQ(3, check_size); ++ __ jirl(zero_reg, a4, 0); ++ __ stop("invalid"); ++ __ stop("invalid"); ++ __ stop("invalid"); ++ __ stop("invalid"); ++ __ stop("invalid"); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ (void)f.Call(0, 0, 0, 0, 0); ++ // Check results. ++} ++ ++TEST(jump_tables4) { ++ // Similar to test-assembler-mips jump_tables1, with extra test for branch ++ // trampoline required before emission of the dd table (where trampolines are ++ // blocked), and proper transition to long-branch mode. ++ // Regression test for v8:4294. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ const int kNumCases = 512; ++ int values[kNumCases]; ++ isolate->random_number_generator()->NextBytes(values, sizeof(values)); ++ Label labels[kNumCases]; ++ Label near_start, end, done; ++ ++ __ Push(ra); ++ __ xor_(a2, a2, a2); ++ ++ __ Branch(&end); ++ __ bind(&near_start); ++ ++ for (int i = 0; i < 32768 - 256; ++i) { ++ __ Add_d(a2, a2, 1); ++ } ++ ++ __ GenerateSwitchTable(a0, kNumCases, ++ [&labels](size_t i) { return labels + i; }); ++ ++ for (int i = 0; i < kNumCases; ++i) { ++ __ bind(&labels[i]); ++ __ li(a2, values[i]); ++ __ Branch(&done); ++ } ++ ++ __ bind(&done); ++ __ Pop(ra); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ __ bind(&end); ++ __ Branch(&near_start); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kNumCases; ++i) { ++ int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ++ ::printf("f(%d) = %" PRId64 "\n", i, res); ++ CHECK_EQ(values[i], res); ++ } ++} ++ ++TEST(jump_tables6) { ++ // Similar to test-assembler-mips jump_tables1, with extra test for branch ++ // trampoline required after emission of the dd table (where trampolines are ++ // blocked). This test checks if number of really generated instructions is ++ // greater than number of counted instructions from code, as we are expecting ++ // generation of trampoline in this case ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ const int kSwitchTableCases = 40; ++ ++ const int kMaxBranchOffset = (1 << (18 - 1)) - 1; ++ const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize; ++ const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize; ++ ++ const int kMaxOffsetForTrampolineStart = ++ kMaxBranchOffset - 16 * kTrampolineSlotsSize; ++ const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) - ++ (kSwitchTablePrologueSize + 2 * kSwitchTableCases) - ++ 20; ++ ++ int values[kSwitchTableCases]; ++ isolate->random_number_generator()->NextBytes(values, sizeof(values)); ++ Label labels[kSwitchTableCases]; ++ Label near_start, end, done; ++ ++ __ Push(ra); ++ __ xor_(a2, a2, a2); ++ ++ int offs1 = masm->pc_offset(); ++ int gen_insn = 0; ++ ++ __ Branch(&end); ++ gen_insn += 1; ++ __ bind(&near_start); ++ ++ for (int i = 0; i < kFillInstr; ++i) { ++ __ Add_d(a2, a2, 1); ++ } ++ gen_insn += kFillInstr; ++ ++ __ GenerateSwitchTable(a0, kSwitchTableCases, ++ [&labels](size_t i) { return labels + i; }); ++ gen_insn += (kSwitchTablePrologueSize + 2 * kSwitchTableCases); ++ ++ for (int i = 0; i < kSwitchTableCases; ++i) { ++ __ bind(&labels[i]); ++ __ li(a2, values[i]); ++ __ Branch(&done); ++ } ++ gen_insn += 3 * kSwitchTableCases; ++ ++ // If offset from here to first branch instr is greater than max allowed ++ // offset for trampoline ... ++ CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1); ++ // ... number of generated instructions must be greater then "gen_insn", ++ // as we are expecting trampoline generation ++ CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize); ++ ++ __ bind(&done); ++ __ Pop(ra); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ __ bind(&end); ++ __ Branch(&near_start); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kSwitchTableCases; ++i) { ++ int64_t res = reinterpret_cast(f.Call(i, 0, 0, 0, 0)); ++ ::printf("f(%d) = %" PRId64 "\n", i, res); ++ CHECK_EQ(values[i], res); ++ } ++} ++ ++static uint64_t run_alsl_w(uint32_t rj, uint32_t rk, int8_t sa) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ __ Alsl_w(a2, a0, a1, sa); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assembler.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ ++ uint64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(ALSL_W) { ++ CcTest::InitializeVM(); ++ struct TestCaseAlsl { ++ int32_t rj; ++ int32_t rk; ++ uint8_t sa; ++ uint64_t expected_res; ++ }; ++ // clang-format off ++ struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res ++ {0x1, 0x4, 1, 0x6}, ++ {0x1, 0x4, 2, 0x8}, ++ {0x1, 0x4, 3, 0xC}, ++ {0x1, 0x4, 4, 0x14}, ++ {0x1, 0x4, 5, 0x24}, ++ {0x1, 0x0, 1, 0x2}, ++ {0x1, 0x0, 2, 0x4}, ++ {0x1, 0x0, 3, 0x8}, ++ {0x1, 0x0, 4, 0x10}, ++ {0x1, 0x0, 5, 0x20}, ++ {0x0, 0x4, 1, 0x4}, ++ {0x0, 0x4, 2, 0x4}, ++ {0x0, 0x4, 3, 0x4}, ++ {0x0, 0x4, 4, 0x4}, ++ {0x0, 0x4, 5, 0x4}, ++ ++ // Shift overflow. ++ {INT32_MAX, 0x4, 1, 0x2}, ++ {INT32_MAX >> 1, 0x4, 2, 0x0}, ++ {INT32_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC}, ++ {INT32_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4}, ++ {INT32_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4}, ++ ++ // Signed addition overflow. ++ {0x1, INT32_MAX - 1, 1, 0xFFFFFFFF80000000}, ++ {0x1, INT32_MAX - 3, 2, 0xFFFFFFFF80000000}, ++ {0x1, INT32_MAX - 7, 3, 0xFFFFFFFF80000000}, ++ {0x1, INT32_MAX - 15, 4, 0xFFFFFFFF80000000}, ++ {0x1, INT32_MAX - 31, 5, 0xFFFFFFFF80000000}, ++ ++ // Addition overflow. ++ {0x1, -2, 1, 0x0}, ++ {0x1, -4, 2, 0x0}, ++ {0x1, -8, 3, 0x0}, ++ {0x1, -16, 4, 0x0}, ++ {0x1, -32, 5, 0x0}}; ++ // clang-format on ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_alsl_w(tc[i].rj, tc[i].rk, tc[i].sa); ++ PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Alsl_w(a0, %x, %x, %hhu)\n", ++ tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++ ++static uint64_t run_alsl_d(uint64_t rj, uint64_t rk, int8_t sa) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ __ Alsl_d(a2, a0, a1, sa); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assembler.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ ++ uint64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(ALSL_D) { ++ CcTest::InitializeVM(); ++ struct TestCaseAlsl { ++ int64_t rj; ++ int64_t rk; ++ uint8_t sa; ++ uint64_t expected_res; ++ }; ++ // clang-format off ++ struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res ++ {0x1, 0x4, 1, 0x6}, ++ {0x1, 0x4, 2, 0x8}, ++ {0x1, 0x4, 3, 0xC}, ++ {0x1, 0x4, 4, 0x14}, ++ {0x1, 0x4, 5, 0x24}, ++ {0x1, 0x0, 1, 0x2}, ++ {0x1, 0x0, 2, 0x4}, ++ {0x1, 0x0, 3, 0x8}, ++ {0x1, 0x0, 4, 0x10}, ++ {0x1, 0x0, 5, 0x20}, ++ {0x0, 0x4, 1, 0x4}, ++ {0x0, 0x4, 2, 0x4}, ++ {0x0, 0x4, 3, 0x4}, ++ {0x0, 0x4, 4, 0x4}, ++ {0x0, 0x4, 5, 0x4}, ++ ++ // Shift overflow. ++ {INT64_MAX, 0x4, 1, 0x2}, ++ {INT64_MAX >> 1, 0x4, 2, 0x0}, ++ {INT64_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC}, ++ {INT64_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4}, ++ {INT64_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4}, ++ ++ // Signed addition overflow. ++ {0x1, INT64_MAX - 1, 1, 0x8000000000000000}, ++ {0x1, INT64_MAX - 3, 2, 0x8000000000000000}, ++ {0x1, INT64_MAX - 7, 3, 0x8000000000000000}, ++ {0x1, INT64_MAX - 15, 4, 0x8000000000000000}, ++ {0x1, INT64_MAX - 31, 5, 0x8000000000000000}, ++ ++ // Addition overflow. ++ {0x1, -2, 1, 0x0}, ++ {0x1, -4, 2, 0x0}, ++ {0x1, -8, 3, 0x0}, ++ {0x1, -16, 4, 0x0}, ++ {0x1, -32, 5, 0x0}}; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t res = run_alsl_d(tc[i].rj, tc[i].rk, tc[i].sa); ++ PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64 ++ ", %hhu)\n", ++ tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa); ++ CHECK_EQ(tc[i].expected_res, res); ++ } ++} ++// clang-format off ++static const std::vector ffint_ftintrz_uint32_test_values() { ++ static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00, ++ 0x7FFFFFFF, 0x80000000, 0x80000001, ++ 0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++static const std::vector ffint_ftintrz_int32_test_values() { ++ static const int32_t kValues[] = { ++ static_cast(0x00000000), static_cast(0x00000001), ++ static_cast(0x00FFFF00), static_cast(0x7FFFFFFF), ++ static_cast(0x80000000), static_cast(0x80000001), ++ static_cast(0x80FFFF00), static_cast(0x8FFFFFFF), ++ static_cast(0xFFFFFFFF)}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++static const std::vector ffint_ftintrz_uint64_test_values() { ++ static const uint64_t kValues[] = { ++ 0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000, ++ 0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001, ++ 0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++static const std::vector ffint_ftintrz_int64_test_values() { ++ static const int64_t kValues[] = {static_cast(0x0000000000000000), ++ static_cast(0x0000000000000001), ++ static_cast(0x0000FFFFFFFF0000), ++ static_cast(0x7FFFFFFFFFFFFFFF), ++ static_cast(0x8000000000000000), ++ static_cast(0x8000000000000001), ++ static_cast(0x8000FFFFFFFF0000), ++ static_cast(0x8FFFFFFFFFFFFFFF), ++ static_cast(0xFFFFFFFFFFFFFFFF)}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ // clang-off on ++ ++// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } ++#define FOR_INPUTS(ctype, itype, var, test_vector) \ ++ std::vector var##_vec = test_vector(); \ ++ for (std::vector::iterator var = var##_vec.begin(); \ ++ var != var##_vec.end(); ++var) ++ ++#define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \ ++ std::vector var##_vec = test_vector(); \ ++ std::vector::iterator var; \ ++ std::vector::reverse_iterator var2; \ ++ for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \ ++ var != var##_vec.end(); ++var, ++var2) ++ ++#define FOR_ENUM_INPUTS(var, type, test_vector) \ ++ FOR_INPUTS(enum type, type, var, test_vector) ++#define FOR_STRUCT_INPUTS(var, type, test_vector) \ ++ FOR_INPUTS(struct type, type, var, test_vector) ++#define FOR_INT32_INPUTS(var, test_vector) \ ++ FOR_INPUTS(int32_t, int32, var, test_vector) ++#define FOR_INT32_INPUTS2(var, var2, test_vector) \ ++ FOR_INPUTS2(int32_t, int32, var, var2, test_vector) ++#define FOR_INT64_INPUTS(var, test_vector) \ ++ FOR_INPUTS(int64_t, int64, var, test_vector) ++#define FOR_UINT32_INPUTS(var, test_vector) \ ++ FOR_INPUTS(uint32_t, uint32, var, test_vector) ++#define FOR_UINT64_INPUTS(var, test_vector) \ ++ FOR_INPUTS(uint64_t, uint64, var, test_vector) ++ ++template ++RET_TYPE run_CVT(IN_TYPE x, Func GenerateConvertInstructionFunc) { ++ typedef RET_TYPE(F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4); ++ ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assm; ++ ++ GenerateConvertInstructionFunc(masm); ++ __ movfr2gr_d(a2, f9); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ ++ return reinterpret_cast(f.Call(x, 0, 0, 0, 0)); ++} ++ ++TEST(Ffint_s_uw_Ftintrz_uw_s) { ++ CcTest::InitializeVM(); ++ FOR_UINT32_INPUTS(i, ffint_ftintrz_uint32_test_values) { ++ ++ uint32_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ Ffint_s_uw(f8, a0); ++ __ movgr2frh_w(f9, zero_reg); ++ __ Ftintrz_uw_s(f9, f8, f10); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(Ffint_s_ul_Ftintrz_ul_s) { ++ CcTest::InitializeVM(); ++ FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { ++ uint64_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ Ffint_s_ul(f8, a0); ++ __ Ftintrz_ul_s(f9, f8, f10, a2); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(Ffint_d_uw_Ftintrz_uw_d) { ++ CcTest::InitializeVM(); ++ FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { ++ uint32_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ Ffint_d_uw(f8, a0); ++ __ movgr2frh_w(f9, zero_reg); ++ __ Ftintrz_uw_d(f9, f8, f10); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(Ffint_d_ul_Ftintrz_ul_d) { ++ CcTest::InitializeVM(); ++ FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) { ++ uint64_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ Ffint_d_ul(f8, a0); ++ __ Ftintrz_ul_d(f9, f8, f10, a2); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(Ffint_d_l_Ftintrz_l_ud) { ++ CcTest::InitializeVM(); ++ FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) { ++ int64_t input = *i; ++ uint64_t abs_input = (input < 0) ? -input : input; ++ auto fn = [](MacroAssembler* masm) { ++ __ movgr2fr_d(f8, a0); ++ __ ffint_d_l(f10, f8); ++ __ Ftintrz_l_ud(f9, f10, f11); ++ }; ++ CHECK_EQ(static_cast(abs_input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(ffint_d_l_Ftint_l_d) { ++ CcTest::InitializeVM(); ++ FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) { ++ int64_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ movgr2fr_d(f8, a0); ++ __ ffint_d_l(f10, f8); ++ __ Ftintrz_l_d(f9, f10); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++TEST(ffint_d_w_Ftint_w_d) { ++ CcTest::InitializeVM(); ++ FOR_INT32_INPUTS(i, ffint_ftintrz_int32_test_values) { ++ int32_t input = *i; ++ auto fn = [](MacroAssembler* masm) { ++ __ movgr2fr_w(f8, a0); ++ __ ffint_d_w(f10, f8); ++ __ Ftintrz_w_d(f9, f10); ++ __ movfr2gr_s(a4, f9); ++ __ movgr2fr_d(f9, a4); ++ }; ++ CHECK_EQ(static_cast(input), run_CVT(input, fn)); ++ } ++} ++ ++ ++static const std::vector overflow_int64_test_values() { ++ // clang-format off ++ static const int64_t kValues[] = {static_cast(0xF000000000000000), ++ static_cast(0x0000000000000001), ++ static_cast(0xFF00000000000000), ++ static_cast(0x0000F00111111110), ++ static_cast(0x0F00001000000000), ++ static_cast(0x991234AB12A96731), ++ static_cast(0xB0FFFF0F0F0F0F01), ++ static_cast(0x00006FFFFFFFFFFF), ++ static_cast(0xFFFFFFFFFFFFFFFF)}; ++ // clang-format on ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++TEST(OverflowInstructions) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope handles(isolate); ++ ++ struct T { ++ int64_t lhs; ++ int64_t rhs; ++ int64_t output_add1; ++ int64_t output_add2; ++ int64_t output_sub1; ++ int64_t output_sub2; ++ int64_t output_mul1; ++ int64_t output_mul2; ++ int64_t overflow_add1; ++ int64_t overflow_add2; ++ int64_t overflow_sub1; ++ int64_t overflow_sub2; ++ int64_t overflow_mul1; ++ int64_t overflow_mul2; ++ }; ++ T t; ++ ++ FOR_INT64_INPUTS(i, overflow_int64_test_values) { ++ FOR_INT64_INPUTS(j, overflow_int64_test_values) { ++ int64_t ii = *i; ++ int64_t jj = *j; ++ int64_t expected_add, expected_sub; ++ int32_t ii32 = static_cast(ii); ++ int32_t jj32 = static_cast(jj); ++ int32_t expected_mul; ++ int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf; ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ __ ld_d(t0, a0, offsetof(T, lhs)); ++ __ ld_d(t1, a0, offsetof(T, rhs)); ++ ++ __ AdddOverflow(t2, t0, Operand(t1), t3); ++ __ st_d(t2, a0, offsetof(T, output_add1)); ++ __ st_d(t3, a0, offsetof(T, overflow_add1)); ++ __ or_(t3, zero_reg, zero_reg); ++ __ AdddOverflow(t0, t0, Operand(t1), t3); ++ __ st_d(t0, a0, offsetof(T, output_add2)); ++ __ st_d(t3, a0, offsetof(T, overflow_add2)); ++ ++ __ ld_d(t0, a0, offsetof(T, lhs)); ++ __ ld_d(t1, a0, offsetof(T, rhs)); ++ ++ __ SubdOverflow(t2, t0, Operand(t1), t3); ++ __ st_d(t2, a0, offsetof(T, output_sub1)); ++ __ st_d(t3, a0, offsetof(T, overflow_sub1)); ++ __ or_(t3, zero_reg, zero_reg); ++ __ SubdOverflow(t0, t0, Operand(t1), t3); ++ __ st_d(t0, a0, offsetof(T, output_sub2)); ++ __ st_d(t3, a0, offsetof(T, overflow_sub2)); ++ ++ __ ld_d(t0, a0, offsetof(T, lhs)); ++ __ ld_d(t1, a0, offsetof(T, rhs)); ++ __ slli_w(t0, t0, 0); ++ __ slli_w(t1, t1, 0); ++ ++ __ MulOverflow(t2, t0, Operand(t1), t3); ++ __ st_d(t2, a0, offsetof(T, output_mul1)); ++ __ st_d(t3, a0, offsetof(T, overflow_mul1)); ++ __ or_(t3, zero_reg, zero_reg); ++ __ MulOverflow(t0, t0, Operand(t1), t3); ++ __ st_d(t0, a0, offsetof(T, output_mul2)); ++ __ st_d(t3, a0, offsetof(T, overflow_mul2)); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.lhs = ii; ++ t.rhs = jj; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add); ++ expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub); ++ expected_mul_ovf = ++ base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul); ++ ++ CHECK_EQ(expected_add_ovf, t.overflow_add1 < 0); ++ CHECK_EQ(expected_sub_ovf, t.overflow_sub1 < 0); ++ CHECK_EQ(expected_mul_ovf, t.overflow_mul1 != 0); ++ ++ CHECK_EQ(t.overflow_add1, t.overflow_add2); ++ CHECK_EQ(t.overflow_sub1, t.overflow_sub2); ++ CHECK_EQ(t.overflow_mul1, t.overflow_mul2); ++ ++ CHECK_EQ(expected_add, t.output_add1); ++ CHECK_EQ(expected_add, t.output_add2); ++ CHECK_EQ(expected_sub, t.output_sub1); ++ CHECK_EQ(expected_sub, t.output_sub2); ++ if (!expected_mul_ovf) { ++ CHECK_EQ(expected_mul, t.output_mul1); ++ CHECK_EQ(expected_mul, t.output_mul2); ++ } ++ } ++ } ++} ++ ++TEST(min_max_nan) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct TestFloat { ++ double a; ++ double b; ++ double c; ++ double d; ++ float e; ++ float f; ++ float g; ++ float h; ++ }; ++ ++ TestFloat test; ++ const double dnan = std::numeric_limits::quiet_NaN(); ++ const double dinf = std::numeric_limits::infinity(); ++ const double dminf = -std::numeric_limits::infinity(); ++ const float fnan = std::numeric_limits::quiet_NaN(); ++ const float finf = std::numeric_limits::infinity(); ++ const float fminf = -std::numeric_limits::infinity(); ++ const int kTableLength = 13; ++ ++ // clang-format off ++ double inputsa[kTableLength] = {dnan, 3.0, -0.0, 0.0, 42.0, dinf, dminf, ++ dinf, dnan, 3.0, dinf, dnan, dnan}; ++ double inputsb[kTableLength] = {dnan, 2.0, 0.0, -0.0, dinf, 42.0, dinf, ++ dminf, 3.0, dnan, dnan, dinf, dnan}; ++ double outputsdmin[kTableLength] = {dnan, 2.0, -0.0, -0.0, 42.0, ++ 42.0, dminf, dminf, dnan, dnan, ++ dnan, dnan, dnan}; ++ double outputsdmax[kTableLength] = {dnan, 3.0, 0.0, 0.0, dinf, dinf, dinf, ++ dinf, dnan, dnan, dnan, dnan, dnan}; ++ ++ float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf, ++ finf, fnan, 3.0, finf, fnan, fnan}; ++ float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf, ++ fminf, 3.0, fnan, fnan, finf, fnan}; ++ float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf, ++ fminf, fnan, fnan, fnan, fnan, fnan}; ++ float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf, ++ finf, fnan, fnan, fnan, fnan, fnan}; ++ ++ // clang-format on ++ auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) { ++ __ bind(nan); ++ __ LoadRoot(t8, Heap::kNanValueRootIndex); ++ __ Fld_d(dst, FieldMemOperand(t8, HeapNumber::kValueOffset)); ++ __ Branch(back); ++ }; ++ ++ auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) { ++ __ bind(nan); ++ __ Move(dst, fnan); ++ __ Branch(back); ++ }; ++ ++ Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan; ++ Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan; ++ ++ __ push(s6); ++ __ InitializeRootRegister(); ++ __ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a))); ++ __ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b))); ++ __ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, e))); ++ __ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, f))); ++ __ Float64Min(f12, f8, f9, &handle_mind_nan); ++ __ bind(&back_mind_nan); ++ __ Float64Max(f13, f8, f9, &handle_maxd_nan); ++ __ bind(&back_maxd_nan); ++ __ Float32Min(f14, f10, f11, &handle_mins_nan); ++ __ bind(&back_mins_nan); ++ __ Float32Max(f15, f10, f11, &handle_maxs_nan); ++ __ bind(&back_maxs_nan); ++ __ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, c))); ++ __ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, d))); ++ __ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, g))); ++ __ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, h))); ++ __ pop(s6); ++ __ jirl(zero_reg, ra, 0); ++ ++ handle_dnan(f12, &handle_mind_nan, &back_mind_nan); ++ handle_dnan(f13, &handle_maxd_nan, &back_maxd_nan); ++ handle_snan(f14, &handle_mins_nan, &back_mins_nan); ++ handle_snan(f15, &handle_maxs_nan, &back_maxs_nan); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputsa[i]; ++ test.b = inputsb[i]; ++ test.e = inputse[i]; ++ test.f = inputsf[i]; ++ ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); ++ CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); ++ CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); ++ CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); ++ } ++} ++ ++template ++bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, ++ IN_TYPE value, Func GenerateUnalignedInstructionFunc) { ++ using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4); ++ ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assm; ++ IN_TYPE res; ++ ++ GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ ++ MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE)); ++ f.Call(memory_buffer, 0, 0, 0, 0); ++ MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE)); ++ ++ return res == value; ++} ++ ++static const std::vector unsigned_test_values() { ++ // clang-format off ++ static const uint64_t kValues[] = { ++ 0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0, ++ 0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF, ++ }; ++ // clang-format on ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++static const std::vector unsigned_test_offset() { ++ static const int32_t kValues[] = {// value, offset ++ -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++static const std::vector unsigned_test_offset_increment() { ++ static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}; ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++TEST(Ld_b) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint16_t value = static_cast(*i & 0xFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_b(a2, MemOperand(a0, in_offset)); ++ __ St_b(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_1)); ++ ++ auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_b(a0, MemOperand(a0, in_offset)); ++ __ St_b(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_2)); ++ ++ auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_bu(a0, MemOperand(a0, in_offset)); ++ __ St_b(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_3)); ++ ++ auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_bu(a2, MemOperand(a0, in_offset)); ++ __ St_b(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_4)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_b_bitextension) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint16_t value = static_cast(*i & 0xFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ Label success, fail, end, different; ++ __ Ld_b(t0, MemOperand(a0, in_offset)); ++ __ Ld_bu(t1, MemOperand(a0, in_offset)); ++ __ Branch(&different, ne, t0, Operand(t1)); ++ ++ // If signed and unsigned values are same, check ++ // the upper bits to see if they are zero ++ __ srai_w(t0, t0, 7); ++ __ Branch(&success, eq, t0, Operand(zero_reg)); ++ __ Branch(&fail); ++ ++ // If signed and unsigned values are different, ++ // check that the upper bits are complementary ++ __ bind(&different); ++ __ srai_w(t1, t1, 7); ++ __ Branch(&fail, ne, t1, Operand(1)); ++ __ srai_w(t0, t0, 7); ++ __ addi_d(t0, t0, 1); ++ __ Branch(&fail, ne, t0, Operand(zero_reg)); ++ // Fall through to success ++ ++ __ bind(&success); ++ __ Ld_b(t0, MemOperand(a0, in_offset)); ++ __ St_b(t0, MemOperand(a0, out_offset)); ++ __ Branch(&end); ++ __ bind(&fail); ++ __ St_b(zero_reg, MemOperand(a0, out_offset)); ++ __ bind(&end); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_h) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint16_t value = static_cast(*i & 0xFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_h(a2, MemOperand(a0, in_offset)); ++ __ St_h(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_1)); ++ ++ auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_h(a0, MemOperand(a0, in_offset)); ++ __ St_h(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_2)); ++ ++ auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_hu(a0, MemOperand(a0, in_offset)); ++ __ St_h(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_3)); ++ ++ auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_hu(a2, MemOperand(a0, in_offset)); ++ __ St_h(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_4)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_h_bitextension) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint16_t value = static_cast(*i & 0xFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ Label success, fail, end, different; ++ __ Ld_h(t0, MemOperand(a0, in_offset)); ++ __ Ld_hu(t1, MemOperand(a0, in_offset)); ++ __ Branch(&different, ne, t0, Operand(t1)); ++ ++ // If signed and unsigned values are same, check ++ // the upper bits to see if they are zero ++ __ srai_w(t0, t0, 15); ++ __ Branch(&success, eq, t0, Operand(zero_reg)); ++ __ Branch(&fail); ++ ++ // If signed and unsigned values are different, ++ // check that the upper bits are complementary ++ __ bind(&different); ++ __ srai_w(t1, t1, 15); ++ __ Branch(&fail, ne, t1, Operand(1)); ++ __ srai_w(t0, t0, 15); ++ __ addi_d(t0, t0, 1); ++ __ Branch(&fail, ne, t0, Operand(zero_reg)); ++ // Fall through to success ++ ++ __ bind(&success); ++ __ Ld_h(t0, MemOperand(a0, in_offset)); ++ __ St_h(t0, MemOperand(a0, out_offset)); ++ __ Branch(&end); ++ __ bind(&fail); ++ __ St_h(zero_reg, MemOperand(a0, out_offset)); ++ __ bind(&end); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_w) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint32_t value = static_cast(*i & 0xFFFFFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_w(a2, MemOperand(a0, in_offset)); ++ __ St_w(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_1)); ++ ++ auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_w(a0, MemOperand(a0, in_offset)); ++ __ St_w(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, ++ run_Unaligned(buffer_middle, in_offset, out_offset, ++ (uint32_t)value, fn_2)); ++ ++ auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_wu(a2, MemOperand(a0, in_offset)); ++ __ St_w(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_3)); ++ ++ auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_wu(a0, MemOperand(a0, in_offset)); ++ __ St_w(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, ++ run_Unaligned(buffer_middle, in_offset, out_offset, ++ (uint32_t)value, fn_4)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_w_extension) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint32_t value = static_cast(*i & 0xFFFFFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ Label success, fail, end, different; ++ __ Ld_w(t0, MemOperand(a0, in_offset)); ++ __ Ld_wu(t1, MemOperand(a0, in_offset)); ++ __ Branch(&different, ne, t0, Operand(t1)); ++ ++ // If signed and unsigned values are same, check ++ // the upper bits to see if they are zero ++ __ srai_d(t0, t0, 31); ++ __ Branch(&success, eq, t0, Operand(zero_reg)); ++ __ Branch(&fail); ++ ++ // If signed and unsigned values are different, ++ // check that the upper bits are complementary ++ __ bind(&different); ++ __ srai_d(t1, t1, 31); ++ __ Branch(&fail, ne, t1, Operand(1)); ++ __ srai_d(t0, t0, 31); ++ __ addi_d(t0, t0, 1); ++ __ Branch(&fail, ne, t0, Operand(zero_reg)); ++ // Fall through to success ++ ++ __ bind(&success); ++ __ Ld_w(t0, MemOperand(a0, in_offset)); ++ __ St_w(t0, MemOperand(a0, out_offset)); ++ __ Branch(&end); ++ __ bind(&fail); ++ __ St_w(zero_reg, MemOperand(a0, out_offset)); ++ __ bind(&end); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn)); ++ } ++ } ++ } ++} ++ ++TEST(Ld_d) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ uint64_t value = *i; ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Ld_d(a2, MemOperand(a0, in_offset)); ++ __ St_d(a2, MemOperand(a0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn_1)); ++ ++ auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ mov(t0, a0); ++ __ Ld_d(a0, MemOperand(a0, in_offset)); ++ __ St_d(a0, MemOperand(t0, out_offset)); ++ __ or_(a0, a2, zero_reg); ++ }; ++ CHECK_EQ(true, ++ run_Unaligned(buffer_middle, in_offset, out_offset, ++ (uint32_t)value, fn_2)); ++ } ++ } ++ } ++} ++ ++TEST(Fld_s) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ float value = static_cast(*i & 0xFFFFFFFF); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Fld_s(f0, MemOperand(a0, in_offset)); ++ __ Fst_s(f0, MemOperand(a0, out_offset)); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn)); ++ } ++ } ++ } ++} ++ ++TEST(Fld_d) { ++ CcTest::InitializeVM(); ++ ++ static const int kBufferSize = 300 * KB; ++ char memory_buffer[kBufferSize]; ++ char* buffer_middle = memory_buffer + (kBufferSize / 2); ++ ++ FOR_UINT64_INPUTS(i, unsigned_test_values) { ++ FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { ++ FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { ++ double value = static_cast(*i); ++ int32_t in_offset = *j1 + *k1; ++ int32_t out_offset = *j2 + *k2; ++ ++ auto fn = [](MacroAssembler* masm, int32_t in_offset, ++ int32_t out_offset) { ++ __ Fld_d(f0, MemOperand(a0, in_offset)); ++ __ Fst_d(f0, MemOperand(a0, out_offset)); ++ }; ++ CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, ++ out_offset, value, fn)); ++ } ++ } ++ } ++} ++ ++static const std::vector sltu_test_values() { ++ // clang-format off ++ static const uint64_t kValues[] = { ++ 0, ++ 1, ++ 0x7FE, ++ 0x7FF, ++ 0x800, ++ 0x801, ++ 0xFFE, ++ 0xFFF, ++ 0xFFFFFFFFFFFFF7FE, ++ 0xFFFFFFFFFFFFF7FF, ++ 0xFFFFFFFFFFFFF800, ++ 0xFFFFFFFFFFFFF801, ++ 0xFFFFFFFFFFFFFFFE, ++ 0xFFFFFFFFFFFFFFFF, ++ }; ++ // clang-format on ++ return std::vector(&kValues[0], &kValues[arraysize(kValues)]); ++} ++ ++template ++bool run_Sltu(uint64_t rj, uint64_t rk, Func GenerateSltuInstructionFunc) { ++ using F_CVT = int64_t(uint64_t x0, uint64_t x1, int x2, int x3, int x4); ++ ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assm(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assm; ++ ++ GenerateSltuInstructionFunc(masm, rk); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ assm.GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(rj, rk, 0, 0, 0)); ++ return res == 1; ++} ++ ++TEST(Sltu) { ++ CcTest::InitializeVM(); ++ ++ FOR_UINT64_INPUTS(i, sltu_test_values) { ++ FOR_UINT64_INPUTS(j, sltu_test_values) { ++ uint64_t rj = *i; ++ uint64_t rk = *j; ++ ++ auto fn_1 = [](MacroAssembler* masm, uint64_t imm) { ++ __ Sltu(a2, a0, Operand(imm)); ++ }; ++ CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_1)); ++ ++ auto fn_2 = [](MacroAssembler* masm, uint64_t imm) { ++ __ Sltu(a2, a0, a1); ++ }; ++ CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_2)); ++ } ++ } ++} ++ ++template ++static GeneratedCode GenerateMacroFloat32MinMax(MacroAssembler* masm) { ++ T a = T::from_code(8); // f8 ++ T b = T::from_code(9); // f9 ++ T c = T::from_code(10); // f10 ++ ++ Label ool_min_abc, ool_min_aab, ool_min_aba; ++ Label ool_max_abc, ool_max_aab, ool_max_aba; ++ ++ Label done_min_abc, done_min_aab, done_min_aba; ++ Label done_max_abc, done_max_aab, done_max_aba; ++ ++#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ ++ __ Fld_s(x, MemOperand(a0, offsetof(Inputs, src1_))); \ ++ __ Fld_s(y, MemOperand(a0, offsetof(Inputs, src2_))); \ ++ __ fminmax(res, x, y, &ool); \ ++ __ bind(&done); \ ++ __ Fst_s(a, MemOperand(a1, offsetof(Results, res_field))) ++ ++ // a = min(b, c); ++ FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); ++ // a = min(a, b); ++ FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); ++ // a = min(b, a); ++ FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); ++ ++ // a = max(b, c); ++ FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); ++ // a = max(a, b); ++ FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); ++ // a = max(b, a); ++ FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); ++ ++#undef FLOAT_MIN_MAX ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ // Generate out-of-line cases. ++ __ bind(&ool_min_abc); ++ __ Float32MinOutOfLine(a, b, c); ++ __ Branch(&done_min_abc); ++ ++ __ bind(&ool_min_aab); ++ __ Float32MinOutOfLine(a, a, b); ++ __ Branch(&done_min_aab); ++ ++ __ bind(&ool_min_aba); ++ __ Float32MinOutOfLine(a, b, a); ++ __ Branch(&done_min_aba); ++ ++ __ bind(&ool_max_abc); ++ __ Float32MaxOutOfLine(a, b, c); ++ __ Branch(&done_max_abc); ++ ++ __ bind(&ool_max_aab); ++ __ Float32MaxOutOfLine(a, a, b); ++ __ Branch(&done_max_aab); ++ ++ __ bind(&ool_max_aba); ++ __ Float32MaxOutOfLine(a, b, a); ++ __ Branch(&done_max_aba); ++ ++ CodeDesc desc; ++ masm->GetCode(masm->isolate(), &desc); ++ Handle code = ++ masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef DEBUG ++ OFStream os(stdout); ++ code->Print(os); ++#endif ++ return GeneratedCode::FromCode(*code); ++} ++ ++TEST(macro_float_minmax_f32) { ++ // Test the Float32Min and Float32Max macros. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct Inputs { ++ float src1_; ++ float src2_; ++ }; ++ ++ struct Results { ++ // Check all register aliasing possibilities in order to exercise all ++ // code-paths in the macro assembler. ++ float min_abc_; ++ float min_aab_; ++ float min_aba_; ++ float max_abc_; ++ float max_aab_; ++ float max_aba_; ++ }; ++ ++ GeneratedCode f = ++ GenerateMacroFloat32MinMax(masm); ++ ++#define CHECK_MINMAX(src1, src2, min, max) \ ++ do { \ ++ Inputs inputs = {src1, src2}; \ ++ Results results; \ ++ f.Call(&inputs, &results, 0, 0, 0); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ ++ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ ++ } while (0) ++ ++ float nan_a = std::numeric_limits::quiet_NaN(); ++ float nan_b = std::numeric_limits::quiet_NaN(); ++ ++ CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); ++ CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); ++ CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); ++ CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); ++ CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); ++ CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); ++ CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); ++ CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); ++ ++ CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); ++ CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); ++ CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); ++ CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); ++ ++ CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); ++ CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); ++ CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); ++ CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); ++ ++#undef CHECK_MINMAX ++} ++ ++template ++static GeneratedCode GenerateMacroFloat64MinMax(MacroAssembler* masm) { ++ T a = T::from_code(8); // f8 ++ T b = T::from_code(9); // f9 ++ T c = T::from_code(10); // f10 ++ ++ Label ool_min_abc, ool_min_aab, ool_min_aba; ++ Label ool_max_abc, ool_max_aab, ool_max_aba; ++ ++ Label done_min_abc, done_min_aab, done_min_aba; ++ Label done_max_abc, done_max_aab, done_max_aba; ++ ++#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ ++ __ Fld_d(x, MemOperand(a0, offsetof(Inputs, src1_))); \ ++ __ Fld_d(y, MemOperand(a0, offsetof(Inputs, src2_))); \ ++ __ fminmax(res, x, y, &ool); \ ++ __ bind(&done); \ ++ __ Fst_d(a, MemOperand(a1, offsetof(Results, res_field))) ++ ++ // a = min(b, c); ++ FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); ++ // a = min(a, b); ++ FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); ++ // a = min(b, a); ++ FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); ++ ++ // a = max(b, c); ++ FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); ++ // a = max(a, b); ++ FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); ++ // a = max(b, a); ++ FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); ++ ++#undef FLOAT_MIN_MAX ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ // Generate out-of-line cases. ++ __ bind(&ool_min_abc); ++ __ Float64MinOutOfLine(a, b, c); ++ __ Branch(&done_min_abc); ++ ++ __ bind(&ool_min_aab); ++ __ Float64MinOutOfLine(a, a, b); ++ __ Branch(&done_min_aab); ++ ++ __ bind(&ool_min_aba); ++ __ Float64MinOutOfLine(a, b, a); ++ __ Branch(&done_min_aba); ++ ++ __ bind(&ool_max_abc); ++ __ Float64MaxOutOfLine(a, b, c); ++ __ Branch(&done_max_abc); ++ ++ __ bind(&ool_max_aab); ++ __ Float64MaxOutOfLine(a, a, b); ++ __ Branch(&done_max_aab); ++ ++ __ bind(&ool_max_aba); ++ __ Float64MaxOutOfLine(a, b, a); ++ __ Branch(&done_max_aba); ++ ++ CodeDesc desc; ++ masm->GetCode(masm->isolate(), &desc); ++ Handle code = ++ masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef DEBUG ++ OFStream os(stdout); ++ code->Print(os); ++#endif ++ return GeneratedCode::FromCode(*code); ++} ++ ++TEST(macro_float_minmax_f64) { ++ // Test the Float64Min and Float64Max macros. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct Inputs { ++ double src1_; ++ double src2_; ++ }; ++ ++ struct Results { ++ // Check all register aliasing possibilities in order to exercise all ++ // code-paths in the macro assembler. ++ double min_abc_; ++ double min_aab_; ++ double min_aba_; ++ double max_abc_; ++ double max_aab_; ++ double max_aba_; ++ }; ++ ++ GeneratedCode f = ++ GenerateMacroFloat64MinMax(masm); ++ ++#define CHECK_MINMAX(src1, src2, min, max) \ ++ do { \ ++ Inputs inputs = {src1, src2}; \ ++ Results results; \ ++ f.Call(&inputs, &results, 0, 0, 0); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ ++ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ ++ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ ++ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ ++ } while (0) ++ ++ double nan_a = std::numeric_limits::quiet_NaN(); ++ double nan_b = std::numeric_limits::quiet_NaN(); ++ ++ CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); ++ CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); ++ CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); ++ CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); ++ CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); ++ CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); ++ CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); ++ CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); ++ ++ CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); ++ CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); ++ CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); ++ CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); ++ ++ CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); ++ CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); ++ CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); ++ CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); ++ ++#undef CHECK_MINMAX ++} ++ ++uint64_t run_Sub_w(uint64_t imm, int32_t num_instr) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ Label code_start; ++ __ bind(&code_start); ++ __ Sub_w(a2, zero_reg, Operand(imm)); ++ CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(SUB_W) { ++ CcTest::InitializeVM(); ++ ++ // Test Subu macro-instruction for min_int12 and max_int12 border cases. ++ // For subtracting int16 immediate values we use addiu. ++ ++ struct TestCaseSub { ++ uint64_t imm; ++ uint64_t expected_res; ++ int32_t num_instr; ++ }; ++ ++ // We call Sub_w(v0, zero_reg, imm) to test cases listed below. ++ // 0 - imm = expected_res ++ // clang-format off ++ struct TestCaseSub tc[] = { ++ // imm, expected_res, num_instr ++ {0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12 ++ // The test case above generates ori + add_w instruction sequence. ++ // We can't have just addi_ because -min_int12 > max_int12 so use ++ // register. We can load min_int12 to at register with addi_w and then ++ // subtract at with sub_w, but now we use ori + add_w because -min_int12 can ++ // be loaded using ori. ++ {0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1 ++ // Generates addi_w ++ // max_int12 + 1 is not int12 but -(max_int12 + 1) is, just use addi_w. ++ {0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1 ++ // Generates ori + add_w ++ // To load this value to at we need two instructions and another one to ++ // subtract, lu12i + ori + sub_w. But we can load -value to at using just ++ // ori and then add at register with add_w. ++ {0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2 ++ // Generates ori + sub_w ++ // Not int12 but is uint12, load value to at with ori and subtract with ++ // sub_w. ++ {0x00010000, 0xFFFFFFFFFFFF0000, 2}, ++ // Generates lu12i_w + sub_w ++ // Load value using lui to at and subtract with subu. ++ {0x00010001, 0xFFFFFFFFFFFEFFFF, 3}, ++ // Generates lu12i + ori + sub_w ++ // We have to generate three instructions in this case. ++ {0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32 ++ // Generates lu12i_w + ori + sub_w ++ {0xFFFFFFFF80000000, 0xFFFFFFFF80000000, 2}, // min_int32 ++ // The test case above generates lu12i + sub_w intruction sequence. ++ // The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to ++ // min_int32 again. ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ CHECK_EQ(tc[i].expected_res, run_Sub_w(tc[i].imm, tc[i].num_instr)); ++ } ++} ++ ++uint64_t run_Sub_d(uint64_t imm, int32_t num_instr) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ Label code_start; ++ __ bind(&code_start); ++ __ Sub_d(a2, zero_reg, Operand(imm)); ++ CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++#ifdef OBJECT_PRINT ++ code->Print(std::cout); ++#endif ++ auto f = GeneratedCode::FromCode(*code); ++ ++ uint64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ return res; ++} ++ ++TEST(SUB_D) { ++ CcTest::InitializeVM(); ++ ++ // Test Sub_d macro-instruction for min_int12 and max_int12 border cases. ++ // For subtracting int12 immediate values we use addi_d. ++ ++ struct TestCaseSub { ++ uint64_t imm; ++ uint64_t expected_res; ++ int32_t num_instr; ++ }; ++ // We call Sub(v0, zero_reg, imm) to test cases listed below. ++ // 0 - imm = expected_res ++ // clang-format off ++ struct TestCaseSub tc[] = { ++ // imm, expected_res, num_instr ++ {0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12 ++ // The test case above generates addi_d instruction. ++ // This is int12 value and we can load it using just addi_d. ++ { 0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1 ++ // Generates addi_d ++ // max_int12 + 1 is not int12 but is uint12, just use ori. ++ {0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1 ++ // Generates ori + add_d ++ { 0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2 ++ // Generates ori + add_d ++ { 0x00001000, 0xFFFFFFFFFFFFF000, 2}, // max_uint12 + 1 ++ // Generates lu12i_w + sub_d ++ { 0x00001001, 0xFFFFFFFFFFFFEFFF, 3}, // max_uint12 + 2 ++ // Generates lu12i_w + ori + sub_d ++ {0x00000000FFFFFFFF, 0xFFFFFFFF00000001, 3}, // max_uint32 ++ // Generates addi_w + li32i_d + sub_d ++ {0x00000000FFFFFFFE, 0xFFFFFFFF00000002, 3}, // max_uint32 - 1 ++ // Generates addi_w + li32i_d + sub_d ++ {0xFFFFFFFF80000000, 0x80000000, 2}, // min_int32 ++ // Generates lu12i_w + sub_d ++ {0x0000000080000000, 0xFFFFFFFF80000000, 2}, // max_int32 + 1 ++ // Generates lu12i_w + add_d ++ {0xFFFF0000FFFF8765, 0x0000FFFF0000789B, 4}, ++ // Generates lu12i_w + ori + lu32i_d + sub ++ {0x1234ABCD87654321, 0xEDCB5432789ABCDF, 5}, ++ // Generates lu12i_w + ori + lu32i_d + lu52i_d + sub ++ {0xFFFF789100000000, 0x876F00000000, 3}, ++ // Generates xor + lu32i_d + sub ++ {0xF12F789100000000, 0xED0876F00000000, 4}, ++ // Generates xor + lu32i_d + lu52i_d + sub ++ {0xF120000000000800, 0xEDFFFFFFFFFF800, 3}, ++ // Generates ori + lu52i_d + sub ++ {0xFFF0000000000000, 0x10000000000000, 2} ++ // Generates lu52i_d + sub ++ }; ++ // clang-format on ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ CHECK_EQ(tc[i].expected_res, run_Sub_d(tc[i].imm, tc[i].num_instr)); ++ } ++} ++ ++TEST(Move) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct T { ++ float a; ++ float b; ++ float result_a; ++ float result_b; ++ double c; ++ double d; ++ double e; ++ double result_c; ++ double result_d; ++ double result_e; ++ }; ++ T t; ++ __ li(a4, static_cast(0x80000000)); ++ __ St_w(a4, MemOperand(a0, offsetof(T, a))); ++ __ li(a5, static_cast(0x12345678)); ++ __ St_w(a5, MemOperand(a0, offsetof(T, b))); ++ __ li(a6, static_cast(0x8877665544332211)); ++ __ St_d(a6, MemOperand(a0, offsetof(T, c))); ++ __ li(a7, static_cast(0x1122334455667788)); ++ __ St_d(a7, MemOperand(a0, offsetof(T, d))); ++ __ li(t0, static_cast(0)); ++ __ St_d(t0, MemOperand(a0, offsetof(T, e))); ++ ++ __ Move(f8, static_cast(0x80000000)); ++ __ Move(f9, static_cast(0x12345678)); ++ __ Move(f10, static_cast(0x8877665544332211)); ++ __ Move(f11, static_cast(0x1122334455667788)); ++ __ Move(f12, static_cast(0)); ++ __ Fst_s(f8, MemOperand(a0, offsetof(T, result_a))); ++ __ Fst_s(f9, MemOperand(a0, offsetof(T, result_b))); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_c))); ++ __ Fst_d(f11, MemOperand(a0, offsetof(T, result_d))); ++ __ Fst_d(f12, MemOperand(a0, offsetof(T, result_e))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ f.Call(&t, 0, 0, 0, 0); ++ CHECK_EQ(t.a, t.result_a); ++ CHECK_EQ(t.b, t.result_b); ++ CHECK_EQ(t.c, t.result_c); ++ CHECK_EQ(t.d, t.result_d); ++ CHECK_EQ(t.e, t.result_e); ++} ++ ++TEST(Movz_Movn) { ++ const int kTableLength = 4; ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct Test { ++ int64_t rt; ++ int64_t a; ++ int64_t b; ++ int64_t bold; ++ int64_t b1; ++ int64_t bold1; ++ int32_t c; ++ int32_t d; ++ int32_t dold; ++ int32_t d1; ++ int32_t dold1; ++ }; ++ ++ Test test; ++ // clang-format off ++ int64_t inputs_D[kTableLength] = { ++ 7, 8, -9, -10 ++ }; ++ int32_t inputs_W[kTableLength] = { ++ 3, 4, -5, -6 ++ }; ++ ++ int32_t outputs_W[kTableLength] = { ++ 3, 4, -5, -6 ++ }; ++ int64_t outputs_D[kTableLength] = { ++ 7, 8, -9, -10 ++ }; ++ // clang-format on ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(Test, a))); ++ __ Ld_w(a5, MemOperand(a0, offsetof(Test, c))); ++ __ Ld_d(a6, MemOperand(a0, offsetof(Test, rt))); ++ __ li(t0, 1); ++ __ li(t1, 1); ++ __ li(t2, 1); ++ __ li(t3, 1); ++ __ St_d(t0, MemOperand(a0, offsetof(Test, bold))); ++ __ St_d(t1, MemOperand(a0, offsetof(Test, bold1))); ++ __ St_w(t2, MemOperand(a0, offsetof(Test, dold))); ++ __ St_w(t3, MemOperand(a0, offsetof(Test, dold1))); ++ __ Movz(t0, a4, a6); ++ __ Movn(t1, a4, a6); ++ __ Movz(t2, a5, a6); ++ __ Movn(t3, a5, a6); ++ __ St_d(t0, MemOperand(a0, offsetof(Test, b))); ++ __ St_d(t1, MemOperand(a0, offsetof(Test, b1))); ++ __ St_w(t2, MemOperand(a0, offsetof(Test, d))); ++ __ St_w(t3, MemOperand(a0, offsetof(Test, d1))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ test.a = inputs_D[i]; ++ test.c = inputs_W[i]; ++ ++ test.rt = 1; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.b, test.bold); ++ CHECK_EQ(test.d, test.dold); ++ CHECK_EQ(test.b1, outputs_D[i]); ++ CHECK_EQ(test.d1, outputs_W[i]); ++ ++ test.rt = 0; ++ f.Call(&test, 0, 0, 0, 0); ++ CHECK_EQ(test.b, outputs_D[i]); ++ CHECK_EQ(test.d, outputs_W[i]); ++ CHECK_EQ(test.b1, test.bold1); ++ CHECK_EQ(test.d1, test.dold1); ++ } ++} ++ ++TEST(macro_instructions1) { ++ // Test 32bit calculate instructions macros. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ Label exit, error; ++ ++ __ li(a4, 0x00000004); ++ __ li(a5, 0x00001234); ++ __ li(a6, 0x12345678); ++ __ li(a7, 0x7FFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFC)); ++ __ li(t1, static_cast(0xFFFFEDCC)); ++ __ li(t2, static_cast(0xEDCBA988)); ++ __ li(t3, static_cast(0x80000000)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ add_w(a2, a7, t1); ++ __ Add_w(a3, t1, a7); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ Add_w(t4, t1, static_cast(0x7FFFFFFF)); ++ __ Branch(&error, ne, a2, Operand(t4)); ++ __ addi_w(a2, a6, 0x800); ++ __ Add_w(a3, a6, 0xFFFFF800); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ mul_w(a2, t1, a7); ++ __ Mul_w(a3, t1, a7); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ Mul_w(t4, t1, static_cast(0x7FFFFFFF)); ++ __ Branch(&error, ne, a2, Operand(t4)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ mulh_w(a2, t1, a7); ++ __ Mulh_w(a3, t1, a7); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ Mulh_w(t4, t1, static_cast(0x7FFFFFFF)); ++ __ Branch(&error, ne, a2, Operand(t4)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mulh_wu(a2, a4, static_cast(0xFFFFEDCC)); ++ __ Branch(&error, ne, a2, Operand(0x3)); ++ __ Mulh_wu(a3, a4, t1); ++ __ Branch(&error, ne, a3, Operand(0x3)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ div_w(a2, a7, t2); ++ __ Div_w(a3, a7, t2); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ Div_w(t4, a7, static_cast(0xEDCBA988)); ++ __ Branch(&error, ne, a2, Operand(t4)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Div_wu(a2, a7, a5); ++ __ Branch(&error, ne, a2, Operand(0x70821)); ++ __ Div_wu(a3, t0, static_cast(0x00001234)); ++ __ Branch(&error, ne, a3, Operand(0xE1042)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mod_w(a2, a6, a5); ++ __ Branch(&error, ne, a2, Operand(0xDA8)); ++ __ Mod_w(a3, t2, static_cast(0x00001234)); ++ __ Branch(&error, ne, a3, Operand(0xFFFFFFFFFFFFF258)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mod_wu(a2, a6, a5); ++ __ Branch(&error, ne, a2, Operand(0xDA8)); ++ __ Mod_wu(a3, t2, static_cast(0x00001234)); ++ __ Branch(&error, ne, a3, Operand(0xF0)); ++ ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(macro_instructions2) { ++ // Test 64bit calculate instructions macros. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ Label exit, error; ++ ++ __ li(a4, 0x17312); ++ __ li(a5, 0x1012131415161718); ++ __ li(a6, 0x51F4B764A26E7412); ++ __ li(a7, 0x7FFFFFFFFFFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); ++ __ li(t1, static_cast(0xDF6B8F35A10E205C)); ++ __ li(t2, static_cast(0x81F25A87C4236841)); ++ __ li(t3, static_cast(0x8000000000000000)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ add_d(a2, a7, t1); ++ __ Add_d(a3, t1, a7); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ __ Add_d(t4, t1, Operand(0x7FFFFFFFFFFFFFFF)); ++ __ Branch(&error, ne, a2, Operand(t4)); ++ __ addi_d(a2, a6, 0x800); ++ __ Add_d(a3, a6, Operand(0xFFFFFFFFFFFFF800)); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mul_d(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0xdbe6a8729a547fb0)); ++ __ Mul_d(a3, t0, Operand(0xDF6B8F35A10E205C)); ++ __ Branch(&error, ne, a3, Operand(0x57ad69f40f870584)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mulh_d(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x52514c6c6b54467)); ++ __ Mulh_d(a3, t0, Operand(0xDF6B8F35A10E205C)); ++ __ Branch(&error, ne, a3, Operand(0x15d)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Div_d(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ Div_d(a3, t1, Operand(0x17312)); ++ __ Branch(&error, ne, a3, Operand(0xffffe985f631e6d9)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Div_du(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ Div_du(a3, t1, 0x17312); ++ __ Branch(&error, ne, a3, Operand(0x9a22ffd3973d)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mod_d(a2, a6, a4); ++ __ Branch(&error, ne, a2, Operand(0x13558)); ++ __ Mod_d(a3, t2, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(0xfffffffffffffb0a)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Mod_du(a2, a6, a4); ++ __ Branch(&error, ne, a2, Operand(0x13558)); ++ __ Mod_du(a3, t2, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(0x81f25a87c4236841)); ++ ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(macro_instructions3) { ++ // Test 64bit calculate instructions macros. ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ Label exit, error; ++ ++ __ li(a4, 0x17312); ++ __ li(a5, 0x1012131415161718); ++ __ li(a6, 0x51F4B764A26E7412); ++ __ li(a7, 0x7FFFFFFFFFFFFFFF); ++ __ li(t0, static_cast(0xFFFFFFFFFFFFF547)); ++ __ li(t1, static_cast(0xDF6B8F35A10E205C)); ++ __ li(t2, static_cast(0x81F25A87C4236841)); ++ __ li(t3, static_cast(0x8000000000000000)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ And(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0x1310)); ++ __ And(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); ++ __ Branch(&error, ne, a3, Operand(0x51F4B764A26E7412)); ++ __ andi(a2, a6, 0xDCB); ++ __ And(a3, a6, Operand(0xDCB)); ++ __ Branch(&error, ne, a3, Operand(a2)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Or(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xfffffffffffff55f)); ++ __ Or(a3, t2, Operand(0x8000000000000000)); ++ __ Branch(&error, ne, a3, Operand(0x81f25a87c4236841)); ++ __ ori(a2, a5, 0xDCB); ++ __ Or(a3, a5, Operand(0xDCB)); ++ __ Branch(&error, ne, a2, Operand(a3)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Orn(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xffffffffffffffe7)); ++ __ Orn(a3, t2, Operand(0x81F25A87C4236841)); ++ __ Branch(&error, ne, a3, Operand(0xffffffffffffffff)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Xor(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0x209470ca5ef1d51b)); ++ __ Xor(a3, t2, Operand(0x8000000000000000)); ++ __ Branch(&error, ne, a3, Operand(0x1f25a87c4236841)); ++ __ Xor(a2, t2, Operand(0xDCB)); ++ __ Branch(&error, ne, a2, Operand(0x81f25a87c423658a)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Nor(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0xefedecebeae888e5)); ++ __ Nor(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); ++ __ Branch(&error, ne, a3, Operand(0x8000000000000000)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Andn(a2, a4, a5); ++ __ Branch(&error, ne, a2, Operand(0x16002)); ++ __ Andn(a3, a6, Operand(0x7FFFFFFFFFFFFFFF)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Orn(a2, t0, t1); ++ __ Branch(&error, ne, a2, Operand(0xffffffffffffffe7)); ++ __ Orn(a3, t2, Operand(0x8000000000000000)); ++ __ Branch(&error, ne, a3, Operand(0xffffffffffffffff)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Neg(a2, a7); ++ __ Branch(&error, ne, a2, Operand(0x8000000000000001)); ++ __ Neg(a3, t0); ++ __ Branch(&error, ne, a3, Operand(0xAB9)); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Slt(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ Slt(a3, a7, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0))); ++ __ Slt(a3, a4, 0x800); ++ __ Branch(&error, ne, a3, Operand(static_cast(0))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sle(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ Sle(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0x1))); ++ __ Sle(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sleu(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(0x1)); ++ __ Sleu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0x1))); ++ __ Sleu(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0x1))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sge(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ Sge(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0x1))); ++ __ Sge(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0x1))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sgeu(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ Sgeu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0x1))); ++ __ Sgeu(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sgt(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ Sgt(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0))); ++ __ Sgt(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0x1))); ++ ++ __ or_(a2, zero_reg, zero_reg); ++ __ or_(a3, zero_reg, zero_reg); ++ __ Sgtu(a2, a5, a6); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ __ Sgtu(a3, t0, Operand(0xFFFFFFFFFFFFF547)); ++ __ Branch(&error, ne, a3, Operand(static_cast(0))); ++ __ Sgtu(a2, a7, t0); ++ __ Branch(&error, ne, a2, Operand(static_cast(0))); ++ ++ __ li(a2, 0x31415926); ++ __ b(&exit); ++ ++ __ bind(&error); ++ __ li(a2, 0x666); ++ ++ __ bind(&exit); ++ __ or_(a0, a2, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ int64_t res = reinterpret_cast(f.Call(0, 0, 0, 0, 0)); ++ ++ CHECK_EQ(0x31415926L, res); ++} ++ ++TEST(Rotr_w) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct T { ++ int32_t input; ++ int32_t result_rotr_0; ++ int32_t result_rotr_4; ++ int32_t result_rotr_8; ++ int32_t result_rotr_12; ++ int32_t result_rotr_16; ++ int32_t result_rotr_20; ++ int32_t result_rotr_24; ++ int32_t result_rotr_28; ++ int32_t result_rotr_32; ++ int32_t result_rotri_0; ++ int32_t result_rotri_4; ++ int32_t result_rotri_8; ++ int32_t result_rotri_12; ++ int32_t result_rotri_16; ++ int32_t result_rotri_20; ++ int32_t result_rotri_24; ++ int32_t result_rotri_28; ++ int32_t result_rotri_32; ++ }; ++ T t; ++ ++ __ Ld_w(a4, MemOperand(a0, offsetof(T, input))); ++ ++ __ Rotr_w(a5, a4, 0); ++ __ Rotr_w(a6, a4, 0x04); ++ __ Rotr_w(a7, a4, 0x08); ++ __ Rotr_w(t0, a4, 0x0C); ++ __ Rotr_w(t1, a4, 0x10); ++ __ Rotr_w(t2, a4, -0x0C); ++ __ Rotr_w(t3, a4, -0x08); ++ __ Rotr_w(t4, a4, -0x04); ++ __ Rotr_w(t5, a4, 0x20); ++ __ St_w(a5, MemOperand(a0, offsetof(T, result_rotr_0))); ++ __ St_w(a6, MemOperand(a0, offsetof(T, result_rotr_4))); ++ __ St_w(a7, MemOperand(a0, offsetof(T, result_rotr_8))); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_rotr_12))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_rotr_16))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_rotr_20))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_rotr_24))); ++ __ St_w(t4, MemOperand(a0, offsetof(T, result_rotr_28))); ++ __ St_w(t5, MemOperand(a0, offsetof(T, result_rotr_32))); ++ ++ __ li(t5, 0); ++ __ Rotr_w(a5, a4, t5); ++ __ li(t5, 0x04); ++ __ Rotr_w(a6, a4, t5); ++ __ li(t5, 0x08); ++ __ Rotr_w(a7, a4, t5); ++ __ li(t5, 0x0C); ++ __ Rotr_w(t0, a4, t5); ++ __ li(t5, 0x10); ++ __ Rotr_w(t1, a4, t5); ++ __ li(t5, -0x0C); ++ __ Rotr_w(t2, a4, t5); ++ __ li(t5, -0x08); ++ __ Rotr_w(t3, a4, t5); ++ __ li(t5, -0x04); ++ __ Rotr_w(t4, a4, t5); ++ __ li(t5, 0x20); ++ __ Rotr_w(t5, a4, t5); ++ ++ __ St_w(a5, MemOperand(a0, offsetof(T, result_rotri_0))); ++ __ St_w(a6, MemOperand(a0, offsetof(T, result_rotri_4))); ++ __ St_w(a7, MemOperand(a0, offsetof(T, result_rotri_8))); ++ __ St_w(t0, MemOperand(a0, offsetof(T, result_rotri_12))); ++ __ St_w(t1, MemOperand(a0, offsetof(T, result_rotri_16))); ++ __ St_w(t2, MemOperand(a0, offsetof(T, result_rotri_20))); ++ __ St_w(t3, MemOperand(a0, offsetof(T, result_rotri_24))); ++ __ St_w(t4, MemOperand(a0, offsetof(T, result_rotri_28))); ++ __ St_w(t5, MemOperand(a0, offsetof(T, result_rotri_32))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.input = 0x12345678; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_rotr_0); ++ CHECK_EQ(static_cast(0x81234567), t.result_rotr_4); ++ CHECK_EQ(static_cast(0x78123456), t.result_rotr_8); ++ CHECK_EQ(static_cast(0x67812345), t.result_rotr_12); ++ CHECK_EQ(static_cast(0x56781234), t.result_rotr_16); ++ CHECK_EQ(static_cast(0x45678123), t.result_rotr_20); ++ CHECK_EQ(static_cast(0x34567812), t.result_rotr_24); ++ CHECK_EQ(static_cast(0x23456781), t.result_rotr_28); ++ CHECK_EQ(static_cast(0x12345678), t.result_rotr_32); ++ ++ CHECK_EQ(static_cast(0x12345678), t.result_rotri_0); ++ CHECK_EQ(static_cast(0x81234567), t.result_rotri_4); ++ CHECK_EQ(static_cast(0x78123456), t.result_rotri_8); ++ CHECK_EQ(static_cast(0x67812345), t.result_rotri_12); ++ CHECK_EQ(static_cast(0x56781234), t.result_rotri_16); ++ CHECK_EQ(static_cast(0x45678123), t.result_rotri_20); ++ CHECK_EQ(static_cast(0x34567812), t.result_rotri_24); ++ CHECK_EQ(static_cast(0x23456781), t.result_rotri_28); ++ CHECK_EQ(static_cast(0x12345678), t.result_rotri_32); ++} ++ ++TEST(Rotr_d) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct T { ++ int64_t input; ++ int64_t result_rotr_0; ++ int64_t result_rotr_8; ++ int64_t result_rotr_16; ++ int64_t result_rotr_24; ++ int64_t result_rotr_32; ++ int64_t result_rotr_40; ++ int64_t result_rotr_48; ++ int64_t result_rotr_56; ++ int64_t result_rotr_64; ++ int64_t result_rotri_0; ++ int64_t result_rotri_8; ++ int64_t result_rotri_16; ++ int64_t result_rotri_24; ++ int64_t result_rotri_32; ++ int64_t result_rotri_40; ++ int64_t result_rotri_48; ++ int64_t result_rotri_56; ++ int64_t result_rotri_64; ++ }; ++ T t; ++ ++ __ Ld_d(a4, MemOperand(a0, offsetof(T, input))); ++ ++ __ Rotr_d(a5, a4, 0); ++ __ Rotr_d(a6, a4, 0x08); ++ __ Rotr_d(a7, a4, 0x10); ++ __ Rotr_d(t0, a4, 0x18); ++ __ Rotr_d(t1, a4, 0x20); ++ __ Rotr_d(t2, a4, -0x18); ++ __ Rotr_d(t3, a4, -0x10); ++ __ Rotr_d(t4, a4, -0x08); ++ __ Rotr_d(t5, a4, 0x40); ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_rotr_0))); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_rotr_8))); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_rotr_16))); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_rotr_24))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_rotr_32))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_rotr_40))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_rotr_48))); ++ __ St_d(t4, MemOperand(a0, offsetof(T, result_rotr_56))); ++ __ St_d(t5, MemOperand(a0, offsetof(T, result_rotr_64))); ++ ++ __ li(t5, 0); ++ __ Rotr_d(a5, a4, t5); ++ __ li(t5, 0x08); ++ __ Rotr_d(a6, a4, t5); ++ __ li(t5, 0x10); ++ __ Rotr_d(a7, a4, t5); ++ __ li(t5, 0x18); ++ __ Rotr_d(t0, a4, t5); ++ __ li(t5, 0x20); ++ __ Rotr_d(t1, a4, t5); ++ __ li(t5, -0x18); ++ __ Rotr_d(t2, a4, t5); ++ __ li(t5, -0x10); ++ __ Rotr_d(t3, a4, t5); ++ __ li(t5, -0x08); ++ __ Rotr_d(t4, a4, t5); ++ __ li(t5, 0x40); ++ __ Rotr_d(t5, a4, t5); ++ ++ __ St_d(a5, MemOperand(a0, offsetof(T, result_rotri_0))); ++ __ St_d(a6, MemOperand(a0, offsetof(T, result_rotri_8))); ++ __ St_d(a7, MemOperand(a0, offsetof(T, result_rotri_16))); ++ __ St_d(t0, MemOperand(a0, offsetof(T, result_rotri_24))); ++ __ St_d(t1, MemOperand(a0, offsetof(T, result_rotri_32))); ++ __ St_d(t2, MemOperand(a0, offsetof(T, result_rotri_40))); ++ __ St_d(t3, MemOperand(a0, offsetof(T, result_rotri_48))); ++ __ St_d(t4, MemOperand(a0, offsetof(T, result_rotri_56))); ++ __ St_d(t5, MemOperand(a0, offsetof(T, result_rotri_64))); ++ ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ t.input = 0x0123456789ABCDEF; ++ f.Call(&t, 0, 0, 0, 0); ++ ++ CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotr_0); ++ CHECK_EQ(static_cast(0xEF0123456789ABCD), t.result_rotr_8); ++ CHECK_EQ(static_cast(0xCDEF0123456789AB), t.result_rotr_16); ++ CHECK_EQ(static_cast(0xABCDEF0123456789), t.result_rotr_24); ++ CHECK_EQ(static_cast(0x89ABCDEF01234567), t.result_rotr_32); ++ CHECK_EQ(static_cast(0x6789ABCDEF012345), t.result_rotr_40); ++ CHECK_EQ(static_cast(0x456789ABCDEF0123), t.result_rotr_48); ++ CHECK_EQ(static_cast(0x23456789ABCDEF01), t.result_rotr_56); ++ CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotr_64); ++ ++ CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotri_0); ++ CHECK_EQ(static_cast(0xEF0123456789ABCD), t.result_rotri_8); ++ CHECK_EQ(static_cast(0xCDEF0123456789AB), t.result_rotri_16); ++ CHECK_EQ(static_cast(0xABCDEF0123456789), t.result_rotri_24); ++ CHECK_EQ(static_cast(0x89ABCDEF01234567), t.result_rotri_32); ++ CHECK_EQ(static_cast(0x6789ABCDEF012345), t.result_rotri_40); ++ CHECK_EQ(static_cast(0x456789ABCDEF0123), t.result_rotri_48); ++ CHECK_EQ(static_cast(0x23456789ABCDEF01), t.result_rotri_56); ++ CHECK_EQ(static_cast(0x0123456789ABCDEF), t.result_rotri_64); ++} ++ ++TEST(macro_instructions4) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct T { ++ double a; ++ float b; ++ double result_floor_a; ++ float result_floor_b; ++ double result_ceil_a; ++ float result_ceil_b; ++ double result_trunc_a; ++ float result_trunc_b; ++ double result_round_a; ++ float result_round_b; ++ }; ++ T t; ++ ++ const int kTableLength = 16; ++ ++ // clang-format off ++ double inputs_d[kTableLength] = { ++ 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, ++ -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, ++ 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, ++ std::numeric_limits::max() - 0.1, ++ std::numeric_limits::infinity() ++ }; ++ float inputs_s[kTableLength] = { ++ 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, ++ -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, ++ 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, ++ std::numeric_limits::lowest() + 0.6, ++ std::numeric_limits::infinity() ++ }; ++ float outputs_round_s[kTableLength] = { ++ 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, ++ -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, ++ 1.7976931348623157E+38, 0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_round_d[kTableLength] = { ++ 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, ++ -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, ++ 1.7976931348623157E+308, 0, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ float outputs_trunc_s[kTableLength] = { ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 1.7976931348623157E+38, 0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_trunc_d[kTableLength] = { ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 1.7976931348623157E+308, 0, ++ std::numeric_limits::max() - 1, ++ std::numeric_limits::infinity() ++ }; ++ float outputs_ceil_s[kTableLength] = { ++ 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 1.7976931348623157E38, 1, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_ceil_d[kTableLength] = { ++ 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, ++ -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, ++ 1.7976931348623157E308, 1, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ float outputs_floor_s[kTableLength] = { ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, ++ 1.7976931348623157E38, 0, ++ std::numeric_limits::lowest() + 1, ++ std::numeric_limits::infinity() ++ }; ++ double outputs_floor_d[kTableLength] = { ++ 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, ++ -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, ++ 1.7976931348623157E308, 0, ++ std::numeric_limits::max(), ++ std::numeric_limits::infinity() ++ }; ++ // clang-format on ++ ++ __ Fld_d(f8, MemOperand(a0, offsetof(T, a))); ++ __ Fld_s(f9, MemOperand(a0, offsetof(T, b))); ++ __ Floor_d(f10, f8); ++ __ Floor_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_floor_a))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(T, result_floor_b))); ++ __ Ceil_d(f10, f8); ++ __ Ceil_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_ceil_a))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(T, result_ceil_b))); ++ __ Trunc_d(f10, f8); ++ __ Trunc_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_trunc_a))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(T, result_trunc_b))); ++ __ Round_d(f10, f8); ++ __ Round_s(f11, f9); ++ __ Fst_d(f10, MemOperand(a0, offsetof(T, result_round_a))); ++ __ Fst_s(f11, MemOperand(a0, offsetof(T, result_round_b))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ for (int i = 0; i < kTableLength; i++) { ++ t.a = inputs_d[i]; ++ t.b = inputs_s[i]; ++ f.Call(&t, 0, 0, 0, 0); ++ CHECK_EQ(t.result_floor_a, outputs_floor_d[i]); ++ CHECK_EQ(t.result_floor_b, outputs_floor_s[i]); ++ CHECK_EQ(t.result_ceil_a, outputs_ceil_d[i]); ++ CHECK_EQ(t.result_ceil_b, outputs_ceil_s[i]); ++ CHECK_EQ(t.result_trunc_a, outputs_trunc_d[i]); ++ CHECK_EQ(t.result_trunc_b, outputs_trunc_s[i]); ++ CHECK_EQ(t.result_round_a, outputs_round_d[i]); ++ CHECK_EQ(t.result_round_b, outputs_round_s[i]); ++ } ++} ++ ++uint64_t run_ExtractBits(uint64_t source, int pos, int size, bool sign_extend) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ if (sign_extend) { ++ __ ExtractBits(t0, a0, a1, size, true); ++ } else { ++ __ ExtractBits(t0, a0, a1, size); ++ } ++ __ or_(a0, t0, zero_reg); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(source, pos, 0, 0, 0)); ++ return res; ++} ++ ++TEST(ExtractBits) { ++ CcTest::InitializeVM(); ++ ++ struct TestCase { ++ uint64_t source; ++ int pos; ++ int size; ++ bool sign_extend; ++ uint64_t res; ++ }; ++ ++ // clang-format off ++ struct TestCase tc[] = { ++ //source, pos, size, sign_extend, res; ++ {0x800, 4, 8, false, 0x80}, ++ {0x800, 4, 8, true, 0xFFFFFFFFFFFFFF80}, ++ {0x800, 5, 8, true, 0x40}, ++ {0x40000, 3, 16, false, 0x8000}, ++ {0x40000, 3, 16, true, 0xFFFFFFFFFFFF8000}, ++ {0x40000, 4, 16, true, 0x4000}, ++ {0x200000000, 2, 32, false, 0x80000000}, ++ {0x200000000, 2, 32, true, 0xFFFFFFFF80000000}, ++ {0x200000000, 3, 32, true, 0x40000000}, ++ }; ++ // clang-format on ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t result = ++ run_ExtractBits(tc[i].source, tc[i].pos, tc[i].size, tc[i].sign_extend); ++ CHECK_EQ(tc[i].res, result); ++ } ++} ++ ++uint64_t run_InsertBits(uint64_t dest, uint64_t source, int pos, int size) { ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ __ InsertBits(a0, a1, a2, size); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ uint64_t res = reinterpret_cast(f.Call(dest, source, pos, 0, 0)); ++ return res; ++} ++ ++TEST(InsertBits) { ++ CcTest::InitializeVM(); ++ ++ struct TestCase { ++ uint64_t dest; ++ uint64_t source; ++ int pos; ++ int size; ++ uint64_t res; ++ }; ++ ++ // clang-format off ++ struct TestCase tc[] = { ++ //dest source, pos, size, res; ++ {0x11111111, 0x1234, 32, 16, 0x123411111111}, ++ {0x111111111111, 0xFFFFF, 24, 10, 0x1113FF111111}, ++ {0x1111111111111111, 0xFEDCBA, 16, 4, 0x11111111111A1111}, ++ }; ++ // clang-format on ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ uint64_t result = ++ run_InsertBits(tc[i].dest, tc[i].source, tc[i].pos, tc[i].size); ++ CHECK_EQ(tc[i].res, result); ++ } ++} ++ ++TEST(Popcnt) { ++ CcTest::InitializeVM(); ++ Isolate* isolate = CcTest::i_isolate(); ++ HandleScope scope(isolate); ++ MacroAssembler assembler(isolate, nullptr, 0, ++ v8::internal::CodeObjectRequired::kYes); ++ MacroAssembler* masm = &assembler; ++ ++ struct TestCase { ++ uint32_t a; ++ uint64_t b; ++ int expected_a; ++ int expected_b; ++ int result_a; ++ int result_b; ++ }; ++ // clang-format off ++ struct TestCase tc[] = { ++ { 0x12345678, 0x1122334455667788, 13, 26, 0, 0}, ++ { 0x1234, 0x123456, 5, 9, 0, 0}, ++ { 0xFFF00000, 0xFFFF000000000000, 12, 16, 0, 0}, ++ { 0xFF000012, 0xFFFF000000001234, 10, 21, 0, 0} ++ }; ++ // clang-format on ++ ++ __ Ld_w(t0, MemOperand(a0, offsetof(TestCase, a))); ++ __ Ld_d(t1, MemOperand(a0, offsetof(TestCase, b))); ++ __ Popcnt_w(t2, t0); ++ __ Popcnt_d(t3, t1); ++ __ St_w(t2, MemOperand(a0, offsetof(TestCase, result_a))); ++ __ St_w(t3, MemOperand(a0, offsetof(TestCase, result_b))); ++ __ jirl(zero_reg, ra, 0); ++ ++ CodeDesc desc; ++ masm->GetCode(isolate, &desc); ++ Handle code = ++ isolate->factory()->NewCode(desc, Code::STUB, Handle()); ++ auto f = GeneratedCode::FromCode(*code); ++ ++ size_t nr_test_cases = sizeof(tc) / sizeof(TestCase); ++ for (size_t i = 0; i < nr_test_cases; ++i) { ++ f.Call(&tc[i], 0, 0, 0, 0); ++ CHECK_EQ(tc[i].expected_a, tc[i].result_a); ++ CHECK_EQ(tc[i].expected_b, tc[i].result_b); ++ } ++} ++ ++#undef __ ++ ++} // namespace internal ++} // namespace v8 +diff --git a/deps/v8/tools/dev/gm.py b/deps/v8/tools/dev/gm.py +index 3513664..ba95aaf 100755 +--- a/deps/v8/tools/dev/gm.py ++++ b/deps/v8/tools/dev/gm.py +@@ -31,7 +31,7 @@ BUILD_TARGETS_ALL = ["all"] + + # All arches that this script understands. + ARCHES = ["ia32", "x64", "arm", "arm64", "mipsel", "mips64el", "ppc", "ppc64", +- "s390", "s390x"] ++ "s390", "s390x", "loong64"] + # Arches that get built/run when you don't specify any. + DEFAULT_ARCHES = ["ia32", "x64", "arm", "arm64"] + # Modes that this script understands. +@@ -219,7 +219,7 @@ class Config(object): + + def GetV8TargetCpu(self): + if self.arch in ("arm", "arm64", "mipsel", "mips64el", "ppc", "ppc64", +- "s390", "s390x"): ++ "s390", "s390x", "loong64"): + return "\nv8_target_cpu = \"%s\"" % self.arch + return "" + +diff --git a/tools/inspector_protocol/lib/Maybe_h.template b/tools/inspector_protocol/lib/Maybe_h.template +index 22cfac6..09b82d1 100644 +--- a/tools/inspector_protocol/lib/Maybe_h.template ++++ b/tools/inspector_protocol/lib/Maybe_h.template +@@ -32,10 +32,14 @@ + #define IP_TARGET_ARCH_MIPS 1 + #endif + ++#if defined(__loongarch64) ++#define IP_TARGET_ARCH_LOONGARCH64 1 ++#endif ++ + // Allowing the use of noexcept by removing the keyword on older compilers that + // do not support adding noexcept to default members. + #if ((IP_GNUC_PREREQ(4, 9, 0) && !defined(IP_TARGET_ARCH_MIPS) && \ +- !defined(IP_TARGET_ARCH_MIPS64)) || \ ++ !defined(IP_TARGET_ARCH_MIPS64)) || !defined(IP_TARGET_ARCH_LOONGARCH64) || \ + (defined(__clang__) && __cplusplus > 201300L)) + #define IP_NOEXCEPT noexcept + #else +@@ -134,6 +138,7 @@ public: + #undef IP_GNUC_PREREQ + #undef IP_TARGET_ARCH_MIPS64 + #undef IP_TARGET_ARCH_MIPS ++#undef IP_TARGET_ARCH_LOONGARCH64 + #undef IP_NOEXCEPT + + #endif // !defined({{"_".join(config.protocol.namespace)}}_Maybe_h) +-- +2.27.0 + diff --git a/nodejs.spec b/nodejs.spec index 7021757..608b52c 100644 --- a/nodejs.spec +++ b/nodejs.spec @@ -1,3 +1,5 @@ +%define anolis_release .0.1 + %global with_debug 0 # PowerPC, s390x and aarch64 segfault during Debug builds @@ -56,8 +58,8 @@ # http-parser - from deps/http_parser/http_parser.h %global http_parser_major 2 -%global http_parser_minor 9 -%global http_parser_patch 4 +%global http_parser_minor 8 +%global http_parser_patch 0 %global http_parser_version %{http_parser_major}.%{http_parser_minor}.%{http_parser_patch} # libuv - from deps/uv/include/uv/version.h @@ -68,7 +70,7 @@ # nghttp2 - from deps/nghttp2/lib/includes/nghttp2/nghttp2ver.h %global nghttp2_major 1 -%global nghttp2_minor 41 +%global nghttp2_minor 33 %global nghttp2_patch 0 %global nghttp2_version %{nghttp2_major}.%{nghttp2_minor}.%{nghttp2_patch} @@ -113,7 +115,7 @@ Name: nodejs Epoch: %{nodejs_epoch} Version: %{nodejs_version} -Release: %{nodejs_release}%{?dist} +Release: %{nodejs_release}%{anolis_release}%{?dist} Summary: JavaScript runtime License: MIT and ASL 2.0 and ISC and BSD Group: Development/Languages @@ -149,9 +151,13 @@ Patch3: 0003-build-auto-load-ICU-data-from-with-icu-default-data-.patch # CVE-2020-7774 Patch4: 0004-CVE-2020-7774-nodejs-y18n-prototype-pollution-vulnerability.patch +# add LoongArch support +Patch5: 0005-add-LoongArch-support.patch + BuildRequires: make BuildRequires: python2-devel BuildRequires: python3-devel +BuildRequires: python2-rpm-macros BuildRequires: zlib-devel BuildRequires: gcc >= 6.3.0 BuildRequires: gcc-c++ >= 6.3.0 @@ -232,9 +238,9 @@ Provides: bundled(icu) = %{icu_version} # Make sure we keep NPM up to date when we update Node.js %if 0%{?rhel} # EPEL doesn't support Recommends, so make it strict -Requires: npm = %{npm_epoch}:%{npm_version}-%{npm_release}%{?dist} +Requires: npm = %{npm_epoch}:%{npm_version}-%{npm_release}%{anolis_release}%{?dist} %else -Recommends: npm = %{npm_epoch}:%{npm_version}-%{npm_release}%{?dist} +Recommends: npm = %{npm_epoch}:%{npm_version}-%{npm_release}%{anolis_release}%{?dist} %endif # Provide bundled brotli until we can build it with system package @@ -251,7 +257,7 @@ real-time applications that run across distributed devices. %package devel Summary: JavaScript runtime - development headers Group: Development/Languages -Requires: %{name}%{?_isa} = %{epoch}:%{nodejs_version}-%{nodejs_release}%{?dist} +Requires: %{name}%{?_isa} = %{epoch}:%{nodejs_version}-%{nodejs_release}%{anolis_release}%{?dist} Requires: openssl-devel%{?_isa} Requires: zlib-devel%{?_isa} Requires: nodejs-packaging @@ -269,7 +275,7 @@ Development headers for the Node.js JavaScript runtime. %package full-i18n Summary: Non-English locale data for Node.js -Requires: %{name}%{?_isa} = %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{?dist} +Requires: %{name}%{?_isa} = %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{anolis_release}%{?dist} %description full-i18n Optional data files to provide full-icu support for Node.js. Remove this @@ -280,14 +286,14 @@ package to save space if non-English locales are not needed. Summary: Node.js Package Manager Epoch: %{npm_epoch} Version: %{npm_version} -Release: %{npm_release}%{?dist} +Release: %{npm_release}%{anolis_release}%{?dist} # We used to ship npm separately, but it is so tightly integrated with Node.js # (and expected to be present on all Node.js systems) that we ship it bundled # now. Obsoletes: npm < 0:3.5.4-6 Provides: npm = %{npm_epoch}:%{npm_version} -Requires: nodejs = %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{?dist} +Requires: nodejs = %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{anolis_release}%{?dist} # Do not add epoch to the virtual NPM provides or it will break # the automatic dependency-generation script. @@ -306,8 +312,8 @@ BuildArch: noarch # We don't require that the main package be installed to # use the docs, but if it is installed, make sure the # version always matches -Conflicts: %{name} > %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{?dist} -Conflicts: %{name} < %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{?dist} +Conflicts: %{name} > %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{anolis_release}%{?dist} +Conflicts: %{name} < %{nodejs_epoch}:%{nodejs_version}-%{nodejs_release}%{anolis_release}%{?dist} %description docs The API documentation for the Node.js JavaScript runtime. @@ -373,8 +379,6 @@ export LDFLAGS="%{build_ldflags}" --shared-openssl \ --shared-zlib \ --shared-libuv \ - --shared-http-parser \ - --shared-nghttp2 \ --with-dtrace \ --with-intl=small-icu \ --with-icu-default-data-dir=%{icudatadir} \ @@ -621,6 +625,9 @@ end %changelog +* Wed Feb 22 2022 Shi Pujin - 1:10.24.0-1.0.1 +- add LoongArch support + * Wed Feb 24 2021 Zuzana Svetlikova - 1:10.24.0-1 - Resolves: RHBZ#1932373, RHBZ#1932426 - Resolves CVE-2021-22883 and CVE-2021-22884 -- Gitee