# TensorFlow2.0-Examples **Repository Path**: se7enXF/TensorFlow2.0-Examples ## Basic Information - **Project Name**: TensorFlow2.0-Examples - **Description**: Fork from github - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-07-22 - **Last Updated**: 2022-06-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tensorflow2.0 Examples > "Talk is cheap, show me the code."
>                                                                     --------- Linus Torvalds This tutorial was designed for easily diving into TensorFlow2.0. it includes both notebooks and source codes with explanation. It will be continuously updated ! 🐍🐍🐍🐍🐍🐍 #### 1 - Introduction - **Hello World** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/1-Introduction/helloworld.ipynb)) ([code](1-Introduction/helloworld.py)). Very simple example to learn how to print "hello world" using TensorFlow. - **Variable** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/1-Introduction/variable.ipynb)) ([code](1-Introduction/variable.py)). Learn to use variable in tensorflow. - **Basical operation** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/1-Introduction/basic_operations.ipynb)) ([code](1-Introduction/basic_operations.py)). A simple example that covers TensorFlow basic operations. - **Activation** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/1-Introduction/activation.ipynb)) ([code](1-Introduction/activation.py)). Start to know some activation functions in tensorflow. - **GradientTape** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/1-Introduction/GradientTape.ipynb)) ([code](1-Introduction/GradientTape.py)). Introduce a key technique for automatic differentiation #### 2 - Basical Models - **Linear Regression** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/2-Basical_Models/Linear_Regression.ipynb)) ([code](2-Basical_Models/Linear_Regression.py)). Implement a Linear Regression with TensorFlow. - **Logistic Regression** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/2-Basical_Models/Logistic_Regression.ipynb)) ([code](2-Basical_Models/Logistic_Regression.py)). Implement a Logistic Regression with TensorFlow. - **Multilayer Perceptron Layer** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/2-Basical_Models/Multilayer_Perceptron.ipynb)) ([code](2-Basical_Models/Multilayer_Perceptron.py)). Implement Multi-Layer Perceptron Model with TensorFlow. #### 3 - Image Classification - **VGG16** ([notebook](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/3-Image_Classification/vgg16)) ([code](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/3-Image_Classification/vgg16/vgg16.py))([paper](https://arxiv.org/pdf/1409.1556.pdf)). VGG16: Very Deep Convolutional Networks for Large-Scale Image Recognition #### 4 - Object Detection - **YOLOv3** ([notebook](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/4-Object_Detection/YOLOV3)) ([code](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/4-Object_Detection/YOLOV3/core/yolov3.py))([paper](https://arxiv.org/pdf/1804.02767.pdf)). YOLOv3: An Incremental Improvement.🔥🔥🔥🔥🔥 - **RPN** ([notebook](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/4-Object_Detection/RPN)) ([code](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/4-Object_Detection/RPN)). RPN: RegionProposal Network, Backbone of [Faster R-CNN](https://arxiv.org/pdf/1506.01497.pdf) 🔥🔥🔥 #### 5 - Generative Adversarial Networks - **DCGAN** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/5-Generative_Adversarial_Networks/dcgan.ipynb)) ([code](5-Generative_Adversarial_Networks/dcgan.py))([paper](https://arxiv.org/pdf/1511.06434.pdf)). Deep Convolutional Generative Adversarial Network. - **Pix2Pix** ([notebook](https://nbviewer.jupyter.org/github/YunYang1994/tensorflow2.0-examples/blob/master/5-Generative_Adversarial_Networks/Pix2Pix.ipynb)) ([code](5-Generative_Adversarial_Networks/Pix2Pix.py))([paper](https://arxiv.org/pdf/1611.07004.pdf)). Image-to-Image Translation with Conditional Adversarial Networks. #### 6 - Reinforcement Learning - **DQN** ([notebook](6-Reinforcement_Learning/YOLOV2.ipynb)) ([code](6-Reinforcement_Learning/YOLOV2.py)). deep Q-network (DQN). #### 7 - Utilities