# computer-vision-learning **Repository Path**: madao33/computer-vision-learning ## Basic Information - **Project Name**: computer-vision-learning - **Description**: some classical computer vision papers learning and codes implementation - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-14 - **Last Updated**: 2022-01-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # computer-vison-learning(机器视觉经典论文学习及复现) ## 前言 该仓库存储的是个人阅读的机器视觉的经典论文,包括相关的笔记以及尝试复现的代码,有相关同好的可以相互交流,目前复现的代码及相关参考仓库如下 ## LeNet-5 * paper: [Lecun Y , Bottou L . Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=726791) * codes: [activatedgeek/LeNet-5](https://github.com/activatedgeek/LeNet-5) * LeNet-5网络框架学习笔记及仿真: [LeNet-5网络仿真实现](https://www.madao33.com/post/8/) ## AlexNet * paper: [Krizhevsky A , Sutskever I , Hinton G . ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2).](https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf) * codes: [Sowndharya206/alexnet](https://github.com/Sowndharya206/alexnet) * 个人笔记: * [AlexNet网络学习及仿真](https://www.madao33.com/post/10/) * [AlexNet基于MNIST数据集的代码实现](https://www.madao33.com/post/12/) ## GoogleNet * paper: [Szegedy C , Liu W , Jia Y , et al. Going Deeper with Convolutions[J]. IEEE Computer Society, 2014.](https://arxiv.org/pdf/1409.4842.pdf) * codes: [hawrot/image-classification-pytorch](https://github.com/hawrot/image-classification-pytorch) * 个人笔记: [GoogLeNet学习笔记](https://www.madao33.com/post/13/) > GoogLeNet 因为目前没有GPU,训练没有完成 ## VGGNet * paper: [Simonyan K , Zisserman A . Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.](https://arxiv.org/pdf/1409.1556.pdf) * codes: [jays0606/VGGNet](https://github.com/jays0606/VGGNet) * 个人笔记: [VGGNet学习笔记及仿真](https://www.madao33.com/post/14/) ## ResNet * paper: [He K , Zhang X , Ren S , et al. Deep Residual Learning for Image Recognition[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.](https://arxiv.org/pdf/1512.03385.pdf) * codes: [Bingmang/pytorch-cifar10-notebook](https://github.com/Bingmang/pytorch-cifar10-notebook) * 个人笔记:[ResNet学习笔记及仿真](https://www.madao33.com/post/15/) ## SeNet * paper: [Hu J, Shen L, Sun G. Squeeze-and-excitation networks[J]. arXiv preprint arXiv:1709.01507, 2017, 7.](https://arxiv.org/pdf/1709.01507.pdf) * codes: [JYPark09/SENet-Pytorch](https://github.com/JYPark09/SENet-PyTorch) * 个人学习笔记:[SeNet学习笔记及仿真](https://www.madao33.com/post/16/) ## DenseNet * paper: [Huang G , Liu Z , Laurens V , et al. Densely Connected Convolutional Networks[J]. IEEE Computer Society, 2016.](https://arxiv.org/pdf/1608.06993.pdf) * codes: [gpleiss/efficient_densenet_pytorch](https://github.com/gpleiss/efficient_densenet_pytorch) * 个人学习笔记:[DenseNet学习笔记及仿真](https://www.madao33.com/post/20/)