# clustering_tutorial **Repository Path**: luminghao/clustering_tutorial ## Basic Information - **Project Name**: clustering_tutorial - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-21 - **Last Updated**: 2021-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Clustering Notebook of KMeans(++), Gaussian Mixture and Spectral Clustering, with clean implementation. I hope they could be helpful for you to study the ideas of the 3 clustering algorithms. Any suggestion, email me: jekyll4168_at_icloud_dot_com . 1. [Intuition with scikit-learn](0_scikit-learn_KMeans_GMM_and_Spectral_Clustering.ipynb) 2. [KMeans and KMeans++](1_KMeans_and_KMeans++.ipynb) 3. [Gaussian Mixture](2_Gaussian_Mixture_and_EM.ipynb) 4. [Spectral Clustering](3_Spectral_Clustering.ipynb) # Note I didn't refactor the functions in these notebooks into OOP style. So if you want a clean class implementation, you can find in my contributions to [MLAlgorithms](https://github.com/rushter/MLAlgorithms/). * [Gaussian Mixture](https://github.com/rushter/MLAlgorithms/blob/master/mla/gaussian_mixture.py) # Dependency Python 3 with **numpy, matplotlib and sklearn**. Though I didn't test carefully, it should run well with Python 2 too. # LICENSE MIT