# MXMNet **Repository Path**: longyujian/MXMNet ## Basic Information - **Project Name**: MXMNet - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-24 - **Last Updated**: 2021-09-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (MXMNet) proposed in our [paper](https://arxiv.org/abs/2011.07457), which has been accepted by the Machine Learning for Structural Biology Workshop ([MLSB 2020](https://www.mlsb.io/)) and the Machine Learning for Molecules Workshop ([ML4Molecules 2020](https://ml4molecules.github.io/)) at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020). ## Overall Architecture

## Requirements CUDA : 10.1 Python : 3.7.10 The other dependencies can be installed with: ``` pip install -r requirements.txt ``` ## How to Run You can directly download, preprocess the QM9 dataset and train the model with ``` python main.py ``` Optional arguments: ``` --gpu GPU number --seed random seed --epochs number of epochs to train --lr initial learning rate --wd weight decay value --n_layer number of hidden layers --dim size of input hidden units --batch_size batch size --target index of target (0~11) for prediction on QM9 --cutoff distance cutoff used in the global layer ``` The default model to be trained is the MXMNet (BS=128, d_g=5) by using '--batch_size=128 --cutoff=5.0'. ## Cite If you find this model and code are useful in your work, please cite our paper: ``` @inproceedings{zhang2020molecular, title = {Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures}, author = {Zhang, Shuo and Liu, Yang and Xie, Lei}, booktitle = {NeurIPS-W}, year = {2020} } ```