# MXMNet
**Repository Path**: longyujian/MXMNet
## Basic Information
- **Project Name**: MXMNet
- **Description**: No description available
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-09-24
- **Last Updated**: 2021-09-24
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
Code for the Multiplex Molecular Graph Neural Network (MXMNet) proposed in our [paper](https://arxiv.org/abs/2011.07457), which has been accepted by the Machine Learning for Structural Biology Workshop ([MLSB 2020](https://www.mlsb.io/)) and the Machine Learning for Molecules Workshop ([ML4Molecules 2020](https://ml4molecules.github.io/)) at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020).
## Overall Architecture
## Requirements
CUDA : 10.1
Python : 3.7.10
The other dependencies can be installed with:
```
pip install -r requirements.txt
```
## How to Run
You can directly download, preprocess the QM9 dataset and train the model with
```
python main.py
```
Optional arguments:
```
--gpu GPU number
--seed random seed
--epochs number of epochs to train
--lr initial learning rate
--wd weight decay value
--n_layer number of hidden layers
--dim size of input hidden units
--batch_size batch size
--target index of target (0~11) for prediction on QM9
--cutoff distance cutoff used in the global layer
```
The default model to be trained is the MXMNet (BS=128, d_g=5) by using '--batch_size=128 --cutoff=5.0'.
## Cite
If you find this model and code are useful in your work, please cite our paper:
```
@inproceedings{zhang2020molecular,
title = {Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures},
author = {Zhang, Shuo and Liu, Yang and Xie, Lei},
booktitle = {NeurIPS-W},
year = {2020}
}
```