# pytorch_sparse **Repository Path**: jiangvshine/pytorch_sparse ## Basic Information - **Project Name**: pytorch_sparse - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-15 - **Last Updated**: 2021-03-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [pypi-image]: https://badge.fury.io/py/torch-sparse.svg [pypi-url]: https://pypi.python.org/pypi/torch-sparse [build-image]: https://travis-ci.org/rusty1s/pytorch_sparse.svg?branch=master [build-url]: https://travis-ci.org/rusty1s/pytorch_sparse [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master # PyTorch Sparse [![PyPI Version][pypi-image]][pypi-url] [![Build Status][build-image]][build-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently consists of the following methods: * **[Coalesce](#coalesce)** * **[Transpose](#transpose)** * **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** * **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** All included operations work on varying data types and are implemented both for CPU and GPU. To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)). Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. ## Installation ### Binaries We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://pytorch-geometric.com/whl). #### PyTorch 1.8.0 To install the binaries for PyTorch 1.8.0, simply run ``` pip install torch-scatter torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu101`, `cu102`, or `cu111` depending on your PyTorch installation. | | `cpu` | `cu101` | `cu102` | `cu111` | |-------------|-------|---------|---------|---------| | **Linux** | ✅ | ✅ | ✅ | ✅ | | **Windows** | ✅ | ✅ | ✅ | ✅ | | **macOS** | ✅ | | | | #### PyTorch 1.7.0/1.7.1 To install the binaries for PyTorch 1.7.0 and 1.7.1, simply run ``` pip install torch-scatter torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101`, `cu102`, or `cu110` depending on your PyTorch installation. | | `cpu` | `cu92` | `cu101` | `cu102` | `cu110` | |-------------|-------|--------|---------|---------|---------| | **Linux** | ✅ | ✅ | ✅ | ✅ | ✅ | | **Windows** | ✅ | ❌ | ✅ | ✅ | ✅ | | **macOS** | ✅ | | | | | **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0 and PyTorch 1.6.0 (following the same procedure). ### From source Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: ``` $ python -c "import torch; print(torch.__version__)" >>> 1.4.0 $ echo $PATH >>> /usr/local/cuda/bin:... $ echo $CPATH >>> /usr/local/cuda/include:... ``` If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file. Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`. Afterwards, set the environment variable `WITH_METIS=1`. Then run: ``` pip install torch-scatter torch-sparse ``` When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: ``` export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX" ``` ## Functions ### Coalesce ``` torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor) ``` Row-wise sorts `index` and removes duplicate entries. Duplicate entries are removed by scattering them together. For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used. #### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **op** *(string, optional)* - The scatter operation to use. (default: `"add"`) #### Returns * **index** *(LongTensor)* - The coalesced index tensor of sparse matrix. * **value** *(Tensor)* - The coalesced value tensor of sparse matrix. #### Example ```python import torch from torch_sparse import coalesce index = torch.tensor([[1, 0, 1, 0, 2, 1], [0, 1, 1, 1, 0, 0]]) value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) index, value = coalesce(index, value, m=3, n=2) ``` ``` print(index) tensor([[0, 1, 1, 2], [1, 0, 1, 0]]) print(value) tensor([[6.0, 8.0], [7.0, 9.0], [3.0, 4.0], [5.0, 6.0]]) ``` ### Transpose ``` torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor) ``` Transposes dimensions 0 and 1 of a sparse matrix. #### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`) #### Returns * **index** *(LongTensor)* - The transposed index tensor of sparse matrix. * **value** *(Tensor)* - The transposed value tensor of sparse matrix. #### Example ```python import torch from torch_sparse import transpose index = torch.tensor([[1, 0, 1, 0, 2, 1], [0, 1, 1, 1, 0, 0]]) value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) index, value = transpose(index, value, 3, 2) ``` ``` print(index) tensor([[0, 0, 1, 1], [1, 2, 0, 1]]) print(value) tensor([[7.0, 9.0], [5.0, 6.0], [6.0, 8.0], [3.0, 4.0]]) ``` ### Sparse Dense Matrix Multiplication ``` torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor ``` Matrix product of a sparse matrix with a dense matrix. #### Parameters * **index** *(LongTensor)* - The index tensor of sparse matrix. * **value** *(Tensor)* - The value tensor of sparse matrix. * **m** *(int)* - The first dimension of corresponding dense matrix. * **n** *(int)* - The second dimension of corresponding dense matrix. * **matrix** *(Tensor)* - The dense matrix. #### Returns * **out** *(Tensor)* - The dense output matrix. #### Example ```python import torch from torch_sparse import spmm index = torch.tensor([[0, 0, 1, 2, 2], [0, 2, 1, 0, 1]]) value = torch.Tensor([1, 2, 4, 1, 3]) matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]]) out = spmm(index, value, 3, 3, matrix) ``` ``` print(out) tensor([[7.0, 16.0], [8.0, 20.0], [7.0, 19.0]]) ``` ### Sparse Sparse Matrix Multiplication ``` torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor) ``` Matrix product of two sparse tensors. Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force). #### Parameters * **indexA** *(LongTensor)* - The index tensor of first sparse matrix. * **valueA** *(Tensor)* - The value tensor of first sparse matrix. * **indexB** *(LongTensor)* - The index tensor of second sparse matrix. * **valueB** *(Tensor)* - The value tensor of second sparse matrix. * **m** *(int)* - The first dimension of first corresponding dense matrix. * **k** *(int)* - The second dimension of first corresponding dense matrix and first dimension of second corresponding dense matrix. * **n** *(int)* - The second dimension of second corresponding dense matrix. * **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`) #### Returns * **index** *(LongTensor)* - The output index tensor of sparse matrix. * **value** *(Tensor)* - The output value tensor of sparse matrix. #### Example ```python import torch from torch_sparse import spspmm indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]]) valueA = torch.Tensor([1, 2, 3, 4, 5]) indexB = torch.tensor([[0, 2], [1, 0]]) valueB = torch.Tensor([2, 4]) indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) ``` ``` print(indexC) tensor([[0, 1, 2], [0, 1, 1]]) print(valueC) tensor([8.0, 6.0, 8.0]) ``` ## C++ API `torch-sparse` also offers a C++ API that contains C++ equivalent of python models. ``` mkdir build cd build # Add -DWITH_CUDA=on support for the CUDA if needed cmake .. make make install ``` ## Running tests ``` python setup.py test ```