# pixie **Repository Path**: gi/pixie ## Basic Information - **Project Name**: pixie - **Description**: Instant Kubernetes-Native Application Observability Pixie 是 Kubernetes 应用的可观察性工具,它可以查看集群的高级状态,如服务地图、集群资源和应用流量;还可以深入到更详细的视图,如 pod 状态、火焰图和单个 full-body 应用请求。 Pixie 使用 eBPF 自动收集遥测数据,它在集群本地收集、存储和查询所有的遥测数 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://px.dev - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2021-11-27 - **Last Updated**: 2022-02-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: Kubernetes, devops ## README [![Pixie!](./.readme_assets/pixie-horizontal-color.png)](https://px.dev)
[![Docs](https://img.shields.io/badge/docs-latest-blue)](https://docs.px.dev) [![Slack](https://slackin.px.dev/badge.svg)](https://slackin.px.dev) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/pixie_run.svg?style=social&label=Follow%20%40pixie_run)](https://twitter.com/pixie_run) [![Mentioned in Awesome Kubernetes](https://awesome.re/mentioned-badge.svg)](https://github.com/ramitsurana/awesome-kubernetes) [![Mentioned in Awesome Go](https://awesome.re/mentioned-badge.svg)](https://github.com/avelino/awesome-go) [![Build Status](https://jenkins.corp.pixielabs.ai/buildStatus/icon?job=pixie-oss%2Fbuild-and-test-all)](https://jenkins.corp.pixielabs.ai/job/pixie-oss/job/build-and-test-all/) [![codecov](https://codecov.io/gh/pixie-io/pixie/branch/main/graph/badge.svg?token=UG7P3QE5PQ)](https://codecov.io/gh/pixie-io/pixie) [![FOSSA Status](https://app.fossa.com/api/projects/custom%2B26327%2Fgithub.com%2Fpixie-io%2Fpixie.svg?type=shield)](https://app.fossa.com/projects/custom%2B26327%2Fgithub.com%2Fpixie-io%2Fpixie?ref=badge_shield)
Pixie is an open source observability tool for Kubernetes applications. Use Pixie to view the high-level state of your cluster (service maps, cluster resources, application traffic) and also drill-down into more detailed views (pod state, flame graphs, individual full-body application requests). ## Why Pixie? Three features enable Pixie's magical developer experience: - **Auto-telemetry:** Pixie uses eBPF to automatically collect telemetry data such as full-body requests, resource and network metrics, application profiles, and more. See the full list of data sources [here](https://docs.px.dev/about-pixie/data-sources/). - **In-Cluster Edge Compute:** Pixie collects, stores and queries all telemetry data locally in the cluster. Pixie uses less than 5% of cluster CPU, and in most cases less than 2%. - **Scriptability:** [PxL](https://docs.px.dev/reference/pxl/), Pixie’s flexible Pythonic query language, can be used across Pixie’s UI, CLI, and client APIs. ## Use Cases ### Network Monitoring Network Flow Graph
Use Pixie to monitor your network, including: - The flow of network traffic within your cluster. - The flow of DNS requests within your cluster. - Individual full-body DNS requests and responses. - A Map of TCP drops and TCP retransmits across your cluster.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/network-monitoring/) or [watch](https://youtu.be/qIxzIPBhAUI) an overview.
### Infrastructure Health Infrastructure Monitoring
Monitor your infrastructure alongside your network and application layer, including: - Resource usage by Pod, Node, Namespace. - CPU flamegraphs per Pod, Node.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/infra-health/) or [watch](https://youtu.be/2dFIpiBryu8) an overview.
### Service Performance Service Performance
Pixie automatically traces a [variety of protocols](https://docs.px.dev/about-pixie/data-sources/). Get immediate visibility into the health of your services, including: - The flow of traffic between your services. - Latency per service and endpoint. - Sample of the slowest requests for an individual service.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/service-performance/) or [watch](https://youtu.be/Rex0yz_5vwc) an overview.
### Database Query Profiling Database Query Profilling
Pixie automatically traces a number of different [database protocols](https://docs.px.dev/about-pixie/data-sources/#supported-protocols). Use Pixie to monitor the performance of your database requests: - Latency, error and throughput (LET) rate for all pods. - LET rate per normalized query. - Latency per individual full body query. - Individual full-body requests and responses.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/database-query-profiling/) or [watch](https://youtu.be/5NkU--hDXRQ) an overview.
### Request Tracing Request Tracing
Pixie makes debugging this communication between microservices easy by providing immediate and deep (full-body) visibility into requests flowing through your cluster. See: - Full-body requests and response for [supported protocols](https://docs.px.dev/about-pixie/data-sources/#supported-protocols). - Error rate per Service, Pod.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/request-tracing/) or [watch](https://youtu.be/Gl0so4rbwno) an overview.
### Continuous Application Profiling Continuous Application Profiling
Use Pixie's continuous profiling feature to identify performance issues within application code.
For more details, check out the [tutorial](https://docs.px.dev/tutorials/pixie-101/profiler/) or [watch](https://youtu.be/Zr-s3EvAey8) an overview.
### Distributed bpftrace Deployment Use Pixie to deploy a [bpftrace](https://github.com/iovisor/bpftrace) program to all of the nodes in your cluster. After deploying the program, Pixie captures the output into a table and makes the data available to be queried and visualized int he Pixie UI. TCP Drops pictured. For more details, check out the [tutorial](https://docs.px.dev/tutorials/custom-data/distributed-bpftrace-deployment/) or [watch](https://youtu.be/xT7OYAgIV28) an overview. ### Dynamic Go Logging Debug Go binaries deployed in production environments without needing to recompile and redeploy. For more details, check out the [tutorial](https://docs.px.dev/tutorials/custom-data/dynamic-go-logging/) or [watch](https://youtu.be/aH7PHSsiIPM) an overview.
## Get Started Request Tracing It takes just a few minutes to install Pixie. To get started, check out the [Install Guides](https://docs.px.dev/installing-pixie/install-guides/).
Once installed, you can interact with Pixie using the: - [Web-based Live UI](https://docs.px.dev/using-pixie/using-live-ui/) - [CLI](https://docs.px.dev/using-pixie/using-cli/) - [API](https://docs.px.dev/using-pixie/api-quick-start/)
## Get Involved Pixie is a community driven project; we welcome your contribution! For code contributions, please read our [contribution guide](CONTRIBUTING.md). - File a [GitHub issue](https://github.com/pixie-io/pixie/issues) to report a bug or request a feature. - Join our [Slack](https://slackin.px.dev) for live conversations and quick questions. - Follow us on [Twitter](https://twitter.com/pixie_run) and [YouTube](https://www.youtube.com/channel/UCOMCDRvBVNIS0lCyOmst7eg). - Join our monthly [community meetings](https://px.dev/community/#events). - Provide feedback on our [roadmap](https://docs.px.dev/about-pixie/roadmap/).
## About Pixie Pixie was contributed by [New Relic, Inc.](https://newrelic.com/) to the [Cloud Native Computing Foundation](https://www.cncf.io/) as a Sandbox project in June 2021. ## License Pixie is licensed under [Apache License, Version 2.0](LICENSE).