# LearningToLearn **Repository Path**: facebookresearch/LearningToLearn ## Basic Information - **Project Name**: LearningToLearn - **Description**: Collection of algorithms to learn loss and reward functions via gradient-based bi-level optimization. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: fm_mnist - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-07-30 - **Last Updated**: 2023-08-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # LearningToLearn This repository contains code for * ML3: Meta-Learning via Learned Losses, presented at ICPR 2020, *won best student award* ([pdf](https://arxiv.org/pdf/1906.05374.pdf)) * MBIRL: Model-Based Inverse Reinforcement Learning from Visual Demonstrations, presented at CoRL 2020 ([pdf](https://arxiv.org/pdf/2010.09034.pdf)) ## Setup In the LearningToLearn folder, run: ``` conda create -n l2l python=3.7 conda activate l2l python setup.py develop ``` ## ML3 paper experiments and citation To reproduce results of the ML3 paper follow the README instructions in the `ml3` folder #### Citation ``` @inproceedings{ml3, author = {Sarah Bechtle and Artem Molchanov and Yevgen Chebotar and Edward Grefenstette and Ludovic Righetti and Gaurav Sukhatme and Franziska Meier}, title = {Meta Learning via Learned Loss}, booktitle = {International Conference on Pattern Recognition, {ICPR}, Italy, January 10-15, 2021}, year = {2021} } ``` ## MBIRL paper experiments and citation To test our MBIRL algorithm follow the README instructions in the `mbirl` folder #### Citation ``` @InProceedings{mbirl, author = {Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai and Franziska Meier}, booktitle = {Conference on Robot Learning (CoRL)}, title = {Model Based Inverse Reinforcement Learning from Visual Demonstration}, year = {2020}, video = {https://www.youtube.com/watch?v=sRrNhtLk12M&t=52s}, } ``` ## License `LearningToLearn` is released under the MIT license. See [LICENSE](LICENSE) for additional details about it. See also our [Terms of Use](https://opensource.facebook.com/legal/terms) and [Privacy Policy](https://opensource.facebook.com/legal/privacy).