# sdwebuiapi **Repository Path**: devai/sdwebuiapi ## Basic Information - **Project Name**: sdwebuiapi - **Description**: Python API client for AUTOMATIC1111/stable-diffusion-webui - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-27 - **Last Updated**: 2024-11-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # sdwebuiapi API client for AUTOMATIC1111/stable-diffusion-webui Supports txt2img, img2img, extra-single-image, extra-batch-images API calls. API support have to be enabled from webui. Add --api when running webui. It's explained [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API). You can use --api-auth user1:pass1,user2:pass2 option to enable authentication for api access. (Since it's basic http authentication the password is transmitted in cleartext) API calls are (almost) direct translation from http://127.0.0.1:7860/docs as of 2022/11/21. # Install ``` pip install webuiapi ``` # Usage webuiapi_demo.ipynb contains example code with original images. Images are compressed as jpeg in this document. ## create API client ``` import webuiapi # create API client api = webuiapi.WebUIApi() # create API client with custom host, port #api = webuiapi.WebUIApi(host='127.0.0.1', port=7860) # create API client with custom host, port and https #api = webuiapi.WebUIApi(host='webui.example.com', port=443, use_https=True) # create API client with default sampler, steps. #api = webuiapi.WebUIApi(sampler='Euler a', steps=20) # optionally set username, password when --api-auth=username:password is set on webui. # username, password are not protected and can be derived easily if the communication channel is not encrypted. # you can also pass username, password to the WebUIApi constructor. api.set_auth('username', 'password') ``` ## txt2img ``` result1 = api.txt2img(prompt="cute squirrel", negative_prompt="ugly, out of frame", seed=1003, styles=["anime"], cfg_scale=7, # sampler_index='DDIM', # steps=30, # enable_hr=True, # hr_scale=2, # hr_upscaler=webuiapi.HiResUpscaler.Latent, # hr_second_pass_steps=20, # hr_resize_x=1536, # hr_resize_y=1024, # denoising_strength=0.4, ) # images contains the returned images (PIL images) result1.images # image is shorthand for images[0] result1.image # info contains text info about the api call result1.info # info contains paramteres of the api call result1.parameters result1.image ``` ![txt2img](https://user-images.githubusercontent.com/1288793/200459205-258d75bb-d2b6-4882-ad22-040bfcf95626.jpg) ## img2img ``` result2 = api.img2img(images=[result1.image], prompt="cute cat", seed=5555, cfg_scale=6.5, denoising_strength=0.6) result2.image ``` ![img2img](https://user-images.githubusercontent.com/1288793/200459294-ab1127e5-04e5-47ac-82b2-2bbd0648402a.jpg) ## img2img inpainting ``` from PIL import Image, ImageDraw mask = Image.new('RGB', result2.image.size, color = 'black') # mask = result2.image.copy() draw = ImageDraw.Draw(mask) draw.ellipse((210,150,310,250), fill='white') draw.ellipse((80,120,160,120+80), fill='white') mask ``` ![mask](https://user-images.githubusercontent.com/1288793/200459372-7850c6b6-27c5-435a-93e2-8710948d316a.jpg) ``` inpainting_result = api.img2img(images=[result2.image], mask_image=mask, inpainting_fill=1, prompt="cute cat", seed=104, cfg_scale=5.0, denoising_strength=0.7) inpainting_result.image ``` ![img2img_inpainting](https://user-images.githubusercontent.com/1288793/200459398-9c1004be-1352-4427-bc00-442721a0e5a1.jpg) ## extra-single-image ``` result3 = api.extra_single_image(image=result2.image, upscaler_1=webuiapi.Upscaler.ESRGAN_4x, upscaling_resize=1.5) print(result3.image.size) result3.image ``` (768, 768) ![extra_single_image](https://user-images.githubusercontent.com/1288793/200459455-8579d740-3d8f-47f9-8557-cc177b3e99b7.jpg) ## extra-batch-images ``` result4 = api.extra_batch_images(images=[result1.image, inpainting_result.image], upscaler_1=webuiapi.Upscaler.ESRGAN_4x, upscaling_resize=1.5) result4.images[0] ``` ![extra_batch_images_1](https://user-images.githubusercontent.com/1288793/200459540-b0bd2931-93db-4d03-9cc1-a9f5e5c89745.jpg) ``` result4.images[1] ``` ![extra_batch_images_2](https://user-images.githubusercontent.com/1288793/200459542-aa8547a0-f6db-436b-bec1-031a93a7b1d4.jpg) ### Async API support txt2img, img2img, extra_single_image, extra_batch_images support async api call with use_async=True parameter. You need asyncio, aiohttp packages installed. ``` result = await api.txt2img(prompt="cute kitten", seed=1001, use_async=True ) result.image ``` ### Scripts support Scripts from AUTOMATIC1111's Web UI are supported, but there aren't official models that define a script's interface. To find out the list of arguments that are accepted by a particular script look up the associated python file from AUTOMATIC1111's repo `scripts/[script_name].py`. Search for its `run(p, **args)` function and the arguments that come after 'p' is the list of accepted arguments #### Example for X/Y/Z Plot script: ``` (scripts/xyz_grid.py file from AUTOMATIC1111's repo) def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size): ... ``` List of accepted arguments: * _x_type_: Index of the axis for X axis. Indexes start from [0: Nothing] * _x_values_: String of comma-separated values for the X axis * _y_type_: Index of the axis type for Y axis. As the X axis, indexes start from [0: Nothing] * _y_values_: String of comma-separated values for the Y axis * _z_type_: Index of the axis type for Z axis. As the X axis, indexes start from [0: Nothing] * _z_values_: String of comma-separated values for the Z axis * _draw_legend_: "True" or "False". IMPORTANT: It needs to be a string and not a Boolean value * _include_lone_images_: "True" or "False". IMPORTANT: It needs to be a string and not a Boolean value * _include_sub_grids_: "True" or "False". IMPORTANT: It needs to be a string and not a Boolean value * _no_fixed_seeds_: "True" or "False". IMPORTANT: It needs to be a string and not a Boolean value * margin_size: int value ``` # Available Axis options (Different for txt2img and img2img!) XYZPlotAvailableTxt2ImgScripts = [ "Nothing", "Seed", "Var. seed", "Var. strength", "Steps", "Hires steps", "CFG Scale", "Prompt S/R", "Prompt order", "Sampler", "Checkpoint name", "Sigma Churn", "Sigma min", "Sigma max", "Sigma noise", "Eta", "Clip skip", "Denoising", "Hires upscaler", "VAE", "Styles", ] XYZPlotAvailableImg2ImgScripts = [ "Nothing", "Seed", "Var. seed", "Var. strength", "Steps", "CFG Scale", "Image CFG Scale", "Prompt S/R", "Prompt order", "Sampler", "Checkpoint name", "Sigma Churn", "Sigma min", "Sigma max", "Sigma noise", "Eta", "Clip skip", "Denoising", "Cond. Image Mask Weight", "VAE", "Styles", ] # Example call XAxisType = "Steps" XAxisValues = "20,30" XAxisValuesDropdown = "" YAxisType = "Sampler" YAxisValues = "Euler a, LMS" YAxisValuesDropdown = "" ZAxisType = "Nothing" ZAxisValues = "" ZAxisValuesDropdown = "" drawLegend = "True" includeLoneImages = "False" includeSubGrids = "False" noFixedSeeds = "False" marginSize = 0 # x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size result = api.txt2img( prompt="cute girl with short brown hair in black t-shirt in animation style", seed=1003, script_name="X/Y/Z Plot", script_args=[ XYZPlotAvailableTxt2ImgScripts.index(XAxisType), XAxisValues, XAxisValuesDropdown, XYZPlotAvailableTxt2ImgScripts.index(YAxisType), YAxisValues, YAxisValuesDropdown, XYZPlotAvailableTxt2ImgScripts.index(ZAxisType), ZAxisValues, ZAxisValuesDropdown, drawLegend, includeLoneImages, includeSubGrids, noFixedSeeds, marginSize, ] ) result.image ``` ![txt2img_grid_xyz](https://user-images.githubusercontent.com/1288793/222345625-dc2e4090-6786-4a53-8619-700dc2f12412.jpg) ### Configuration APIs ``` # return map of current options options = api.get_options() # change sd model options = {} options['sd_model_checkpoint'] = 'model.ckpt [7460a6fa]' api.set_options(options) # when calling set_options, do not pass all options returned by get_options(). # it makes webui unusable (2022/11/21). # get available sd models api.get_sd_models() # misc get apis api.get_samplers() api.get_cmd_flags() api.get_hypernetworks() api.get_face_restorers() api.get_realesrgan_models() api.get_prompt_styles() api.get_artist_categories() # deprecated ? api.get_artists() # deprecated ? api.get_progress() api.get_embeddings() api.get_cmd_flags() api.get_scripts() api.get_schedulers() api.get_memory() # misc apis api.interrupt() api.skip() ``` ### Utility methods ``` # save current model name old_model = api.util_get_current_model() # get list of available models models = api.util_get_model_names() # get list of available samplers api.util_get_sampler_names() # get list of available schedulers api.util_get_scheduler_names() # refresh list of models api.refresh_checkpoints() # set model (use exact name) api.util_set_model(models[0]) # set model (find closest match) api.util_set_model('robodiffusion') # wait for job complete api.util_wait_for_ready() ``` ### LORA and alwayson_scripts example ``` r = api.txt2img(prompt='photo of a cute girl with green hair shuimobysim __juice__', seed=1000, save_images=True, alwayson_scripts={"Simple wildcards":[]} # wildcards extension doesn't accept more parameters. ) r.image ``` ### Extension support - Model-Keyword ``` # https://github.com/mix1009/model-keyword mki = webuiapi.ModelKeywordInterface(api) mki.get_keywords() ``` ModelKeywordResult(keywords=['nousr robot'], model='robo-diffusion-v1.ckpt', oldhash='41fef4bd', match_source='model-keyword.txt') ### Extension support - Instruct-Pix2Pix ``` # Instruct-Pix2Pix extension is now deprecated and is now part of webui. # You can use normal img2img with image_cfg_scale when instruct-pix2pix model is loaded. r = api.img2img(prompt='sunset', images=[pil_img], cfg_scale=7.5, image_cfg_scale=1.5) r.image ``` ### Extension support - ControlNet ``` # https://github.com/Mikubill/sd-webui-controlnet api.controlnet_model_list() ```
['control_v11e_sd15_ip2p [c4bb465c]',
 'control_v11e_sd15_shuffle [526bfdae]',
 'control_v11f1p_sd15_depth [cfd03158]',
 'control_v11p_sd15_canny [d14c016b]',
 'control_v11p_sd15_inpaint [ebff9138]',
 'control_v11p_sd15_lineart [43d4be0d]',
 'control_v11p_sd15_mlsd [aca30ff0]',
 'control_v11p_sd15_normalbae [316696f1]',
 'control_v11p_sd15_openpose [cab727d4]',
 'control_v11p_sd15_scribble [d4ba51ff]',
 'control_v11p_sd15_seg [e1f51eb9]',
 'control_v11p_sd15_softedge [a8575a2a]',
 'control_v11p_sd15s2_lineart_anime [3825e83e]',
 'control_v11u_sd15_tile [1f041471]']
 
``` api.controlnet_version() api.controlnet_module_list() ``` ``` # normal txt2img r = api.txt2img(prompt="photo of a beautiful girl with blonde hair", height=512, seed=100) img = r.image img ``` ![cn1](https://user-images.githubusercontent.com/1288793/222315754-43c6dc8c-2a62-4a31-b51a-f68523118e0d.png) ``` # txt2img with ControlNet # input_image parameter is changed to image (change in ControlNet API) unit1 = webuiapi.ControlNetUnit(image=img, module='canny', model='control_v11p_sd15_canny [d14c016b]') r = api.txt2img(prompt="photo of a beautiful girl", controlnet_units=[unit1]) r.image ``` ![cn2](https://user-images.githubusercontent.com/1288793/222315791-c6c480eb-2987-4044-b673-5f2cb6135f87.png) ``` # img2img with multiple ControlNets unit1 = webuiapi.ControlNetUnit(image=img, module='canny', model='control_v11p_sd15_canny [d14c016b]') unit2 = webuiapi.ControlNetUnit(image=img, module='depth', model='control_v11f1p_sd15_depth [cfd03158]', weight=0.5) r2 = api.img2img(prompt="girl", images=[img], width=512, height=512, controlnet_units=[unit1, unit2], sampler_name="Euler a", cfg_scale=7, ) r2.image ``` ![cn3](https://user-images.githubusercontent.com/1288793/222315816-1155b0c2-570d-4455-a68e-294fc7061b0a.png) ``` r2.images[1] ``` ![cn4](https://user-images.githubusercontent.com/1288793/222315836-9a26afec-c407-426b-9a08-b2cef2a32ab1.png) ``` r2.images[2] ``` ![cn5](https://user-images.githubusercontent.com/1288793/222315859-e6b6286e-854d-40c1-a516-5a08c827c49a.png) ``` r = api.controlnet_detect(images=[img], module='canny') r.image ``` ### Extension support - AnimateDiff ``` # https://github.com/continue-revolution/sd-webui-animatediff adiff = webuiapi.AnimateDiff(model='mm_sd15_v3.safetensors', video_length=24, closed_loop='R+P', format=['GIF']) r = api.txt2img(prompt='cute puppy', animatediff=adiff) # save GIF file. need save_all=True to save animated GIF. r.image.save('puppy.gif', save_all=True) # Display animated GIF in Jupyter notebook from IPython.display import HTML HTML(''.format(r.json['images'][0])) ``` ### Extension support - RemBG (contributed by webcoderz) ``` # https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg rembg = webuiapi.RemBGInterface(api) r = rembg.rembg(input_image=img, model='u2net', return_mask=False) r.image ``` ### Extension support - SegmentAnything (contributed by TimNekk) ```python # https://github.com/continue-revolution/sd-webui-segment-anything segment = webuiapi.SegmentAnythingInterface(api) # Perform a segmentation prediction using the SAM model using points sam_result = segment.sam_predict( image=img, sam_positive_points=[(0.5, 0.25), (0.75, 0.75)], # add other parameters as needed ) # Perform a segmentation prediction using the SAM model using GroundingDINO sam_result2 = segment.sam_predict( image=img, dino_enabled=True, dino_text_prompt="A text prompt for GroundingDINO", # add other parameters as needed ) # Example of dilating a mask dilation_result = segment.dilate_mask( image=img, mask=sam_result.masks[0], # using the first mask from the SAM prediction dilate_amount=30 ) # Example of generating semantic segmentation with category IDs semantic_seg_result = segment.sam_and_semantic_seg_with_cat_id( image=img, category="1+2+3", # Category IDs separated by '+' # add other parameters as needed ) ``` ### Extension support - ADetailer (contributed by tomj2ee and davidmartinrius) #### txt2img with ADetailer ``` # https://github.com/Bing-su/adetailer import webuiapi api = webuiapi.WebUIApi() ads = webuiapi.ADetailer(ad_model="face_yolov8n.pt") result1 = api.txt2img(prompt="cute squirrel", negative_prompt="ugly, out of frame", seed=-1, styles=["anime"], cfg_scale=7, adetailer=[ads], steps=30, enable_hr=True, denoising_strength=0.5 ) img = result1.image img # OR file_path = "output_image.png" result1.image.save(file_path) ``` #### img2img with ADetailer ``` import webuiapi from PIL import Image img = Image.open("/path/to/your/image.jpg") ads = webuiapi.ADetailer(ad_model="face_yolov8n.pt") api = webuiapi.WebUIApi() result1 = api.img2img( images=[img], prompt="a cute squirrel", steps=25, seed=-1, cfg_scale=7, denoising_strength=0.5, resize_mode=2, width=512, height=512, adetailer=[ads], ) file_path = "img2img_output_image.png" result1.image.save(file_path) ``` ### Support for interrogate with "deepdanbooru / deepbooru" (contributed by davidmartinrius) ``` import webuiapi from PIL import Image api = webuiapi.WebUIApi() img = Image.open("/path/to/your/image.jpg") interrogate_result = api.interrogate(image=img, model="deepdanbooru") # also you can use clip. clip is set by default #interrogate_result = api.interrogate(image=img, model="clip") #interrogate_result = api.interrogate(image=img) prompt = interrogate_result.info prompt # OR print(prompt) ``` ### Support for ReActor, for face swapping (contributed by davidmartinrius) ``` import webuiapi from PIL import Image img = Image.open("/path/to/your/image.jpg") api = webuiapi.WebUIApi() your_desired_face = Image.open("/path/to/your/desired/face.jpeg") reactor = webuiapi.ReActor( img=your_desired_face, enable=True ) result1 = api.img2img( images=[img], prompt="a cute squirrel", steps=25, seed=-1, cfg_scale=7, denoising_strength=0.5, resize_mode=2, width=512, height=512, reactor=reactor ) file_path = "face_swapped_image.png" result1.image.save(file_path) ``` ### Support for Self Attention Guidance (contributed by yano) https://github.com/ashen-sensored/sd_webui_SAG ``` import webuiapi from PIL import Image img = Image.open("/path/to/your/image.jpg") api = webuiapi.WebUIApi() your_desired_face = Image.open("/path/to/your/desired/face.jpeg") sag = webuiapi.Sag( enable=True, scale=0.75, mask_threshold=1.00 ) result1 = api.img2img( images=[img], prompt="a cute squirrel", steps=25, seed=-1, cfg_scale=7, denoising_strength=0.5, resize_mode=2, width=512, height=512, sag=sag ) file_path = "face_swapped_image.png" result1.image.save(file_path) ``` ### Prompt generator API by [David Martin Rius](https://github.com/davidmartinrius/): This is an unofficial implementation to use the api of promptgen. Before installing the extension you have to check if you already have an extension called Promptgen. If so, you need to uninstall it. Once uninstalled you can install it in two ways: #### 1. From the user interface ![image](https://github.com/davidmartinrius/sdwebuiapi/assets/16558194/d879719f-bb9f-44a7-aef7-b893d117bbea) #### 2. From the command line cd stable-diffusion-webui/extensions git clone -b api-implementation https://github.com/davidmartinrius/stable-diffusion-webui-promptgen.git Once installed: ``` api = webuiapi.WebUIApi() result = api.list_prompt_gen_models() print("list of models") print(result) # you will get something like this: #['AUTOMATIC/promptgen-lexart', 'AUTOMATIC/promptgen-majinai-safe', 'AUTOMATIC/promptgen-majinai-unsafe'] text = "a box" To create a prompt from a text: # by default model_name is "AUTOMATIC/promptgen-lexart" result = api.prompt_gen(text=text) # Using a different model result = api.prompt_gen(text=text, model_name="AUTOMATIC/promptgen-majinai-unsafe") #Complete usage result = api.prompt_gen( text=text, model_name="AUTOMATIC/promptgen-majinai-unsafe", batch_count= 1, batch_size=10, min_length=20, max_length=150, num_beams=1, temperature=1, repetition_penalty=1, length_preference=1, sampling_mode="Top K", top_k=12, top_p=0.15 ) # result is a list of prompts. You can iterate the list or just get the first result like this: result[0] ``` ### TIPS for using Flux [David Martin Rius](https://github.com/davidmartinrius/): In both cases, it is needed cfg_scale = 1, sampler_name = "Euler", scheduler = "Simple" and in txt2img enable_hr=False ## For txt2img ``` import webuiapi result1 = api.txt2img(prompt="cute squirrel", negative_prompt="ugly, out of frame", seed=-1, styles=["anime"], cfg_scale=1, steps=20, enable_hr=False, denoising_strength=0.5, sampler_name= "Euler", scheduler= "Simple" ) img = result1.image img # OR file_path = "output_image.png" result1.image.save(file_path) ``` ## For img2img ``` import webuiapi from PIL import Image img = Image.open("/path/to/your/image.jpg") api = webuiapi.WebUIApi() result1 = api.img2img( images=[img], prompt="a cute squirrel", steps=20, seed=-1, cfg_scale=1, denoising_strength=0.5, resize_mode=2, width=512, height=512, sampler_name= "Euler", scheduler= "Simple" ) file_path = "face_swapped_image.png" result1.image.save(file_path) ```