# pytorch **Repository Path**: daisycc/pytorch ## Basic Information - **Project Name**: pytorch - **Description**: Ascend PyTorch adapter - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1494 - **Created**: 2023-12-26 - **Last Updated**: 2023-12-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorch Ascend Adapter ## Overview This repository develops the **PyTorch Ascend Adapter** named **torch_npu** to adapt **Ascend NPU** to **PyTorch** so that developers who use the **PyTorch** can obtain powerful compute capabilities of **Ascend AI Processors**. Ascend is a full-stack AI computing infrastructure for industry applications and services based on Huawei Ascend processors and software. For more information about Ascend, see [Ascend Community](https://www.hiascend.com/en/). ## Installation ### From Binary Provide users with wheel package to quickly install **torch_npu**. Before installing **torch_npu**, complete the installation of **CANN** according to [Ascend Auxiliary Software](#ascend-auxiliary-software). To obtain the **CANN** installation package, refer to the [CANN Installation](https://www.hiascend.com/en/software/cann/community). 1. **Install PyTorch** Install **PyTorch** through pip. **For Aarch64:** ```Python pip3 install torch==2.1.0 ``` **For x86:** ```Python pip3 install torch==2.1.0+cpu --index-url https://download.pytorch.org/whl/cpu ``` 2. **Install torch-npu dependencies** Run the following command to install dependencies. ```Python pip3 install pyyaml pip3 install setuptools ``` If the installation fails, use the download link or visit the [PyTorch official website](https://pytorch.org/) to download the installation package of the corresponding version. | OS arch | Python version | link | | ------- | -------------- | ------------------------------------------------------------ | | x86 | Python3.8 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp38-cp38-linux_x86_64.whl#sha256=9e5cfd931a65b38d222755a45dabb53b836be31bc620532bc66fee77e3ff67dc) | | x86 | Python3.9 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp39-cp39-linux_x86_64.whl#sha256=86cc28df491fa84738affe752f9870791026565342f69e4ab63e5b935f00a495) | | x86 | Python3.10 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl#sha256=5077921fc2b54e69a534f3a9c0b98493c79a5547c49d46f5e77e42da3610e011) | | aarch64 | Python3.8 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl#sha256=761822761fffaa1c18a62c5deb13abaa780862577d3eadc428f1daa632536905) | | aarch64 | Python3.9 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl#sha256=de7d63c6ecece118684415a3dbd4805af4a4c1ee1490cccf7405d8c240a481b4) | | aarch64 | Python3.10 | [link](https://download.pytorch.org/whl/cpu/torch-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl#sha256=a04a0296d47f28960f51c18c5489a8c3472f624ec3b5bcc8e2096314df8c3342) | 3. **Install torch-npu** ``` pip3 install torch-npu==2.1.0rc1 ``` ### From Source In some special scenarios, users may need to compile **torch-npu** by themselves.Select a branch in table [Ascend Auxiliary Software](#ascend-auxiliary-software) and a Python version in table [PyTorch and Python Version Matching Table](#pytorch-and-python-version-matching-table) first. The docker image is recommended for compiling torch-npu through the following steps(It is recommended to mount the working path only and avoid the system path to reduce security risks.): 1. **Clone torch-npu** ``` git clone https://github.com/ascend/pytorch.git -b v2.1.0-5.0.rc3 --depth 1 ``` 2. **Build Docker Image** ``` cd pytorch/ci/docker/{arch} # {arch} for X86 or ARM docker build -t manylinux-builder:v1 . ``` 3. **Enter Docker Container** ``` docker run -it -v /{code_path}/pytorch:/home/pytorch manylinux-builder:v1 bash # {code_path} is the torch_npu source code path ``` 4. **Compile torch-npu** Take **Python 3.8** as an example. ``` cd /home/pytorch bash ci/build.sh --python=3.8 ``` ## Getting Started ### Prerequisites Initialize **CANN** environment variable by running the command as shown below. ```Shell # Default path, change it if needed. source /usr/local/Ascend/ascend-toolkit/set_env.sh ``` ### Quick Verification You can quickly experience **Ascend NPU** by the following simple examples. ```Python import torch import torch_npu x = torch.randn(2, 2).npu() y = torch.randn(2, 2).npu() z = x.mm(y) print(z) ``` ## User Manual Refer to [API of PyTorch Ascend Adapter](docs/api/torch_npu_apis.md) for more detailed informations. ## PyTorch and Python Version Matching Table | PyTorch Version | Python Version | | ------------- | :----------------------------------------------------------- | | PyTorch1.11.0 | Python3.7.x(>=3.7.5),Python3.8.x,Python3.9.x,Python3.10.x | | PyTorch2.0.1 | Python3.8.x,Python3.9.x,Python3.10.x | | PyTorch2.1.0 | Python3.8.x,Python3.9.x,Python3.10.x | ## Ascend Auxiliary Software

CANN Version

Supported PyTorch Version

Supported Adapter Version

Github Branch

AscendHub Image Version/Name(Link)

CANN 7.0.RC1

2.1.0

2.1.0.rc1

v2.1.0-5.0.rc3

-

2.0.1

2.0.1

v2.0.1-5.0.rc3

-

1.11.0

1.11.0.post4

v1.11.0-5.0.rc3

-

CANN 6.3.RC3.1

1.11.0

1.11.0.post3

v1.11.0-5.0.rc2.2

-

CANN 6.3.RC3

1.11.0

1.11.0.post2

v1.11.0-5.0.rc2.1

-

CANN 6.3.RC2

2.0.1

2.0.1.rc1

v2.0.1-5.0.rc2

-

1.11.0

1.11.0.post1

v1.11.0-5.0.rc2

23.0.RC1-1.11.0

1.8.1

1.8.1.post2

v1.8.1-5.0.rc2

23.0.RC1-1.8.1

CANN 6.3.RC1

1.11.0

1.11.0

v1.11.0-5.0.rc1

-

1.8.1

1.8.1.post1

v1.8.1-5.0.rc1

-

CANN 6.0.1

1.5.0

1.5.0.post8

v1.5.0-3.0.0

22.0.0

1.8.1

1.8.1

v1.8.1-3.0.0

22.0.0-1.8.1

1.11.0

1.11.0.rc2(beta)

v1.11.0-3.0.0

-

CANN 6.0.RC1

1.5.0

1.5.0.post7

v1.5.0-3.0.rc3

22.0.RC3

1.8.1

1.8.1.rc3

v1.8.1-3.0.rc3

22.0.RC3-1.8.1

1.11.0

1.11.0.rc1(beta)

v1.11.0-3.0.rc3

-

CANN 5.1.RC2

1.5.0

1.5.0.post6

v1.5.0-3.0.rc2

22.0.RC2

1.8.1

1.8.1.rc2

v1.8.1-3.0.rc2

22.0.RC2-1.8.1

CANN 5.1.RC1

1.5.0

1.5.0.post5

v1.5.0-3.0.rc1

22.0.RC1

1.8.1

1.8.1.rc1

v1.8.1-3.0.rc1

-

CANN 5.0.4

1.5.0

1.5.0.post4

2.0.4.tr5

21.0.4

CANN 5.0.3

1.8.1

1.5.0.post3

2.0.3.tr5

21.0.3

CANN 5.0.2

1.5.0

1.5.0.post2

2.0.2.tr5

21.0.2

## Pipeline Status Due to the asynchronous development mechanism of upstream and downstream, incompatible modifications in upstream may cause some functions of **torch_npu** to be unavailable (only upstream and downstream development branches are involved, excluding stable branches). Therefore, we built a set of daily tasks that make it easy to detect relevant issues in time and fix them within 48 hours (under normal circumstances), providing users with the latest features and stable quality. | **OS** | **CANN Version(Docker Image)** | **Upstream Branch** | **Downstream Branch** | **Period** | **Status** | | :---: | :---: | :---: | :---: | :---: | :---: | | openEuler 22.03 SP2 | [CANN 7.1](https://hub.docker.com/r/ascendai/cann/tags) | [main](https://github.com/pytorch/pytorch/tree/main) | [master](https://github.com/Ascend/pytorch/tree/master) | UTC 1200 daily | [![Ascend NPU](https://github.com/Ascend/pytorch/actions/workflows/periodic.yml/badge.svg)](https://github.com/Ascend/pytorch/actions/workflows/periodic.yml) | ## Suggestions and Communication Everyone is welcome to contribute to the community. If you have any questions or suggestions, you can submit [Github Issues](https://github.com/Ascend/pytorch/issues). We will reply to you as soon as possible. Thank you very much. ## Branch Maintenance Policies The version branches of AscendPyTorch have the following maintenance phases: | **Status** | **Duration** | **Description** | |-------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------| | Planning | 1-3 months | Plan features. | | Development | 3 months | Develop features. | | Maintained | 6-12 months | Allow the incorporation of all resolved issues and release the version. | | Unmaintained | 0-3 months | Allow the incorporation of all resolved issues. No dedicated maintenance personnel are available. No version will be released. | | End Of Life (EOL) | N/A | Do not accept any modification to a branch. | ## Maintenance Status of Existing Branches | **Branch Name** | **Status** | **Launch Date** | **Subsequent Status** | **EOL Date** | | --------------- | ---------- | --------------- | --------------------------------------- | ------------ | | **v2.0.2** | EOL | 2021/7/29 | N/A | | | **v2.0.3** | EOL | 2021/10/15 | N/A | | | **v2.0.4** | EOL | 2022/1/15 | N/A | | | **v3.0.rc1** | EOL | 2022/4/10 | N/A | | | **v3.0.rc2** | EOL | 2022/7/15 | N/A | | | **v3.0.rc3** | EOL | 2022/10/20 | N/A | | | **v3.0.0** | Maintained | 2023/1/18 | Unmaintained
2024-1-18 estimated | | | **v5.0.rc1** | Maintained | 2023/4/19 | Unmaintained
2024-4-19 estimated | | | **v5.0.rc2** | Maintained | 2023/7/19 | Unmaintained
2024-7-19 estimated | | | **v5.0.rc3** | Maintained | 2023/10/15 | Unmaintained
2024-10-15 estimated | | ## Reference Documents For more detailed information on installation guides, model migration, training/inference tutorials, and API lists, please refer to the [PyTorch Ascend Adapter on the HiAI Community](https://www.hiascend.com/software/ai-frameworks/commercial). | Document Name | Document Link | | -------------------------------- | ------------------------------------------------------------ | | AscendPyTorch Installation Guide | [link](https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/envdeployment/instg/instg_0083.html) | | AscendPyTorch Network Model Migration and Training | [link](https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/modeldevpt/ptmigr/AImpug_0002.html) | | AscendPyTorch Online Inference | [link](https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/modeldevpt/ptonlineinfer/PyTorch_Infer_000001.html) | | AscendPyTorch Operator Adaptation | [link](https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/operatordev/tbeaicpudevg/atlasopdev_10_0086.html) | | AscendPyTorch API List (PyTorch and Custom Interfaces) | [link](https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/modeldevpt/ptmigr/ptaoplist_001.html) | ## License PyTorch Ascend Adapter has a BSD-style license, as found in the [LICENSE](LICENSE) file.