# vbr-devkit **Repository Path**: bugtransportworker/vbr-devkit ## Basic Information - **Project Name**: vbr-devkit - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-23 - **Last Updated**: 2025-12-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

VBR Development Kit

Project Site | Preprint

PyPI - Version PyPI - Downloads

This kit contains utilities to download the VBR dataset # Install ```shell pip install vbr-devkit ``` You can install autocompletion for our package by typing: ```shell vbr --install-completion ``` you might need to restart the shell for the autocompletion to take effect. # Usage ## Download sequences You can list the available sequences you can download by typing: ```shell vbr list ``` You should see something similar to this ![list](https://github.com/rvp-group/vbr-devkit/assets/5305530/c195e5b0-c5ee-4abb-a7f5-2ce97474ac4f) After choosing your sequence, you can type ```shell vbr download ``` For instance, we could save `campus_train0` as follows: ```shell vbr download campus_train0 ~/data/ ``` **N.B.** The script will actually save the sequence at `/vbr_slam//`. Moreover, by calling the previous command, we expect the following directory: ``` data - vbr_slam - campus - campus_train0 - vbr_calib.yaml - campus_train0_gt.txt - campus_train0_00.bag - campus_train0_01.bag - campus_train0_02.bag - campus_train0_03.bag - campus_train0_04.bag ``` ## Convert format The sequences are provided in ROS1 format. We offer a convenient tool to change representation if you prefer working on a different format. You can see the supported formats by typing: ```shell vbr convert --help ``` To convert a bag or a sequence of bags, type: ```shell vbr convert ``` for instance, we could convert the `campus_train0` sequence to `kitti` format as follows: ```shell vbr convert kitti ~/data/vbr_slam/campus/campus_train0/campus_train0_00.bag ~/data/campus_train0_00_kitti/ ``` We can expect the following result: ``` data - campus_train0_00_kitti - camera_left - timestamps.txt - data - 0000000000.png - 0000000001.png - ... - camera_right - timestamps.txt - data - 0000000000.png - 0000000001.png - ... - ouster_points - timestamps.txt - data - .dtype.pkl - 0000000000.bin - 0000000001.bin - ... - ... ``` **N.B.** In KITTI format, point clouds are embedded in binary files that can be opened using `Numpy` and `pickle` as follows: ```python import numpy as np import pickle with open("campus_train0_00_kitti/ouster_points/data/.dtype.pkl", "rb") as f: cdtype = pickle.load(f) cloud_numpy = np.fromfile("/campus_train0_00_kitti/ouster_points/data/0000000000.bin", dtype=cdtype) ```