# deep_ctr **Repository Path**: Durant7777/deep_ctr ## Basic Information - **Project Name**: deep_ctr - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-16 - **Last Updated**: 2021-03-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 点击预估模型 ## 1. Recall | 算法 | 论文 | 公众号或知乎文章介绍 | | -------- | ----- | ---- | | Word2vec | [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/abs/1301.3781v3) | | | YouTubeNet | [Deep Neural Networks for YouTube Recommendations](https://www.sci-hub.ren/10.1145/2959100.2959190) | [推荐系统召回模型之YouTubeNet](https://mp.weixin.qq.com/s/hiabDQW0qGfgPwiZdiZ_Mg) | | DSSM | [Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations](https://www.sci-hub.ren/10.1145/3298689.3346996) | [实践DSSM召回模型](https://zhuanlan.zhihu.com/p/136253355) | | MIND | [Multi-Interest Network with Dynamic Routing for Recommendation at Tmall](https://arxiv.org/abs/1904.08030v1) | [推荐系统召回模型之MIND用户多兴趣网络实践](https://mp.weixin.qq.com/s/Ys4EZw97ulrcBWFdN1OMyQ) | ## 2. Rank | 算法 | 论文 | 公众号文章介绍 | | -------- | ----- | ---- | | FFM | [Field-aware Factorization Machines for CTR Prediction](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) | [FFM算法原理及Bi-FFM算法实现](https://mp.weixin.qq.com/s/T46HbKC-_9yYzVTgl8Fh8w) | | Wide & Deep | [Wide & Deep Learning for Recommender Systems](https://arxiv.org/abs/1606.07792) | | | NFM | [Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | [NFM模型理论与实践](https://mp.weixin.qq.com/s/1sWYlzIydiLAPMBnr-a5sQ) | | AFM | [Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) | [注意力机制在深度推荐算法中的应用之AFM模型](https://mp.weixin.qq.com/s/sj5bxwtgiw-SaIItsjbeew) | | DeepFM | [DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/abs/1703.04247) | [DeepFM实践](https://zhuanlan.zhihu.com/p/137894818) | | BST | [Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) | [Transformer 在美团搜索排序中的实践](https://zhuanlan.zhihu.com/p/161311198) | ## 3. Multi-Task | 算法 | 论文 | 公众号文章介绍 | | -------- | ----- | ---- | | ESMM | [Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) | [ESMM多任务学习算法在推荐系统中的应用](https://mp.weixin.qq.com/s/x521rMWLf6CLk0e2uXEJng) | | MMoE | [Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/10.1145/3219819.3220007) | [多任务学习之MMOE模型](https://mp.weixin.qq.com/s/cBy0Y5xDtkc6PxhF1HNomg) | ## 4. Recall_ANN | 算法 | 开源地址 | 公众号文章介绍 | | -------- | ----- | ---- | | Annoy | [https://github.com/spotify/annoy](https://github.com/spotify/annoy) | [Annoy最近邻检索技术之 “图片检索”](https://zhuanlan.zhihu.com/p/148819536) | |Faiss|[https://github.com/facebookresearch/faiss](https://github.com/facebookresearch/faiss)|| # 代码参考 > https://github.com/shenweichen/DeepCTR > https://github.com/shenweichen/DeepMatch # 待学习及分享 ## Recall [Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring](https://arxiv.org/abs/1905.01969v3) [Controllable Multi-Interest Framework for Recommendation](https://static.aminer.cn/storage/pdf/arxiv/20/2005/2005.09347.pdf), 代码:[https://github.com/THUDM/ComiRec](https://github.com/THUDM/ComiRec) ## Pre-Rank [COLD: Towards the Next Generation of Pre-Ranking System](https://arxiv.org/abs/2007.16122) ## Rank DIN:[Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/abs/1706.06978) DIEN:[Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf), 代码: [https://github.com/mouna99/dien](https://github.com/mouna99/dien) MIMN:[Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09248.pdf) Search-based Interest Model:[Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction](https://arxiv.org/pdf/2006.05639.pdf) ## Multi-Task YouTube,2019: Recommending What Video to Watch Next-A Multitask Ranking System