# sandbox
**Repository Path**: ATM006/sandbox
## Basic Information
- **Project Name**: sandbox
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-12-03
- **Last Updated**: 2025-12-03
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# AIO Sandbox - All-in-One Agent Sandbox Environment
🌐 Browser | 💻 Terminal | 📁 File | 🔧 VSCode | 📊 Jupyter | 🤖 MCP

## 🚀 Quick Start
Get up and running in 30 seconds:
```bash
docker run --security-opt seccomp=unconfined --rm -it -p 8080:8080 ghcr.io/agent-infra/sandbox:latest
```
For users in mainland China:
```bash
docker run --security-opt seccomp=unconfined --rm -it -p 8080:8080 enterprise-public-cn-beijing.cr.volces.com/vefaas-public/all-in-one-sandbox:latest
```
Use a specific version in the format `agent-infra/sandbox:${version}`, for example, to use version 1.0.0.150:
```bash
docker run --security-opt seccomp=unconfined --rm -it -p 8080:8080 ghcr.io/agent-infra/sandbox:1.0.0.150
# or users in mainland China
docker run --security-opt seccomp=unconfined --rm -it -p 8080:8080 enterprise-public-cn-beijing.cr.volces.com/vefaas-public/all-in-one-sandbox:1.0.0.150
```
Once running, access the environment at:
- 📖 **Documentation**: http://localhost:8080/v1/docs
- 🌐 **VNC Browser**: http://localhost:8080/vnc/index.html?autoconnect=true
- 💻 **VSCode Server**: http://localhost:8080/code-server/
- 🤖 **MCP Services**: http://localhost:8080/mcp
## 🎯 What is AIO Sandbox?
AIO Sandbox is an **all-in-one** agent sandbox environment that combines Browser, Shell, File, MCP operations, and VSCode Server in a single Docker container. Built on cloud-native lightweight sandbox technology, it provides a unified, secure execution environment for AI agents and developers.
### Why Choose AIO Sandbox?
Traditional sandboxes are **single-purpose** (browser, code, or shell), making file sharing and functional coordination extremely challenging. AIO Sandbox solves this by providing:
- ✅ **Unified File System** - Files downloaded in browser are instantly available in Shell/File operations
- ✅ **Multiple Interfaces** - VNC, VSCode, Jupyter, and Terminal in one unified environment
- ✅ **Secure Execution** - Sandboxed Python and Node.js execution with safety guarantees
- ✅ **Zero Configuration** - Pre-configured MCP servers and development tools ready to use
- ✅ **Agent-Ready** - MCP-compatible APIs for seamless AI agent integration
## 📦 Installation
### SDK Installation
|
**Python**
```bash
pip install agent-sandbox
```
|
**TypeScript/JavaScript**
```bash
npm install @agent-infra/sandbox
```
|
**Golang**
```bash
go get github.com/agent-infra/sandbox-sdk-go
```
|
### Basic Usage
|
**Python Example**
```python
from agent_sandbox import Sandbox
# Initialize client
client = Sandbox(base_url="http://localhost:8080")
home_dir = client.sandbox.get_context().home_dir
# Execute shell commands
result = client.shell.exec_command(command="ls -la")
print(result.data.output)
# File operations
content = client.file.read_file(file=f"{home_dir}/.bashrc")
print(content.data.content)
# Browser automation
screenshot = client.browser.screenshot()
```
|
**TypeScript Example**
```typescript
import { Sandbox } from '@agent-infra/sandbox';
// Initialize client
const sandbox = new Sandbox({ baseURL: 'http://localhost:8080' });
// Execute shell commands
const result = await sandbox.shell.exec({ command: 'ls -la' });
console.log(result.output);
// File operations
const content = await sandbox.file.read({ path: '/home/gem/.bashrc' });
console.log(content);
// Browser automation
const screenshot = await sandbox.browser.screenshot();
```
|
## 🌟 Key Features
### 🔗 Unified Environment
All components run in the same container with a shared filesystem, enabling seamless workflows:
### 🌐 Browser Automation
Full browser control through multiple interfaces:
- **VNC** - Visual browser interaction through remote desktop
- **CDP** - Chrome DevTools Protocol for programmatic control
- **MCP** - High-level browser automation tools
### 💻 Development Tools
Integrated development environment with:
- **VSCode Server** - Full IDE experience in browser
- **Jupyter Notebook** - Interactive Python environment
- **Terminal** - WebSocket-based terminal access
- **Port Forwarding** - Smart preview for web applications
### 🤖 MCP Integration
Pre-configured Model Context Protocol servers:
- **Browser** - Web automation and scraping
- **File** - File system operations
- **Shell** - Command execution
- **Markitdown** - Document processing
## 📚 Complete Example
Convert a webpage to Markdown with embedded screenshot:
```python
import asyncio
import base64
from playwright.async_api import async_playwright
from agent_sandbox import Sandbox
async def site_to_markdown():
# Initialize sandbox client
c = Sandbox(base_url="http://localhost:8080")
home_dir = c.sandbox.get_context().home_dir
# Browser: Automation to download HTML
async with async_playwright() as p:
browser_info = c.browser.get_info().data
page = await (await p.chromium.connect_over_cdp(browser_info.cdp_url)).new_page()
await page.goto("https://example.com", wait_until="networkidle")
html = await page.content()
screenshot_b64 = base64.b64encode(await page.screenshot()).decode('utf-8')
# Jupyter: Convert HTML to markdown in sandbox
c.jupyter.execute_code(code=f"""
from markdownify import markdownify
html = '''{html}'''
screenshot_b64 = "{screenshot_b64}"
md = f"{{markdownify(html)}}\\n\\n"
with open('{home_dir}/site.md', 'w') as f:
f.write(md)
print("Done!")
""")
# Shell: List files in sandbox
list_result = c.shell.exec_command(command=f"ls -lh {home_dir}")
print(f"Files in sandbox: {list_result.data.output}")
# File: Read the generated markdown
return c.file.read_file(file=f"{home_dir}/site.md").data.content
if __name__ == "__main__":
result = asyncio.run(site_to_markdown())
print(f"Markdown saved successfully!")
```
## 🏗️ Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ 🌐 Browser + VNC │
├─────────────────────────────────────────────────────────────┤
│ 💻 VSCode Server │ 🐚 Shell Terminal │ 📁 File Ops │
├─────────────────────────────────────────────────────────────┤
│ 🔗 MCP Hub + 🔒 Sandbox Fusion │
├─────────────────────────────────────────────────────────────┤
│ 🚀 Preview Proxy + 📊 Service Monitoring │
└─────────────────────────────────────────────────────────────┘
```
## 🛠️ API Reference
### Core APIs
| Endpoint | Description |
|----------|-------------|
| `/v1/sandbox` | Get sandbox environment information |
| `/v1/shell/exec` | Execute shell commands |
| `/v1/file/read` | Read file contents |
| `/v1/file/write` | Write file contents |
| `/v1/browser/screenshot` | Take browser screenshot |
| `/v1/jupyter/execute` | Execute Jupyter code |
### MCP Servers
| Server | Tools Available |
|--------|----------------|
| `browser` | `navigate`, `screenshot`, `click`, `type`, `scroll` |
| `file` | `read`, `write`, `list`, `search`, `replace` |
| `shell` | `exec`, `create_session`, `kill` |
| `markitdown` | `convert`, `extract_text`, `extract_images` |
## 🚢 Deployment
### Docker Compose
```yaml
version: '3.8'
services:
sandbox:
container_name: aio-sandbox
image: ghcr.io/agent-infra/sandbox:latest
volumes:
- /tmp/gem/vite-project:/home/gem/vite-project
security_opt:
- seccomp:unconfined
extra_hosts:
- "host.docker.internal:host-gateway"
restart: "unless-stopped"
shm_size: "2gb"
ports:
- "${HOST_PORT:-8080}:8080"
environment:
PROXY_SERVER: ${PROXY_SERVER:-host.docker.internal:7890}
JWT_PUBLIC_KEY: ${JWT_PUBLIC_KEY:-}
DNS_OVER_HTTPS_TEMPLATES: ${DNS_OVER_HTTPS_TEMPLATES:-}
WORKSPACE: ${WORKSPACE:-"/home/gem"}
HOMEPAGE: ${HOMEPAGE:-}
BROWSER_EXTRA_ARGS: ${BROWSER_EXTRA_ARGS:-}
TZ: ${TZ:-Asia/Singapore}
WAIT_PORTS: ${WAIT_PORTS:-}
```
### Kubernetes
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: aio-sandbox
spec:
replicas: 2
template:
spec:
containers:
- name: aio-sandbox
image: ghcr.io/agent-infra/sandbox:latest
ports:
- containerPort: 8080
resources:
limits:
memory: "2Gi"
cpu: "1000m"
```
## 🤝 Integration Examples
### Browser Use Integration
```python
import asyncio
from agent_sandbox import Sandbox
from browser_use import Agent, Tools
from browser_use.browser import BrowserProfile, BrowserSession
from browser_use.llm import ChatOpenAI
sandbox = Sandbox(base_url="http://localhost:8080")
print("sandbox", sandbox.browser)
cdp_url = sandbox.browser.get_info().data.cdp_url
browser_session = BrowserSession(
browser_profile=BrowserProfile(cdp_url=cdp_url, is_local=True)
)
tools = Tools()
async def main():
agent = Agent(
task='Visit https://duckduckgo.com and search for "browser-use founders"',
llm=ChatOpenAI(model="gcp-claude4.1-opus"),
tools=tools,
browser_session=browser_session,
)
await agent.run()
await browser_session.kill()
input("Press Enter to close...")
if __name__ == "__main__":
asyncio.run(main())
```
### LangChain Integration
```python
from langchain.tools import BaseTool
from agent_sandbox import Sandbox
class SandboxTool(BaseTool):
name = "sandbox_execute"
description = "Execute commands in AIO Sandbox"
def _run(self, command: str) -> str:
client = Sandbox(base_url="http://localhost:8080")
result = client.shell.exec_command(command=command)
return result.data.output
```
### OpenAI Assistant Integration
```python
from openai import OpenAI
from agent_sandbox import Sandbox
import json
client = OpenAI(
api_key="your_api_key",
)
sandbox = Sandbox(base_url="http://localhost:8080")
# define a tool to run code in the sandbox
def run_code(code, lang="python"):
if lang == "python":
return sandbox.jupyter.execute_code(code=code).data
return sandbox.nodejs.execute_nodejs_code(code=code).data
# Use OpenAI
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "calculate 1+1"}],
tools=[
{
"type": "function",
"function": {
"name": "run_code",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string"},
"lang": {"type": "string"},
},
},
},
}
],
)
if response.choices[0].message.tool_calls:
args = json.loads(response.choices[0].message.tool_calls[0].function.arguments)
print("args", args)
result = run_code(**args)
print(result['outputs'][0]['text'])
```
## 🤝 Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## 📄 License
AIO Sandbox is released under the [Apache License 2.0](LICENSE).
## 🙏 Acknowledgments
Built with ❤️ by the Agent Infra team. Special thanks to all contributors and the open-source community.
## 📞 Support
- 📖 [Documentation](https://sandbox.agent-infra.com)
- 💬 [GitHub Discussions](https://github.com/agent-infra/sandbox/discussions)
- 🐛 [Issue Tracker](https://github.com/agent-infra/sandbox/issues)
---
Ready to revolutionize your AI development workflow?
⭐ Star us on GitHub •
📚 Read the Docs •
🐛 Report Issues